The TPTP Format for Clausal Tableaux Proofs

. v 1[0000—0001—9120—3927
Geoff Sutcliffel! 1=
Scan B. Holden2[0000-0001-7979-1148]
Mantas Baksys2[0000-0001-9532-1007]

! University of Miami, USA, geoff@cs.miami .edu,
2 University of Cambridge, United Kingdom,
sbh11@cl.cam.ac.uk,mb2412@cam.ac.uk

Abstract. This paper describes the (new) TPTP format for recording
clausal tableau proofs. The format builds on the existing infrastructure
of the TPTP World, in particular the TPTP format for recording deriva-
tions. An ATP system that outputs tableaux in this format is described.
Existing TPTP World tools for verifying and viewing derivations can
be directly extended to verify and view tableaux recorded in this new
format.

Keywords: TPTP, tableau, proof

1 Introduction

Automated Theorem Proving (ATP) [22] is concerned with the development
and use of software that automates sound reasoning: the derivation of conclu-
sions that follow inevitably from known facts. ATP is at the heart of many
computational tasks, including sensitive tasks such as software/hardware verifi-
cation [6] and system security [3]. ATP systems are often used as components of
more complex Artificial Intelligence (AI) systems, which means that the impact
of ATP extends into many facets of society. In many of these applications the use
of ATP systems is mission critical, in the sense that incorrect results from ATP
might have nasty consequences. Facing the demand for error-free results from
ATP systems is the reality that ATP systems are complex pieces of software,
implementing complex calculi with complex data structures and algorithms [23].
Despite best intentions and efforts, incorrect results are possible. To counter in-
correctness, an ATP system can be required to output a proof that serves as a
certificate for the system’s claim. To ensure that a proof is correct, proof verifi-
cation can be required, which serves as a certification (but not a certificate) of
the proof.

At one top level, proofs can be divided into two types: Hilbert-style proofs
that start at axioms and derive theorems [4], and proofs-by-contradiction that
negate the conjecture to be proved and derive a contradiction with the ax-
ioms [IT]. ATP systems that search for Hilbert-style proofs are often called “nat-
ural deduction systems”, e.g., THINKER [20] and Muscadet [19]. Most contem-
porary high-performance ATP systems that search for a proof-by-contradiction,

2 Geoff Sutcliffe, et al.

called a refutation in this context, use a saturation based approach [23], e.g.,
E [24] and Vampire [I0]. A complementary approach is taken in systems that
build tableaux and closed connection matrices [5], e.g., leanCoP [I4] and Con-
nect++ [7]. The TPTP World (see Section [2)) has an established format for
writing Hilbert-style proofs and refutations [40], and has a tool for verifying
proofs in that format (see Section , but has not yet settled on a format
for tableaux and connection proofs. One early proposal for a TPTP style for-
mat never gained traction [I7]. A more recent proposal [16] in the TPTP style
provided some inspiration for the new format.

This paper is structured as follows: Section [2] introduces the TPTP World,
providing the necessary background to the TPTP language, explains the TPTP
format for recording (non-tableau) derivations, and describes the GDV and IDV
tools for verifying and viewing derivations. Section [3] describes the new TPTP
format for recording clausal tableau proofs, and explains how the format meets
the requirements for easy reconstruction of the tableau, and for semantic veri-
fication of the tableau inference steps. Section [4] describes an ATP system that
can output tableaux in the new format, and explains how the GDV and IDV
tools can be directly extended to verify and view tableaux. Section [5] concludes.

2 The TPTP World

The TPTP World [35] is a well-established infrastructure that supports research,
development, and deployment of Automated Theorem Proving (ATP) systems.
The TPTP World infrastructure includes the TPTP language [40], the TPTP
problem library [31], the TSTP solution library [32], the SZS ontologies [30],
the Specialist Problem Classes (SPCs) and problem difficulty ratings [42], Sys-
temOnTPTP [28] and StarExec [27], and the CADE ATP System Competition
(CASC) [33]. The problem library is a large collection of Thousands of Problems
for Theorem Proving — hence the name. The problem library contains over 25000
problems from over 50 different domains, written in the TPTP language. The
problems are categorized into Specialist Problem Classes according to their syn-
tactic and logical status [30]. The TSTP solution library is the result of running
numerous ATP systems on that library and collecting their output. The solu-
tions are categorized according to their logical and output form [30]. The TPTP
and TSTP libraries, with their categorizations, provide the basis for assigning a
difficulty rating to each problem, according to the number of ATP systems that
are able to solve it [42].

The most salient feature of the TPTP World for this work is the TPTP
language. The TPTP language [34] is one of the keys to the success of the
TPTP World. The TPTP language is used for writing both problems and so-
lutions, which enables convenient communication between ATP systems and
tools. Originally the TPTP World supported only first-order clause normal form
(CNF) [41]. Over the years full first-order form (FOF) [31], typed first-order
form (TFF) [392], typed extended first-order form (TXF) [38], typed higher-
order form (THF) [36l9], and non-classical forms (NTF) [26] have been added.

TPTP Clausal Tableaux 3

A general principle of the TPTP language is: “We provide the syntax, you pro-
vide the semantics”. As such, there is no a priori commitment to any semantics
for each of the language forms, although in almost all cases the intended logic
and semantics are well known.

Problems and solutions are built from annotated formulae of the form

language(name, role, formula, source, useful_info)

The languages supported are cnf (clause normal form), fof (first-order form), tff
(typed first-order form), and thf (typed higher-order form). The role, e.g., axiom,
lemma, conjecture, defines the use of the formula. In a formulae, terms and atoms
follow Prolog conventions — functions and predicates start with a lowercase letter or
are ’single quoted’, and variables start with an uppercase letter. The language also
supports interpreted symbols that either start with a $, e.g., the truth constants $true
and $false, or are composed of non-alphabetic characters, e.g., integer/rational/real
numbers such as 27, 43/92, -99.66. The logical connectives in the TPTP language are
1> 7%, Q@+, Q-, !, 7, ~, |, & =>, <=, <=>, and <~>, for the mathematical connectives IT,
Y, choice (indefinite description), definite description, V, 3, =, V, A, =, <, <, and
@ respectively. Equality and inequality are expressed as the infix operators = and !=.
The source and useful_info are optional. Figure |I| shows an example problem.

Y e e
fof(al,axiom, “(7q) &7 [X] : s(X))).

fof (a2,axiom, (r&qM®m)=>1[X]: pX).

fof (a3,axiom, pCe) | v [Y] : ("qc) & q(¥))).

fof (a4,axiom, ~“q(c) => “q(b)).

fof(ab,axiom, p(c) =>r).

fof (prove,conjecture, ! [X] : ("s(X) & “q(b) & p(c))).

Fig. 1. An example problem in TPTP format

2.1 The TPTP Format for Derivations

A derivation written in the TPTP language is a list of annotated formulae. The leaves
of a derivation typically have the role axiom or conjecture, and the inferred formulae
typically have the role plain or negated_conjecture (also used for leaves in CNF).
The source is either a file record for leaves or an inference record for inferred for-
mulae. A file record contains the problem file name and the corresponding annotated
formulae name in the problem file. An inference record contains the inference rule
name, a list of useful inference information, and a list of the inference parents. The
inference parents can be annotated formulae names, and nested inference records.
Common types of useful inference information are the semantic relationship of the in-
ferred formula to its parents as an SZS ontology value [30] in a status record, special
information about recognized types of complex inference rules, e.g., Skolemization and

4 Geoff Sutcliffe, et al.

splitting, and details of new symbols introduced in the inference. The use of SZS values
is core to GDV’s approach to verification, described below.

Figure [2| shows the transformation to CNF of the problem in Figure (I} which is
used in the refutation discussed here, and the tableau proof in Section [3] Points of note:
all the leaf formulae except a4 and a5 are copies of formulae in the problem; a4 and
ab are easily derived from the corresponding problem formulae; many of the formulae
are inferred with SZS status thm, i.e., they are logical consequences of their parents;
the negated conjecture c_0_7 is inferred with SZS status cth — its negation is a logical
consequence of its parent; the Skolemized formula c¢_0_11 is inferred with SZS status
esa — it is equisatisfiable with its parent;

Figure [3] shows the final steps of the refutation found by E 3.2.5 for the problem in
Figure following the transformation to CNF shown in FigurePoints of note: many
of the formulae are inferred with SZS status thm, i.e., they are logical consequences of
their parents; several of the inferred formulae, e.g., c_0_23, have nested inference
records — the intermediate inferred formulae have not been output.

2.2 TPTP World Tools for Verifying and Viewing Derivations

The GDV derivation verifier [29] verifies proofs in the TPTP format. GDV’s input is
a TPTP format proof, and optionally (required for complete verification) the problem
for which the proof was produced. GDV verifies a proof in four phases: structural
verification, leaf verification, rule-specific verification, and inference verification. Many
of the checks rely on a “check-by-ATP”, which calls a trusted ATP system — either
a theorem prover or a model finder (the systems have become trusted through the
process described in [37]). Structural verification deals with non-logical aspects of a
proof, checking whether the annotated formulae of the proof have the right format and
relationships, e.g., the derivation is acyclic. Leaf verification deals with the leaves of
the derivation, and their relationship with the problem annotated formulae, e.g., the
leaves are copies of problem formulae or can be proved from problem formulae using a
check-by-ATP. Rule specific verification deals with inference rules that require special
treatment, e.g., Skolemization. Inference verification deals with the various types of
inferences that are made by ATP systems in a proof. Examples of checks are: for
inference steps with SZS status thm check-by-ATP that the inferred formula can be
proved from the parent formulae, for inference steps with SZS status cth check-by-
ATP that the negation of the inferred formula can be proved from the parent formulae.
GDYV is available online in SystemOnTSTPEI

The Interactive Derivation Viewer (IDV) [43] provides a graphical rendering of a
proof DAG. It has features that allow the user to examine the proof structure in various
ways, including identification of “interesting” steps in the proof [2I]. Figure [4] shows
the IDV rendering of (the full version of) the refutation in Figure [3] IDV is available
online in SystemOnTSTPﬂ

3 The (new) TPTP Format for Clausal Tableau Proofs

There were three primary requirements for the new format for a clausal tableau:

3 The full refutation can be generated in SystemOnTPTP, available at
tptp.org/cgi-bin/SystemOnTPTP

4 Available at ftptp.org/cgi-bin/SystemOnTSTP

5 Available at tptp.org/cgi-bin/SystemOnTSTP

https://tptp.org/cgi-bin/SystemOnTPTP
https://tptp.org/cgi-bin/SystemOnTSTP
https://tptp.org/cgi-bin/SystemOnTSTP

TPTP Clausal Tableaux 5

Y e e

fof (al,axiom, “(7qm) & 7 [X] : s(X)),
file(’PaperFOF.p’,al)).

fof (a2,axiom, (r&q®)=>1[X] : pX),
file(’PaperFOF.p’,a2)).

fof (a3,axiom, pCc) | v [Y] : ("qc) & q(Y)),
file(’PaperFOF.p’,a3)).

fof(a4,axiom, “q(c) => ~q(b),
file(’PaperFOF.p’,ad)).

fof (a5,axiom, p(c) =>r,
file(’PaperFOF.p’,ab)).

fof (prove,conjecture, VX1 ("s(X) & "q() & ple)),
file(’PaperFOF.p’ ,prove)).

fof (ncl,negated_conjecture, ~ ! [X] : ("s(X) & ~q(b) & p(c)),
inference (negate, [status(cth)], [provel)).

fof (nc2,negated_conjecture, ? [X] : = ("s(X) & ~q(b) & p(c)),

inference(negate, [status(thm)], [nc1])).
fof (nc3,negated_conjecture, ~ (“s(sK1) & “q(b) & p(c)),
inference(skolemize, [status(esa) ,new_symbols(skolem, [sK1]),
skolemized(X)], [nc2])).

cnf (cl,plain, (q®) | "sX)),
inference(clausify, [status(thm)], [a1])).

cnf (c2,plain, ("q®) | pX) | "r),
inference(clausify, [status(thm)], [a2])).

cnf (c3,plain, (ple) | 7qe)),
inference(clausify, [status(thm)], [a3])).

cnf (c4,plain, (pe) | ()),
inference(clausify, [status(thm)], [a3])).

cnf (c5,plain, C qlc) | ~q(b)),
inference(clausify, [status(thm)], [a4])).

cnf (c6,plain, (r | "pe)),
inference(clausify, [status(thm)], [ab])).

cnf (c7,negated_conjecture, (s(sK1) | q(b) | “p(c)),
inference(clausify, [status(thm)], [nc3])).

Fig. 2. Clausification for CNF-based proofs of the problem in Figure

1. Easy reconstruction of the tableau.
2. Sufficient information for structural verification of the closed tableau.
3. Sufficient information for semantic verification of the inference steps.

Additional requirements adopted from [16] are:

4. Concise and simple enough for a natural representation of proofs.
5. Readable by humans as well as ATP tools.

6 Geoff Sutcliffe, et al.

cnf (c_0_23,plain, “r | "q(b),
inference(csr, [status(thm)],
[inference(spm, [status(thm)], [c_0_18, c_0_19]), c_0_20])).

cnf (c_0_24,negated_conjecture, q(b) | ~q(c),
inference(spm, [status(thm)],[c_0_21, c_0_19])).

cnf (c_0_25,plain, r | “pc),
inference(split_conjunct, [status(thm)], [c_0_22])).

cnf (c_0_26,negated_conjecture, “r | “q(c),
inference (spm, [status(thm)], [c_0_23, c_0_24])).

cnf (c_0_27,plain, q(x1) | p(ae),
inference(split_conjunct, [status(thm)], [c_0_14]1)).

cnf (c_0_28,plain, ~q(c),
inference(csr, [status(thm)],
[inference(spm, [status(thm)], [c_0_25, c_0_19]), c_0_26])).

cnf (c_0_29,plain, r | q(X1),
inference(spm, [status(thm)], [c_0_25,c_0_27])).

cnf (c_0_30,plain, r,
inference(spm, [status(thm)],[c_0_28,c_0_29])).

cnf (c_0_31,plain, ~q(b),
inference(cn, [status(thm)],
[inference(rw, [status(thm)], [c_0_23,c_0_30]1)1)).

cnf (c_0_32,negated_conjecture, q(X1),
inference(sr, [status(thm)],
[inference(spm, [status(thm)], [c_0_21,c_0_27]),c_0_31])).

cnf (c_0_33,plain, $false,
inference(cn, [status(thm)],

[inference(rw, [status(thm)], [c_0_31,c_0_32]1)1),
[proof]).

Fig. 3. The final steps E 3.2.5’s refutation of Figure

One early proposal for a TPTP style format [I7] met requirement 1, but fell short
of requirements 2 and 3 due to the omission of some necessary details. As claimed
in [I6], that early proposal might have also failed to meet requirements 4 and 5. An-
other existing TPTP style format is the leanTPTP format output by the leanCoP
ATP system [I5]. The leanTPTP format definitely meets requirement 4, but omits the

TPTP Clausal Tableaux 7

Settings/Tools ~

cnf(c_0_24,negated_conjecture,q(b)
~q(c),inference(spm,
[status(thm)], [c_0_21,c_0_191)).

Fig. 4. IDV rendering of the (full version of the) refutation in Figure

information required for requirements 1, 2, and 3. A more recent proposal [16] in the
TPTP style provided some inspiration for the new format, but left some important
information as implicit, which is made explicit in the new format. The new format
aims to meet all the requirements.

Figure [5] shows the clausal tableau for the clauses in Figure 2] Figure [6] shows the
TPTP format for recording the tableau. The labels in square brackets in Figure [
identify the literals in the annotated formulae in Figure[f] The dotted arrow shows the
one reduction step, the solid rightward arrows point to the lemmas that are created,
and the dashed arrows show where the lemmas are used. Note that lemmas can be
used only below the parent node of where they are created. The tableau in Figure [f]
has the variables instantiated as they would be when the tableau is closed (but note
that in general a tableau need not be ground).

The TPTP format recognizes six inference rules, which are described below. The
inference record of each annotated formula records the name of the rule used, the SZS
status of the inferred formula wrt its parents, the path from the root to the node above,
and the inference parents. The SZS status and parent information makes it possible
to use semantic verification of each inference, and the path information makes it easy
to reconstruct the tableau. The point at which a variable becomes instantiated can
optionally be recorded with a bind () record, e.g.,

cnf (t4,plain, pCe) | ~ q(e),
inference(extension, [status(thm),path([t2:2,t1:1]),bind(X,c)], [c3])).

notes that the variable X in t2 is bound to ¢ (assuming variables have been renamed
apart so that it is clear that the X is in t2).

8 Geoff Sutcliffe, et al.

[0:0]
........... q(b) _ ~q(b) ~s (sK1)
"""""""""""""""""""" [t1:1] [12] ~“~-._~ [t1l:2]

" ~q(b) ~plc) _y plo) ~r s s(sKl) a(b) ~p(c)
[t2:1] [t2:2] [11] =~ [t2:3] \\‘ [t13:1] [t13:2] [t13:3]
$false p(c) ~q(c) or ~p(c) \ $false ~q (b) p(c) a(b)

[t3] [t4:1] [td:2] I-'[t9:1] [t9:2] “\[tl4] ',1t15;1] [t17:1] [t17:2]
Sfalse qg(c) ~q(b) 'l‘$false p(c) \\, Sfalse Sfalse ~q (b)

[t5] [t6:1] [t6:2] [t1l0] ,71[‘511:1] ~\\ [tl6] [t18] ’,4[1:19:1]

$false S$false Sfalse o S$false

[t7] & [t8] [t12] [t20]

Fig. 5. A tableau for the problem in Figure

The Inference Rules

start: The initial clause below the root node. For example, in Figure[f]t1 starts the
tableau. The path to this point is recorded as [0:0], indicating that the node above is
the root node. The logical parent of t1 is recorded as [c1]. The inference has status
thm, i.e., t1 is a logical consequence of its parent. start can be viewed as a special
form of extension, described next.

extension: The standard tableau extension rule. For example, in Figure[f]t2 extends
from the first literal q(b) of t1 to the 1st literal ~q(b) of c2. The path to this point
is recorded as [t1:1,0:0]. The logical parent of t2 is recorded as [c2]. The inference
has status thm, i.e., t2 is a logical consequence of its parent.

connection: Explicitly close the branch of the contradiction of an extension. For
example, in Figure [f]t3 closes the branch of the contradiction between q(b) and ~q(b)
in the extension to t2. The path to this point is recorded as [t2:1,t1:1,0:0]. The
logical parents of t3 are recorded as [t2:1,t1:1], meaning the 1st literal of t2 and
the 1st literal of t1. The inference has status thm, i.e., t3 is a logical consequence of
its parents. connection can be viewed as a degenerate form of reduction, described
next.

reduction: The standard tableau reduction rule. For example, in Figure [§] t8 closes
the branch of the contradiction between the 2nd literal ~q(b) of t6 and the 1st literal
q(b) of t1. In Figure[5] this is denoted by the dotted arrow from q(b) to t8. The path
to this point is recorded as [t6:2,t4:2,t2:2,t1:1,0:0]. The logical parents of t8 are
recorded as [t6:2,t1:1], meaning the 2nd literal of t6 and the 1st literal of t1. The
inference has status thm, i.e., t8 is a logical consequence of its parents.

lemma: The creation of a unit lemma when a branch is closed. For example, in Figure |§|
11 is the lemma p(c) created when the branch rooted at t2:2 is closed. The lemma
is the negation of the 2nd literal ~p(c) of t2. Note that the role of the annotated
formula records it as a lemma. The path to this point is recorded as [t2:2,t1:1,0:0].

TPTP Clausal Tableaux 9

In Figure[B] this is denoted by the solid right arrow from t2:2 to 11. As the node t1:1
is used in a reduction in closing the branch, the lemma is available only below t1:1,
recorded as below(t1:1). The logical parent of 11 is recorded as [t2:2], meaning the
2nd literal ~p(c) of t2. The inference has status cth, i.e., the negation of 11 is a logical
consequence of its parent.

lemma_extension: Use of a lemma to close a branch. For example, in Figure[f]t11:1
is the lemma 11, and t12 is the connection that closes the branch down to t11:1.
In Figure [5] this is denoted by the dashed arrow from 11 to t11:1. The lemma 11
can be used here because 9:2 is below t1:1. The path to this point is recorded as
[t11:1,t9:2,t2:3,t1:1,0:0]. The logical parent of t11 is recorded as [11:1], mean-
ing the 1st literal p(c) of 11. The inference has status thm, i.e., t11:1 is a logical con-
sequence of its parent. lemma_extension can be viewed as a special form of extension.

Additional tableau inference rules, e.g., factorization [§] (another view of lemma
generation and use), non-unit lemma generation (also known as bottom-up lemma
generation) [1I25], lazy paramodulation [I8] (to deal with equality), etc., appear to be
easily added to this format.

4 ATP Systems and Tools

CoNNECT++ is an ATP for first-order logic with equality, using the connection cal-
culus to construct proofs. [7]. CONNECT++ implements most of the search methods
and other heuristics developed for leanCoP versions 2 and later, including restricted
backtracking (and an alternative version of backtracking restriction for extensions),
iterative deepening by path length, various approaches to start clause selection, defini-
tional clause conversion, deterministic or random re-ordering, and regularity testing. It
also incorporates some further options such as miniscoping and polynomial-time unifi-
cation. It accepts input in the TPTP cnf and fof formats. CONNECT-++ incorporates
a standard schedule similar to that of 1leanCoP, but also allows arbitrary schedules to
be specified in a simple language. It produces certificates for proofs in a very simple for-
mat described in [7/I6]; these can be verified internally, or output to a file and checked
independently by a short Prolog program. From version 0.7.0 CONNECT++ can also
produce closed tableau in the new TPTP format described in this paper. CONNECT++
is implemented in C++ and freely available under the GNU General Public License
(GPL) Version SE

The extension of GDV to verify tableau proofs required extending the structural
verification phase, and a minor change to inference verification. Leaf verification re-
mains unchanged, and the rule-specific steps of derivation verification are naturally
inapplicable. Structural verification of a tableau proof requires checking:

All inference parents exist, in particular that the specified literals exist.

— The path records define an acyclic DAG, without contradictions in the paths.
— All paths start at the root 0:0 node.

The tableau is closed, i.e., every branch ends at a $false formula.

— All lemma_extension steps use lemmas that are below the specified node in the
tableau.

% Download from www.cl.cam.ac.uk/~sbh11/connect++.html

https://www.cl.cam.ac.uk/~sbh11/connect++.html

10 Geoff Sutcliffe, et al.

cnf (t1,plain, q(b) | ~s(sK1),
inference(start, [status(thm) ,path([0:0]1)], [c1])).

cnf (t2,plain, “q®) | “pe) | °r,
inference (extension, [status(thm),,path([t1:1,0:0]1)],[c2])).

cnf (t3,plain, $false,
inference(connection, [status(thm),,path([t2:1,t1:1,0:0])], [t2:1,t1:1])).

cnf (t4,plain, pCc) | ~q(e),
inference(extension, [status(thm) ,path([t2:2,t1:1,0:0]1)], [c3])).

cnf (t5,plain, $false,
inference(connection, [status(thm) ,path([t4:1,t2:2,t1:1,0:0]1)], [t4:1,t2:2])).

cnf (t6,plain, q(e) | ~q),
inference(extension, [status(thm),path([t4:2,t2:2,t1:1,0:0])], [c5])).

cnf (t7,plain, $false,
inference(connection, [status(thm) ,path([t6:1,t4:2,t2:2,t1:1,0:0])], [t6:1,t4:2])).

cnf (t8,plain, $false,
inference(reduction, [status(thm) ,,path([t6:2,t4:2,t2:2,t1:1,0:0]1)],[t6:2,t1:1])).

cnf (11,lemma, p(c),
inference(lemma, [status(cth),path([t2:2,t1:1,0:0]),below(t1:1)],[t2:2])).

cnf (t9,plain, r | "ple),
inference(extension, [status(thm) ,path([t2:3,t1:1,0:01)],[c6])).

cnf (t10,plain, $false,
inference(connection, [status(thm) ,path([t9:1,t2:3,t1:1,0:01)], [t9:1,t2:3])).

cnf (t11,plain, ple),
inference(lemma_extension, [status(thm),path([t9:2,t2:3,t1:1,0:0])],[11:1])).

cnf (t12,plain, $false,
inference(connection, [status(thm),path([t11:1,t9:2,t2:3,t1:1,0:0]1)]1,[t9:2,t11:1])).

cnf (12,lemma, ~“q(®),
inference(lemma, [status(cth),path([t1:1,0:0]),below(0:0)],[t1:1])).

cnf (t13,plain, s(sK1) | q(b) | “p(c),
inference (extension, [status(thm) ,,path([t1:2,0:0])],[c7])).

cnf (t14,plain, $false,
inference(connection, [status(thm) ,path([t13:1,t1:2,0:0])],[t12:1,t1:2])).

cnf (t15,plain, ~“q(®),
inference(lemma_extension, [status(thm),path([t13:2,t1:2,0:01)], [12:1])).

cnf (t16,plain, $false,
inference(connection, [status(thm) ,path([t15:1,t13:2,t1:2,0:0])], [t15:1,t13:2])).

cnf (t17,plain, pCe) | q(,
inference(extension, [status (thm),path([t13:3,t1:2,0:0]1)1, [c4])).

cnf (t18,plain, $false,
inference(connection, [status(thm) ,path([t17:1,t13:3,t1:2,0:0])], [t17:1,t13:3])).

cnf (t19,plain, ~“q(b),
inference(lemma_extension, [status(thm),path([t17:2,t13:3,t1:2,0:0]1)]1,[12:1])).

cnf (t20,plain, $false,
inference(connection, [status(thm) ,path([t19:1,t17:2,t13:3,t1:2,0:0]1)],[t19:1,t17:2])).

Fig. 6. A tableau proof in TPTP format, for the problem in Figure[]]

TPTP Clausal Tableaux 11

Semantic verification is essentially the same as for derivations, with the small additional
need to extract the specified literals from inference parents.

The IDV derivation viewer has been adapted to display tableau proofs, as the
Interactive Tableau Viewer (ITV). Figure EI shows the ITV rendering of the tableau
in Figure [] The root node is the top $true box. Nodes from extension steps are
in green-bordered ovals, $false nodes from connection and reduction steps are in
red-bordered $false boxes, lemmas created in lemma steps are in blue-bordered trian-
gles, and lemmas used in lemma_extension steps are in green-bordered triangles. In
reduction and lemma_extension steps the relevant ancestor/lemma lights up when
the cursor is hovered over the reduced/extension node. ITV is available online in Sys-
temOnTSTP[]

(5~
@ @ O @@
] (@ @D O @D o] £ @ &

A\

$false @ @ $false ﬁp(c)ﬁ $false $false q(b

A\

\

$false $false $false $false

Fig. 7. ITV’s rendering of the tableau in Figure [f]

5 Conclusion

This paper has described the new TPTP format for recording clausal tableau proofs.
The format builds on the existing infrastructure of the TPTP World, in particular the

7 Available at tptp.org/cgi-bin/SystemOnTSTP

https://tptp.org/cgi-bin/SystemOnTSTP

12 Geoff Sutcliffe, et al.

TPTP format for recording derivations. The new format meets the requirements listed
in Section [3

1. Easy reconstruction of the tableau - this is can be done directly from the paths.

2. Sufficient information for structural verification of the closed tableau - this is pro-
vided by the paths, the below record in lemmas, and the explicit closing of each
path with connection steps and after reduction steps.

3. Sufficient information for semantic verification of the inference steps - this is pro-
vided with SZS status information.

4. Concise and simple enough for a natural representation of proofs - there is no
redundant information or unnecessary detail, and the tableau can be directly re-
constructed.

5. Readable by humans as well as ATP tools - the format uses the established TPTP
syntax, which is both human and machine readable.

The new format has been adopted in the CONNECT++ ATP system, and the existing
GDV and IDV tools for verifying and viewing derivations have been adapted to verifying
and viewing tableaux.

Future work includes completing the extension of GDV, and adding highlighting
features to ITV as explained in Section [@] In the larger picture, the format can be
extended to record non-clausal tableaux [12J13].

Acknowledgments

— For the purpose of open access, the author has applied a Creative Commons Attri-
bution (CC BY) licence to any Author Accepted Manuscript version arising from
this submission.

— ITV was implemented at the University of Miami by Daniel Li and Esteban
Morales, building on the IDV code of Jack McKeown.

References

1. Astrachan, O., Stickel, M.: Caching and Lemmaizing in Model Elimination Theo-
rem Provers. In: Kapur, D. (ed.) Proceedings of the 11th International Conference
on Automated Deduction. pp. 224-238. No. 607 in Lecture Notes in Artificial In-
telligence, Springer-Verlag (1992)

2. Blanchette, J., Paskevich, A.: TFF1: The TPTP Typed First-order Form with
Rank-1 Polymorphism. In: Bonacina, M. (ed.) Proceedings of the 24th Interna-
tional Conference on Automated Deduction. pp. 414-420. No. 7898 in Lecture
Notes in Artificial Intelligence, Springer-Verlag (2013)

3. Cook, B.: Formal Reasoning About the Security of Amazon Web Services. In:
Chockler, H., Weissenbacher, G. (eds.) Proceedings of the 30th International Con-
ference on Computer Aided Verification. pp. 38-47. No. 10981 in Lecture Notes in
Computer Science, Springer-Verlag (2018)

4. Enderton, H.: A Mathematical Introduction to Logic. Academic Press (1972)

5. Furbach, U., Beckert, B., Héhnle, R., Letz, R., Baumgartner, P., Egly, U., Bible,
W., Briining, S., Otten, J., Rath, T., Schaub, T.: Tableau and Connection Calculi.
In: Bibel, W., Schmitt, P. (eds.) Automated Deduction - A Basis for Applications,
Volume 1: Foundations - Calculi and Methods, pp. 3-179. Kluwer (1998)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

TPTP Clausal Tableaux 13

H&hnle, R., Huisman, M.: Deductive Software Verification: From Pen-and-Paper
Proofs to Industrial Tools. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science: State of the Art and Perspectives, pp. 345-373. No. 10000 in
Lecture Notes in Computer Science, Springer-Verlag (2019)

Holden, S.: Connect+-+: A New Automated Theorem Prover Based on the Connec-
tion Calculus. In: Otten, J., Bibel, W. (eds.) Proceedings of the 1st International
Workshop on Automated Reasoning with Connection Calculi. pp. 95-106. No. 3613
in CEUR Workshop Proceedings (2023)

. Johnson, C.: Factorization and Circuit in the Connection Method. Journal of the

ACM 40(3), 536-557 (1993)

Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: The TPTP Typed Higher-Order Form
with Rank-1 Polymorphism. In: Fontaine, P., Schulz, S., Urban, J. (eds.) Proceed-
ings of the 5th Workshop on Practical Aspects of Automated Reasoning. pp. 41-55.
No. 1635 in CEUR Workshop Proceedings (2016)

Kovacs, L., Voronkov, A.: First-Order Theorem Proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) Proceedings of the 25th International Conference on
Computer Aided Verification. pp. 1-35. No. 8044 in Lecture Notes in Artificial
Intelligence, Springer-Verlag (2013)

Mendelson, E.: Introduction to Mathematical Logic. Wadsworth and Brooks/Cole,
3 edn. (1987)

Otten, J.: Non-clausal Connection Calculi for Non-classical Logics. In: Nalon, C.,
Schmidt, R. (eds.) Proceedings of the 26th International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods. pp. 209-227. No. 10501
in Lecture Notes in Artificial Intelligence, Springer-Verlag (2017)

Otten, J.: Proof Search Optimizations for Non-clausal Connection Calculi. In:
Konev, B., Riimmer, P., Urban, J. (eds.) Proceedings of the 6th Workshop on
Practical Aspects of Automated Reasoning. pp. 49-57. No. 2162 in CEUR Work-
shop Proceedings (2018)

Otten, J.: 20 Years of leanCoP - An Overview of the Provers. In: Otten, J., Bibel,
W. (eds.) Proceedings of the 1st International Workshop on Automated Reasoning
with Connection Calculi. pp. 4-22. No. 3613 in CEUR Workshop Proceedings
(2023)

Otten, J., Bibel, W.: leanCoP: Lean Connection-based Theorem Proving. Journal
of Symbolic Computation 36(1-2), 139-161 (2003)

Otten, J., Holden, S.: A Syntax for Connection Proofs. In: Otten, J., Bibel, W.
(eds.) Proceedings of the 1st International Workshop on Automated Reasoning
with Connection Calculi. pp. 84-94. No. 3613 in CEUR Workshop Proceedings
(2023)

Otten, J., Sutcliffe, G.: Using the TPTP Language for Representing Derivations
in Tableau and Connection Calculi. In: Konev, B., Schmidt, R., Schulz, S. (eds.)
Proceedings of the Workshop on Practical Aspects of Automated Reasoning. pp.
90-100 (2010)

Paskevich, A.: Connection Tableaux with Lazy Paramodulation. Journal of Auto-
mated Reasoning 40(2-3), 179-194 (2008)

Pastre, D.: Muscadet 2.3 : A Knowledge-based Theorem Prover based on Nat-
ural Deduction. In: Gore, R., Leitsch, A., Nipkow, T. (eds.) Proceedings of the
International Joint Conference on Automated Reasoning. pp. 685-689. No. 2083
in Lecture Notes in Artificial Intelligence, Springer-Verlag (2001)

Pelletier, F.: Automated Natural Deduction in THINKER. Studia Logica 60, 3—43
(1998)

14

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Geoff Sutcliffe, et al.

Puzis, Y., Gao, Y., Sutcliffe, G.: Automated Generation of Interesting Theorems.
In: Sutcliffe, G., Goebel, R. (eds.) Proceedings of the 19th International FLAIRS
Conference. pp. 49-54. AAAI Press (2006)

Robinson, A., Voronkov, A.: Handbook of Automated Reasoning. Elsevier Science
(2001)

Schulz, S.: Algorithms and Data Structures for First-Order Equational Deduction.
In: Benzmiiller, C., Fischer, B., Sutcliffe, G. (eds.) Proceedings of the 6th Inter-
national Workshop on the Implementation of Logics. pp. 1-6. No. 212 in CEUR
Workshop Proceedings (2006)

Schulz, S., Cruanes, S., Vukmirovi¢, P.: Faster, Higher, Stronger: E 2.3. In:
Fontaine, P. (ed.) Proceedings of the 27th International Conference on Automated
Deduction. pp. 495-507. No. 11716 in Lecture Notes in Computer Science, Springer-
Verlag (2019)

Schumann, J.: DELTA - A Bottom-up Preprocessor for Top-Down Theorem
Provers. In: Bundy, A. (ed.) Proceedings of the 12th International Conference on
Automated Deduction. pp. 774-777. No. 814 in Lecture Notes in Artificial Intelli-
gence, Springer-Verlag (1994)

Steen, A., Fuenmayor, D., Gleiftner, T., Sutcliffe, G., Benzmiiller, C.: Automated
Reasoning in Non-classical Logics in the TPTP World. In: Konev, B., Schon, C.,
Steen, A. (eds.) Proceedings of the 8th Workshop on Practical Aspects of Auto-
mated Reasoning. p. Online. No. 3201 in CEUR Workshop Proceedings (2022)
Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a Cross-Community Infrastructure
for Logic Solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) Proceedings
of the 7th International Joint Conference on Automated Reasoning. pp. 367-373.
No. 8562 in Lecture Notes in Artificial Intelligence (2014)

Sutcliffe, G.: SystemOnTPTP. In: McAllester, D. (ed.) Proceedings of the 17th In-
ternational Conference on Automated Deduction. pp. 406-410. No. 1831 in Lecture
Notes in Artificial Intelligence, Springer-Verlag (2000)

Sutcliffe, G.: Semantic Derivation Verification: Techniques and Implementation.
International Journal on Artificial Intelligence Tools 15(6), 1053-1070 (2006).
https://doi.org/{10.1142/50218213006003119}

Sutcliffe, G.: The SZS Ontologies for Automated Reasoning Software. In: Sutcliffe,
G., Rudnicki, P., Schmidt, R., Konev, B., Schulz, S. (eds.) Proceedings of the
LPAR Workshops: Knowledge Exchange: Automated Provers and Proof Assistants,
and the 7th International Workshop on the Implementation of Logics. pp. 38—49.
No. 418 in CEUR Workshop Proceedings (2008)

Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337-362 (2009)
Sutcliffe, G.: The TPTP World - Infrastructure for Automated Reasoning. In:
Clarke, E., Voronkov, A. (eds.) Proceedings of the 16th International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning. pp. 1-12. No. 6355
in Lecture Notes in Artificial Intelligence, Springer-Verlag (2010)

Sutcliffe, G.: The CADE ATP System Competition - CASC. AI Magazine 37(2),
99-101 (2016)

Sutcliffe, G.: The Logic Languages of the TPTP World. Logic Journal of the IGPL
31(6), 1153-1169 (2023)

Sutcliffe, G.: Stepping Stones in the TPTP World. In: Benzmiiller, C., Heule, M.,
Schmidt, R. (eds.) Proceedings of the 12th International Joint Conference on Au-
tomated Reasoning. pp. 30—50. No. 14739 in Lecture Notes in Artificial Intelligence
(2024)

https://doi.org/{10.1142/S0218213006003119}
https://doi.org/{10.1142/S0218213006003119}

36.

37.

38.

39.

40.

41.

42.

43.

TPTP Clausal Tableaux 15

Sutcliffe, G., Benzmiiller, C.: Automated Reasoning in Higher-Order Logic using
the TPTP THF Infrastructure. Journal of Formalized Reasoning 3(1), 1-27 (2010)
Sutcliffe, G., Blanqui, F., Burel, G.: Proof Verification with GDV and LambdaPi
- It’s a Matter of Trust. In: Biskri, I., Talbert, D. (eds.) Proceedings of the 38th
International FLAIRS Conference (2025). https://doi.org/{10.32473/flairs.
38.1.138642}

Sutcliffe, G., Kotelnikov, E.: TFX: The TPTP Extended Typed First-order Form.
In: Konev, B., Urban, J., Schulz, S. (eds.) Proceedings of the 6th Workshop on
Practical Aspects of Automated Reasoning. pp. 72-87. No. 2162 in CEUR Work-
shop Proceedings (2018)

Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP Typed First-
order Form with Arithmetic. In: Bjgrner, N., Voronkov, A. (eds.) Proceedings of the
18th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning. pp. 406-419. No. 7180 in Lecture Notes in Artificial Intelligence,
Springer-Verlag (2012)

Sutcliffe, G., Schulz, S., Claessen, K., Van Gelder, A.: Using the TPTP Language
for Writing Derivations and Finite Interpretations. In: Furbach, U., Shankar, N.
(eds.) Proceedings of the 3rd International Joint Conference on Automated Rea-
soning. pp. 67-81. No. 4130 in Lecture Notes in Artificial Intelligence, Springer
(2006)

Sutcliffe, G., Suttner, C.: The TPTP Problem Library: CNF Release v1.2.1. Journal
of Automated Reasoning 21(2), 177-203 (1998)

Sutcliffe, G., Suttner, C.: Evaluating General Purpose Automated Theorem Prov-
ing Systems. Artificial Intelligence 131(1-2), 39-54 (2001). https://doi.org/{10.
1016/50004-3702(01)00113-8}

Trac, S., Puzis, Y., Sutcliffe, G.: An Interactive Derivation Viewer. In: Autexier,
S., Benzmiiller, C. (eds.) Proceedings of the 7th Workshop on User Interfaces for
Theorem Provers. Electronic Notes in Theoretical Computer Science, vol. 174, pp.
109-123 (2007)

https://doi.org/{10.32473/flairs.38.1.138642}
https://doi.org/{10.32473/flairs.38.1.138642}
https://doi.org/{10.32473/flairs.38.1.138642}
https://doi.org/{10.32473/flairs.38.1.138642}
https://doi.org/{10.1016/S0004-3702(01)00113-8}
https://doi.org/{10.1016/S0004-3702(01)00113-8}
https://doi.org/{10.1016/S0004-3702(01)00113-8}
https://doi.org/{10.1016/S0004-3702(01)00113-8}

	The TPTP Format for Clausal Tableaux Proofs

