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Abstract. The cylindrical algebraic covering method is an approach
for deciding the satisfiability of non-linear real arithmetic formulas. We
extend that method for optimization modulo theories (OMT), allowing
to find solutions that are optimal w.r.t. a given polynomial objective
function. Our approach is complete and detects unbounded objective
functions as well as infima/suprema, which the objective function can
approach, but never reach. We show how to construct meaningful mod-
els even in those special cases and provide an experimental evaluation
demonstrating the advantages of our method compared to approaches
based on quantifier elimination or incremental linearization.
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1 Introduction

Optimization modulo theories (OMT) is the task of minimizing (or maximizing)
a given objective function with respect to a given first-order formula and a
background theory. It extends satisfiability modulo theories (SMT), which only
requires finding any solution to a given formula. While SMT solvers are versatile
and effective tools for formal reasoning tasks, some problems require or greatly
benefit from finding optimal solutions, and consequently, there has been active
research on OMT in the last years [4,9,13,14].

We are interested in the theory of non-linear real arithmetic (NRA), whose
atomic formulas are polynomial constraints over real-valued variables. Already
SMT solving (without optimization) for NRA is quite challenging: in practice, all
complete methods are currently based on techniques from cylindrical algebraic
decomposition [5], which suffers from a doubly exponential worst case complex-
ity. However, significant progress has been made in the last years, allowing to
solve many problems efficiently [2,10,11,12]. A notable advance is the cylindrical
algebraic covering (CAlC) method, which was first developed as a theory back-
end for CDCL(T) style solving [2] and later extended in [11] to handle Boolean
structure and even quantifiers, making it independent of CDCL(T) architectures
and allowing to use it for quantifier elimination tasks. Using [2], the CVC5 solver
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won the QF_NRA category of the SMT competition [1] in 2021 and 2022, and
the SMT-RAT solver used [11] to win the NRA category in 2024.

In the case of OMT, there has been little research targeting NRA problems.
The OPTIMATHSAT solver uses incremental linearization [4], which can often find
solutions quickly, but it is incomplete. A naive but complete approach is to use
quantifier elimination to determine the entire range of the objective function, as
the optimum is then the lower (or upper) bound of that range. However, this
is inefficient as it computes much more than necessary, and it does not easily
provide models at which the optimum is reached.

Probably the most notable result here is [9], which was only published very
recently, after we did most of the research for this paper. That approach uses
CDCL with the CAlC theory backend as in [2] to enumerate solutions with
improving objective value. Importantly, additional information from the CAlC
backend is used to 1) derive better lower/upper bounds on the optimum in each
iteration and 2) guarantee completeness. While we present similar techniques,
there are significant differences and additional contributions, specified below.

There are also numerical optimization methods not stemming from the field
of OMT, but these usually cannot detect infima or unboundedness, and they
do not provide strong correctness guarantees as they work with floating point
arithmetic. Moreover, these methods usually do not support side conditions with
Boolean structure. Note that of all mentioned approaches, so far only quantifier
elimination can handle quantifiers in the formula.

Contribution. In this paper, we propose an extension of the CAlC method for
solving optimization modulo NRA. In contrast to [9], our approach is based on
the more general version of CAlC [11] which already proved to be very effective
for SMT solving on quantified problems.

Our approach lifts most of the restrictions of other methods mentioned above:
– it can handle arbitrary Boolean structure, including quantifiers,
– it uses exact arithmetic and is not depending on a user-defined precision,
– it is complete and correct, and detects if the objective function is unbounded

or if only an infimum is achievable instead of a true minimum.

Moreover, we show how this approach can not only find the optimal objective
value, but also provide a model realizing that value. While this is generally
not possible if the objective has no true minimum, we present a method for
constructing models with an objective value arbitrarily close to the infimum
(or to −∞), with little overhead. None of the previous approaches provide this
capability, although our result could easily be transferred to the other CAlC-
based method [9].

Finally, our approach outperforms other tools ([4,9]) in experiments gener-
ated from the QF_NRA set provided by SMT-LIB.

Structure. We first present the necessary background in Section 2, in particular
the CAlC method, which we extend for optimization in Section 3. We address
model construction in Section 4 and discuss our experiments in Section 5. Finally,
Section 6 concludes this paper with an outlook on the next steps.
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2 Preliminaries

Non-Linear Real Arithmetic Formulas. Since we are building on [11], the follow-
ing basic definitions and notations are mostly taken from that paper.

Let N, Q and R denote the natural (including 0), rational and real numbers,
respectively. Given i ∈ N, s ∈ Ri, s′ ∈ R, R ⊆ Ri and I ⊆ R, we denote by s× s′
the point (s1, . . . , si, s′) ∈ Ri+1, by s×I the set {s×s′′ | s′′ ∈ I} ⊆ Ri+1, and by
R × I the set {r × s′′ | r ∈ R, s′′ ∈ I} ⊆ Ri+1. A cell is a non-empty connected
set R ⊆ Ri.

For the rest of this paper, we fix some n ∈ N\{0} and a collection of ordered
real variables x1 ≺ . . . ≺ xn. Let i ∈ {1, . . . , n}. The set of all polynomials
with variables x1, . . . , xi and rational coefficients is denoted by Q[x1, . . ., xi]. A
(polynomial) constraint has the form p ∼ 0 for some p ∈ Q[x1, . . ., xn] and
∼∈ {<,≤,=, ̸=,≥, >}. An NRA formula (or simply, a formula) is a Boolean
combination of constraints, using ¬,∨,∧, as well as quantifiers ∀,∃.

We assume that all considered formulas are in prenex normal form (PNF),
i.e. they have the form

φ = Qk+1xk+1 . . . Qnxn.φ(x1, . . . , xn)

consisting of a quantifier prefix with Qk+1, . . . , Qn ∈ {∃,∀} and a quantifier
free formula φ called matrix. Here, k ∈ {0, . . . , n} indicates the number of free
variables; if k = 0, there are no free variables, and if k = n, there are no
quantifiers. We sometimes write φ(x1, . . . , xk) to indicate the free variables.

Given s ∈ Ri and a formula φ(x1, . . . , xk), the (partial) evaluation up to level
i of φ over s is denoted by φ[s]. That is, constraints of level i or lower evaluate
to True or False according to standard semantics, by substituting s1 for x1, s2
for x2 etc., and constraints of higher levels evaluate to Undef. The semantics is
extended for formulas inductively according to the three-value semantics of the
logical operators, e.g. Undef ∧ True = Undef and Undef ∧ False = False.

A polynomial p ∈ Q[x1, . . ., xi] is sign-invariant on a set R ⊆ Ri, if it has
the same sign (positive, negative, or zero) on every point r ∈ R. A formula φ is
truth-invariant on R, if it evaluates to the same truth value on each r ∈ R.

Optimization. We are interested in the following problem: given an NRA formula
φ(x1, . . . , xk) and a polynomial p ∈ Q[x1, . . ., xk], find

min⟨p | φ⟩ := min{p(s1, . . . , sk) | s ∈ Rk ∧ φ[s] = True}.

Note that we can easily transform maximization problems to minimization by
negating the objective function. W.l.o.g. only consider problems of the form
min⟨x1 | φ⟩; for any problem min⟨p | φ⟩, we can consider min⟨x∗ | φ∧ (x∗ = p)⟩
instead, with a fresh variable x∗ (and we can then rename the variables).

The existence of the desired minimum is only guaranteed if φ is satisfiable
and its solution set S is compact (bounded and closed). If φ is unsatisfiable,
then we are taking the minimum of an empty set, which is not well-defined. If
S is not compact, then also the set {p(s1, . . . , sk) | s ∈ Rk ∧ φ[s] = True} ⊂ R
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(the image of S under p) might be unbounded, i.e. p can diverge towards −∞,
or it might only have an infimum, towards which p can converge, but which it
cannot reach within S. Ideally, an algorithm for solving non-linear optimization
recognizes these situations and gives an appropriate output, e.g. “UNSAT” if φ is
unsatisfiable, −∞ if the objective is unbounded, or ℓ+ ε for an infimum ℓ.

2.1 The Cylindrical Algebraic Covering Method

We now briefly recall the CAlC method for checking the satisfiability of NRA
formulas as presented in [11], focusing on the parts needed here. The method is
summarized in Algorithm 1, which essentially merges [11, Algorithms 2,3 and 4]
into a single algorithm for a more concise presentation.

Algorithm 1: CAlC(s)
Data : Global prefix Qk+1xk+1 · · ·Qnxn and matrix φ
Input : Sample point s = (s1, . . . , si−1) ∈ Ri−1

Output : (SAT, C) or (UNSAT, C) where C is an implicit cell of level i− 1
1 I := ∅ // collects the covered cells
2 while

⋃
C∈I C.I ̸= R do

3 si := sample_outside(I)

4 if φ[s× si] = False then
5 (f,O) := (UNSAT, get_enclosing_cell(s× si))
6 else if φ[s× si] = True then
7 (f,O) := (SAT, get_enclosing_cell(s× si))
8 else
9 (f,O) := CAlC(s× si)

10 if (f = SAT ∧ (i ≤ k ∨Qi = ∃)) or (f = UNSAT ∧ (i > k ∧Qi = ∀)) then
11 C := characterize_cell(s, O)
12 return (f, C) // early return depending on the quantifier
13 else
14 I := I ∪ {O}

15 C := characterize_covering(s, I)
16 if i > k ∧Qi = ∀ then return (SAT, C)
17 else return (UNSAT, C)

Given a formula φ = Qk+1xk+1 . . . Qnxn.φ, the idea of this method is to
construct a satisfying sample point recursively, i.e. level by level. The initial call
to CAlC (i.e. level 1) starts with an empty sample s = (), and selects a value
s1 ∈ R for x1. In general, a recursive call CAlC(s) for level i takes as input
a partial sample s ∈ Ri−1 for x1, . . . , xi−1, and it tries to extend that sample
with a value si for xi. The call returns SAT if s can be extended to a satisfying
assignment of φ, and otherwise UNSAT. In both cases, it also returns information
on how the sample can be generalized to a satisfying or falsifying cell.
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Definition 1 (Implicit Cell [11]). Let i ∈ N \ {0}, P ⊆ Q[x1, . . ., xi], s ∈ Ri,
and let I ⊆ R be an interval. Further, let R ⊆ Ri be the maximal connected
subset containing s where all polynomials in P are order-invariant.1 The tuple
(P, s, I) is an implicit cell of level i, if I = {r ∈ R | (s1, . . . , si−1, r) ∈ R}.

We call R the cell induced by P and s. Given an implicit cell C = (P, s, I),
we refer to its components by C.P , C.s and C.I. Moreover, C.I.l ∈ R ∪ {−∞}
and C.I.u ∈ R ∪ {∞} denote the lower and upper bound of the interval I.

The polynomials of each implicit cell computed by CAlC are derived from the
polynomials in φ using CAD techniques, and the respective intervals are used to
exclude parts of the search space on each level.

Let us assume first that xi is not universally quantified. After guessing a value
si (with sample_outside), the recursive call of level i checks whether φ[s×si] has
a definite truth value. If it evaluates to True, then a satisfying sample is found,
and the call returns SAT. If it evaluates to False, then the method computes an
implicit cell C of level i around s × si (with get_enclosing_cell), such that
all points in s × C.I falsify φ, and thus C.I can be excluded from the search.
Otherwise, a recursive call CAlC(s× si) for level i+1 determines whether s× si
can be extended to a satisfying sample. If not, then the recursive call provides
an implicit cell (and an interval) to exclude.

This is repeated until either a satisfying sample outside the excluded region
is found or until the intervals form a covering of the entire real line. In the
latter case, s cannot be extended to a solution and thus the current call will
return UNSAT. Importantly, the call now also returns an implicit cell of level
i − 1 around s, which is derived from the covering of implicit cells of level i
using CAD techniques (with characterize_covering). This cell again provides
an interval to exclude on the previous level (i − 1), where it might be part of
another covering.

If xi is universally quantified, then the roles of satisfying and falsifying sam-
ples are reversed: to infer satisfiability, a covering of satisfying intervals has to
be computed, and therefore, also satisfying samples (or samples that can be ex-
tended to satisfying ones) are always generalized to an implicit cell. In particular,
when a call for an existentially quantified (or free) variable returns SAT, it also
provides a “projection” of the satisfying cell onto level i − 1, again using CAD
techniques (with characterize_cell).

We do not give a detailed explanation of the subroutines sample_outside,
get_enclosing_cell, characterize_covering, characterize_cell. The im-
portant fact for this paper is that all computed implicit cells generalize the cur-
rent sample in the following sense: if s can (cannot) be extended to a satisfying
sample, then the same holds for all points in the induced cell.

The CAlC method is correct and complete. That is, the initial call will always
terminate with the correct result (SAT or UNSAT). This is due to the fact each
call is guaranteed to cover the real line with a finite number of cells (or find a
solution before that).

1 Order-invariance is a strengthening of sign-invariance. For details, see [2].
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Fig. 1: Illustration of Example 1. The shaded areas indicate the solution set
of each constraint; darker shaded areas are the solution set of φ. Satisfiable
intervals are indicated with a solid line, unsatisfiable intervals with a dashed
line. The additional axis below shows reasoning in the x1 dimension.

Example 1. Consider the non-linear optimization problem min⟨x1 | φ⟩, where
φ = (p1 ≤ 0 ∧ p2 ≤ 0) ∨ (p3 < 0) and p1, p2, p3 ∈ Q[x1, x2] are given by

x21 − 5x1 + 14− 3x2, x21 − 5x1 + 3 + x2, (x1 − 5)2 + (x2 − 2)2 − 1.

The satisfying regions of φ and its constraints are depicted in Figure 1. For now,
we ignore the objective and use CAlC to check the satisfiability of φ.

We start by picking any value for x1, e.g. s1 = 1. As φ[s1] = Undef, we
continue with x2 and choose s2 = 0. Now, φ[(s1, s2)] = False and the interval
(−∞, 10/3) (where p1 ≤ 0 is falsified) is excluded for x2, as depicted in Figure 1a.

Trying s2 = 4 next also gives the unsatisfiable interval (1,∞) for p2 ≤ 0,
leading to a covering of R over s1 = 1 (Figure 1b, left). This can be generalized
to an unsatisfiable interval (−∞, (5 −

√
2)/2) for x1, prompting the algorithm

to choose a larger value, e.g. s1 = 5. Now, extending it with s2 = 2 satisfies
φ, and the model can also be generalized to satisfying intervals for x2 and x1
(Figure 1b, right).

3 Using CAlC for Non-Linear Optimization

We now show how the CAlC method can be adapted for optimization. Our idea
is relatively simple: the objective variable x1 is treated on the bottom level of
the method, i.e. it is always assigned first and then CAlC is called recursively
as usual. This call determines whether there is a solution of φ with x1 = s1
and, importantly, it generalizes s1 to an implicit cell C. If s1 cannot be extended
to a solution of φ, the entire interval C.I can be excluded from the search, as
before. Otherwise, s1 can be extended to a solution, and then the same holds
for all values in C.I. In that case, the lower bound of that interval provides
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an upper bound on the desired minimum. If C.I has no lower bound, then the
objective function is also unbounded, and thus we can immediately return that
the minimum is −∞. If the lower bound l of C.I is strict (i.e. I is left-open),
then the new upper bound is only l+ε, since we do not yet know whether x1 = l
is viable. In the subsequent search, we are only interested in values of x1 that
are smaller than the current upper bound, and do not want to pick values above
C.I. Therefore, we exclude a new interval, which has the same lower bound as
C.I, but whose upper bound is ∞.

The algorithm stops when the entire real line is covered by satisfying and/or
unsatisfying intervals. If all intervals are unsatisfying, then the formula is un-
satisfiable, hence UNSAT is returned. Otherwise, it returns SAT together with the
minimum. Our idea is formalized in Algorithm 2.

The correctness and completeness of our approach are straightforward, given
the correctness and completeness of CAlC. In the UNSAT case, our algorithm
behaves exactly like CAlC. In the SAT case, we additionally have to ensure that
the returned minimum is correct. The way we exclude intervals guarantees that
we never choose any value s1 above the current value of min, i.e. it is strictly
decreasing throughout the algorithm. When the algorithm terminates, then all
possible values for s1 have been covered and min contains the lower bound of the
lowest found satisfying interval. The techniques of CAlC then guarantee that all
values below are contained in unsatisfying intervals, i.e. there is no solution of
φ with any of those objective values.

Algorithm 2: minimize()
Data : Global prefix Qk+1xk+1 · · ·Qnxn and matrix φ.
Output : (SAT, o) or (UNSAT).

1 min := ∞
2 I := ∅
3 while

⋃
I∈I I ̸= R do

4 s1 := sample-outside(I)
5 (f, C) := CAlC((s1))
6 if f = SAT then
7 if C.I = (−∞, u) or C.I = (−∞, u] then
8 return (SAT,−∞)
9 else if C.I = [l, u] or C.I = [l, u) then

10 min := l
11 I := I ∪ {[l,∞)}
12 else /*(C.I = (l, u) or C.I = (l, u])*/
13 min := l + ε
14 I := I ∪ {(l,∞)}

15 else
16 I := I ∪ {C.I}

17 if min < ∞ then return ( SAT, min)
18 else return UNSAT
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Fig. 2: Illustration of Example 2.

Theorem 1. Algorithm 2 is correct and complete. That is, let the given input
be φ(x1, . . . , xk), and let M := {s1 | s ∈ Rk ∧ s |= φ}, then Algorithm 2 returns

– UNSAT iff φ is unsatisfiable,
– (SAT,−∞) iff φ is satisfiable and M has no lower bound (in R),
– (SAT, r) for some r ∈ R iff φ is satisfiable, min(M) exists and is equal to r,
– (SAT, r + ε) for some r ∈ R iff φ is satisfiable, inf(M) = r, but r /∈M .

⊓⊔
Example 2. We revisit Example 1, and now we actually want to minimize x1. The
first steps can be identical to Example 1, i.e. minimize() tries out s1 = 1 and
s1 = 5, obtaining an unsatisfiable interval (−∞, (5 −

√
2)/2) and a satisfiable

interval (4, 6), as shown in Figure 2a. Now, minimize() has to continue and
choose a sample below the satisfying interval, e.g. s1 = 2.5. The call CAlC(s1)
finds the satisfying extension s2 = 3, which can be generalized to an interval
for x2 between the roots of p2 and p1. From this characterization, a satisfying
interval for x1 is derived whose bounds correspond to the intersections of the
roots of p1 and p2, as shown in Figure 2b. These intervals include their bounds
since the constraints are weak. Now, all values below the new interval are already
covered, and the algorithm can stop with the optimum (5−

√
2)/2.

4 Model Construction

Some applications require not only the optimal value of the objective function,
but also a variable assignment (model) at which this value is realized. That is,
given φ(x1, . . . , xk), we want to find m ∈ Rk with m |= φ and m1 = min⟨x1 | φ⟩.
In this section, we explain how to construct such a model with a little additional
bookkeeping. We start with the case of a true minimum, and then extend our
technique for infima and the unbounded case.

It is important to note that, while our algorithm already constructs models for
φ in the sample s, these models are not necessarily realizing the optimal objective
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value. The reason for this counter-intuitive observation is that satisfying samples
are generalized to cells, and we only infer the minimal objective value within that
cell by using the lower bound of the interval C.I in Algorithm 2, but we do not
yet construct a model for it.

4.1 Models for True Minima

When there is a true minimum, i.e. min⟨x1 | φ⟩ = r ∈ R, then one could easily
construct a model by calling CAlC(r) (fixing x1 to r) for φ. However, this does
more work than necessary, as it might first explore many infeasible branches in
the recursion. Instead, our idea is to store the implicit cells corresponding to the
levels of the most recent satisfying sample and use them to iteratively derive the
desired model.

Whenever a satisfying sample is found, the current call stack induces a stack
of implicit cells Ck, . . . , C1 which generalize the sample on each level. More
precisely, for i ∈ {1, . . . , k}, the call of level i+1 returns the cell Ci, i.e. si ∈ Ci.I.
The cell C1 is used to determine the minimum min⟨x1 | φ⟩ = r as the lower
bound of C1.I, which is also the starting point for our model m ∈ Rk, i.e.
m1 := r. For i ∈ {2, . . . , k}, we then iteratively use s, Ci and (m1, . . . ,mi−1) to
determine a value for mi. For this purpose, we make use of symbolic intervals,
which consist of indexed root expressions.

Definition 2 (Indexed Root Expression, [11]). Let i, j ∈ N \ {0} and let
p ∈ Q[x1, . . ., xi]. An indexed root expression is a function

rootp,j : Ri−1 → R ∪ {undefined},

s.t. for all r ∈ Ri−1, rootp,j(r) is the j-th real root of the univariate polynomial
p(r, xi) ∈ R[xi] (substituting r1 for x1, r2 for x2 etc.), or undefined if that root
does not exist (i.e. if p(r, xi) = 0 or if it has less than j roots).

Definition 3 (Symbolic Interval). Let i ∈ N\{0}, C = (P, s, I) be an implicit
cell of level i and let Ξl := {rootp,j | p ∈ P, j ∈ N, rootp,j(s1, . . . , si−1) = C.I.l}
and analogously Ξu := {rootp,j | p ∈ P, j ∈ N, rootp,j(s1, . . . , si−1) = C.I.u}.

We set ψl := (ξl(x1, . . . , xi−1) < xi) for some ξl ∈ Ξl (or ψl = True if
Ξl = ∅) and ψu := (ξu(x1, . . . , xi−1) > xi) for some ξu ∈ Ξu (or ψu = True if
Ξu = ∅). If the lower bound of C.I is closed (i.e. C.I.l ∈ C.I), then we use ≤
instead of < in ψl, and we proceed analogously for the upper bound and ψu.

The formula ψ(x1, . . . , xi) := ψl ∧ ψu defines a symbolic interval on xi.

Importantly, Ξl and Ξu can be computed efficiently and in fact, they are
already used implicitly in subroutines of CAlC, thus the overhead for deriving a
symbolic interval from an implicit cell is negligible. Now, let ψi(x1, . . . , xi) be
the symbolic interval on xi derived from Ci. All indexed root expressions in ψi

can be evaluated on the partial model (m1, . . . ,mi−1) and yield a real value.
This way, ψi induces a real interval Ji ⊆ R of suitable values mi for xi, and we
can choose any such value. Note that the implicit cell (Ci.P, (m1, . . . ,mi), Ji)
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defines the same maximal order-invariant region of Ri as Ci, i.e. Ci.I and Ji are
different slices of the same cell. Therefore, it is guaranteed that our final model
m ∈ Rk lies in the same satisfying cell as s and is indeed a model.

Example 3. We continue Example 2. As mentioned there, the implicit cell for
x2 is defined by p1 and p2, and we can derive the symbolic interval ψ2 =
(rootp1,1(x1) ≤ x2 ∧ x2 ≤ rootp2,1(x1)). This interval is only non-empty if the
root of p1 is below or equal to the root of p2, which is the case if x1 satisfies
ψ1 = (rootq,1 ≤ x1 ∧ x1 ≤ rootq,2), where q ∈ Q[x1] is the resultant of p1
and p2. We set m1 to the lower bound (5 −

√
2)/2, and evaluating ψ2 yields

2.75 ≤ x2 ≤ 2.75, leaving only the choice m2 = 2.75. Note that the intervals are
not alway point intervals, and then we can choose any value from them.

4.2 Model Templates for Special Cases

The process described above does not work if the objective function is unbounded
or if only an infimum is achievable, because we cannot plug symbolic values like
−∞ or r + ε into symbolic intervals to obtain concrete intervals.

Example 4. Consider the formula φ which is given in Figure 3, together with a
depiction of its solution set. The satisfiable range of x1 is (2,∞), and therefore
our approach finds min⟨x1 | φ⟩ = 2 + ε. The optimal (and only) satisfying cell
is described by 2 < x1 ∧ (rootf,1(x1) < x2 < rootg,1(x1)). As x1 approaches 2
from above, both root expressions in the cell description tend to infinity and at
x1 = 2 neither f nor g has a root and thus both expressions are undefined.

This means that we cannot provide a “true” model for these special cases. How-
ever, we can provide the symbolic intervals ψ1, . . . , ψk to the user as a convenient
description of the optimal truth-invariant cell for φ. In particular, this descrip-
tion can be used as a model template to easily compute nearly-optimal models:
if the optimum is r + ε, then the user may choose some fixed value ε > 0 and

φ : f < 0 ∧ g > 0 ∧ h ≥ 0

f = 4(x2 − 1)(x1 − 2)− 1

g = (x2 − 1)(x1 − 2)− 1

h = x2 − 1

f = 0 g = 0

h = 0

x2

x1

Fig. 3: The formula φ (left) used in Example 4 and its solution set (right, shaded),
as well as the optimal interval for x1 w.r.t. φ.
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thus turn the symbolic value into a real one (note that ψ1 might imply an upper
bound on ε). Using this value as m1, we can then compute a model as before.
Similarly, if the optimum is −∞, we can compute models with arbitrarily small
values for m1 (again, ψ1 might provide an upper bound).

Notably, the model computation is quite cheap and fast compared to the
previous call to CAlC. This allows to easily and quickly compute nearly-optimal
models for different values of ε without having to recompute everything.

Algorithm 3 shows how Algorithm 1 can be adapted to compute and store
the symbolic intervals ψ1, . . . , ψk. They can be stored globally and overwritten
each time a new (better) satisfying cell is found. The important change is in Line
6. Note that we only need models for the free variables, i.e. if i ≤ k.

Algorithm 4 shows how to compute a model from the computed symbolic
intervals, when the desired objective value m1 is provided.

Algorithm 3: CAlC(s)
Data : Global prefix Qk+1xk+1 · · ·Qnxn, matrix φ, and

symbolic intervals ψ1, . . . , ψk

Input : Sample point s = (s1, . . . , si−1) ∈ Ri−1

Output : (SAT, C) or (UNSAT, C) where C is an implicit cell of level i− 1
1 I := ∅ // collects the covered cells
2 while

⋃
C∈I C.I ̸= R do

3 si := sample_outside(I)
4 Determine result (f,O) for s× si (Algorithm 1, lines 4-9)
5 if (f = SAT ∧ (i ≤ k ∨Qi = ∃)) or (f = UNSAT ∧ (i > k ∧Qi = ∀)) then
6 if i ≤ k then ψi := symbolic-interval-from(O)
7 C := characterize_cell(s, O)
8 return (f, C) // early return depending on the quantifier
9 else

10 I := I ∪ {O}

11 C := characterize_covering(s, I)
12 if i > k ∧Qi = ∀ then return (SAT, C)
13 else return (UNSAT, C)

Algorithm 4: compute-model(ψ1, . . . , ψk,m1)

Input : Symbolic intervals ψ1, . . . , ψk for x1, . . . , xk and m1 ∈ R with
m1 |= ψ1

Output : m = (m1, . . . ,mk) ∈ Rk with m |= ψ1 ∧ . . . ∧ ψk

1 for i = 2, . . . , k do
2 Ji := real-interval(ψi(m1, . . . ,mi−1, xi))
3 choose mi ∈ Ji

4 return m



12 V. Promies and E. Ábrahám

5 Experiments

Tested Solvers. We implemented our approach in the SMT-RAT solver [6], building
on its implementation of CAlC as in [11]. In our experimental evaluation, we
compared the following solvers:

– CAlC-Opt: our approach, implemented in SMT-RAT.
– CAlC-Opt+: our approach, but using an adapted variable ordering. It is well

known that the variable ordering (for the assignments/projections) greatly
influences the performance of methods based on cylindrical algebraic de-
composition, like CAlC [7,8]. As we enforce that the objective variable is as-
signed first (and thus projected last), the efficiency of the remaining ordering
might be impacted. We address this by sorting the remaining variables into
two tiers: first, those occurring in a constraint together with the objective
variable and second, those that don’t. Within each tier, we use SMT-RAT’s
standard variable ordering heuristic. The idea is to give more priority on en-
forcing that the objective function takes on the chosen value, thus potentially
finding its range more quickly.

– CAlC-QE: determining the optimum via quantifier elimination, by treating all
free variables except the objective variable as existentially quantified. The
used quantifier elimination is also based on CAlC, as in [11].

– CDCL-OCAC: an implementation of [9], based on the CVC5 solver.
– OptiMathSAT: an incomplete approach using incremental linearization [4].

Benchmark Sets. A severe limitation for our experiments is the lack of suit-
able and readily available benchmark sets for our targeted kind of optimization
problem. The only such set that we found is provided in [4], where it is used to
evaluate OptiMathSAT, hence we call this set OMS. It contains 752 instances de-
rived from planning tasks and unfortunately, we will see later that it is generally
too difficult for our considered tools (similar observations are also found in [4]).

Therefore, we decided to generate two new benchmark sets based on the
QF_NRA set provided by SMT-LIB [3], which contains 12154 satisfiability prob-
lems with quantifier-free NRA formulas. For each of these problems, we gener-
ated two optimization problems with different objective functions. Firstly, we
simply choose a random variable as the objective function. Secondly, we choose
two random variables x, y and use the polynomial (x2 − 1)(y2 − 1) as objective
function, which is non-convex and non-concave and thus expected to yield more
complex problems. This yields the sets QFNRA and QFNRA-hard, with 12152
and 12145 instances, because there are some instances in the original set with
only one or even zero real variables.

Note that our tool can actually handle arbitrary NRA formulas, including
quantifiers. However, since the other tools do not have this capability, we do not
present experiments with such formulas here.

Testing Setup. We tested all solvers on all benchmarks with a time limit of one
minute and a memory limit of 4 GB per instance. All tests were conducted on
on identical Intel®Xeon®8468 Sapphire CPUs with 2.1 GHz per core.
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Evaluation. The results are summarized in Table 1. Regarding the simple QFNRA
benchmarks, both variants of our approach (CAlC-Opt, CAlC-Opt+) solve at least
200 instances more than the other competitors, and this gap even widens to
roughly 700 on the QFNRA-hard benchmarks. Our adapted variable ordering
improves the overall performance of our approach: while CAlC-Opt+ solves fewer
unsatisfiable instances than CAlC-Opt, it solves significantly more satisfiable in-
stances (and thus more overall).

Table 1: Summary of experimental results. MO indicates memory-outs.

CAlC-QE CAlC-Opt CAlC-Opt+ CDCL-OCAC OptiMathSAT

Q
F
N

R
A

solved 9370 9824 9847 9624 7944

sat 4430 4884 4923 4596 2696

unsat 4940 4940 4924 5028 5248

MO 151 147 145 1 230

Q
F
N

R
A

-h
ar

d solved 8071 9017 9103 8301 5800

sat 3201 4146 4286 3409 595

unsat 4870 4871 4817 4892 5205

MO 154 145 147 0 6

O
M

S

solved 11 12 11 148 114

sat 0 1 1 0 5

unsat 11 11 10 148 109

MO 24 25 26 0 0

The outcome for the OMS set is different: the CAlC based tools solve hardly
any instances and CDCL-OCAC and OptiMathSAT solve at least 100 instances
more, which still is not even 20% of the set. Notably, while CDCL-OCAC solves
the most instances in OMS, it does not solve a single satisfiable instance, and
OptiMathSAT only solves 5. It is important to note that, while CDCL-OCAC em-
ploys similar techniques like our approach, it is implemented on top of CVC5,
which also uses incremental linearization similar to OptiMathSAT. Table 1 shows
that OptiMathSAT (and hence incremental linearization) excels especially on un-
satisfiable instances. It is therefore likely that this causes most of the difference
in performance between our approach and CDCL-OCAC on the OMS set.

Our approach behaves very similar to CAlC-QE on unsatisfiable instances,
but solves far more satisfiable instances. This is expected, as both build onto
the same CAlC implementation, and both have to cover the entire search space
to infer unsatisfiability, but CAlC-Opt can potentially avoid a lot of work in the
satisfiable case.
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Fig. 4: Comparison of the running times (in seconds) of CAlC-Opt+ (x-axis) with
other tools on the QFNRA set, divided by satisfiable and unsatisfiable instances.
Instances unsolved by the respective tool are depicted at the label ⊥.
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The different behaviours for satisfiable and unsatisfiable instances (of the
QFNRA set) can also be seen in Figure 4. Interestingly, CAlC-Opt+ seems to
be quite complementary to OptiMathSAT and CDCL-OCAC: There is a significant
number of (both satisfiable or unsatisfiable) instances which one tool can solve
but not the other and vice versa; these instances are shown on the lines labelled
⊥. Moreover, even if both tools (CAlC-Opt+ and OptiMathSAT or CDCL-OCAC)
solve an instance, one tool is often clearly faster, thus there are few dots around
the main diagonal (in contrast to the comparison with CAlC-QE).

Validation. We validated the results of our solver by encoding the correctness of
each output as satisfiability problems, which we checked with other established
SMT solvers, namely z3 [16] and YicesQS [15]. Let min⟨p | φ(x1, . . . , xk)⟩ be the
input optimization problem. If our solver returns UNSAT, we simply verify that
φ is unsatisfiable. Otherwise, (i.e. our solver returns SAT and some optimum O),
we have to make more case distinctions.

– If O = m ∈ Q, verify that φ ∧ p = m is satisfiable and that φ ∧ p < m is
unsatisfiable.

– If O = m + ε for some m ∈ Q, verify that φ ∧ p ≤ m is unsatisfiable and
that ∃t.(m < t ∧ t < u ∧ ∀x1, . . . , xk.(p(x1, . . . , xk) = t → ¬φ(x1, . . . , xk)))
is unsatisfiable. The latter encodes that all objective values in the optimal
interval ψ1 (as described in Section 4) admit a solution to φ, and u ∈ Q is
an upper bound derived from ψ1.

– If O = −∞, verify that for all objective values below a threshold u ∈ Q
(again derived from ψ1), there is a solution of φ, namely by checking that
∃t.(t < u∧∀x1, . . . , xk.(p(x1, . . . , xk) = t→ ¬φ(x1, . . . , xk))) is unsatisfiable.

In the first two cases, m might instead be irrational, which means that e.g.
p < m would not be a syntactically valid constraint. In that case, m is an
algebraic number, which is in practice stored as the unique root of a univariate
polynomial q ∈ Q[z] contained in an interval I = (I.l, I.u) with rational bounds.
Thus, we encode m by the formula q(z) = 0 ∧ I.l < z ∧ z < I.u and replace m
by the new variable z in the above formulas.

We checked all generated validation formulas with z3 and YicesQS with a
time limit of 3 minutes and there were only 267 on which both tools timed out.
For all others, the correctness of our results were confirmed by at least one.

6 Conclusions

In this paper, we presented a natural extension of the cylindrical algebraic cov-
ering method to tackle optimization problems. Our approach is complete and
provides useful models or, for infima and unbounded problems, model templates
from which nearly-optimal models can be computed easily. Provided a good im-
plementation of CAlC, our method is easy to implement and outperforms other
tools on benchmarks generated from SMT-LIB.
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For future work, it would be interesting to see how well our approach can
handle real-world applications. While it performed well on our generated bench-
marks, which do at least partially stem from SMT applications, we see on the
OMS set that complete approaches can quickly reach their limits. Furthermore,
investigating variable ordering heuristics further might pay off, since a simple
change (yielding CAlC-Opt+) already improved the performance. Finally, one
could combine our method with e.g. incremental linearization, as we saw that
these techniques complement each other quite well.

Data Availability. Our implementation, results, and tools for generating the
benchmarks are available at https://doi.org/10.5281/zenodo.15526951.
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