
Planning with Equality

David Plaisted1 and Stephan Schulz2

1 Department of Computer Science, UNC Chapel Hill, Chapel Hill, NC 27599-3175,
U.S.A., plaisted@cs.unc.edu

2 DHBW Stuttgart, Fakultät Technik, 70174 Stuttgart, Germany,
schulz@eprover.org

Abstract. An approach to planning in which states are represented as
first-order terms is presented. Fluents can be computed from the term
structure, and actions on the states correspond to rewrite rules on the
terms. Actions that depend on or influence only a subset of the fluents
can often be described as rewrite rules that operate on subterms of the
terms. If actions are bidirectional, then efficient completion methods can
be used to solve planning problems. Such completion methods first show
that a plan exists and then can construct it explicitly. This approach is
guaranteed to find a solution to a planning problem if one exists, but
not necessarily an optimal one. Some ideas for optimizing plans found in
this way are sketched. An implementation shows that this approach can
sometimes show quickly that a very long plan exists. The time to find a
plan is important as well as the cost of the plan. The time to construct
the plan will be proportional to the length of the plan. Some examples are
given, and an argument is given that this approach can be more efficient
than other common approaches to planning. If this approach quickly
show that a plan exists, then the plan has a succinct representation even
though the plan might be very long. Also, even before constructing the
entire plan, a term representing a state somewhere in the middle of the
plan can be computed efficiently.

1 Introduction

The situation calculus permits reasoning about properties of situations that re-
sult from a given situation by sequences of actions [MH69]. In the original version
of the situation calculus [MH69], the term ”situations” refers to states, which
represent the entire state of the world at a given time. Later [Rei91] the term
situations is used to refer to sequences of states, each state obtained from the pre-
vious one by a specified action. We consider the original version of the situation
calculus, and use the term ”states” instead of ”situations” to refer to the entire
state of the world at a given time. In order to clarify the distinction, we use the
term state calculus instead of situation calculus to refer to what McCarthy and
Hayes would have called the situation calculus. In the original situation calculus
of McCarthy and Hayes, states (which they called situatons) are represented
explicitly by variables, and actions a map states s to states do(a, s). Predicates
and functions on a state are called fluents. A problem with the situation calculus

2 Plaisted, Schulz

or any formalism for reasoning about actions is the necessity to include a large
number of frame axioms that express the fact that actions do not influence many
properties of a state. Since the early days of artificial intelligence research the
frame problem has been studied, beginning with McCarthy and Hayes [MH69].
Lin [Lin08] has written a survey of the situation calculus.

Reiter [Rei91] proposed an approach to the frame problem that avoids the
need to specify all of the frame axioms. The method of Reiter, foreshadowed
by Haas [Haa87], Pednault [Ped89], Schubert [Sch90] and Davis [Dav90], defines
situations to be sequences of states or actions, and essentially solves the frame
problem by specifying that a change in the truth value of a fluent, caused by
an action, is equivalent to a certain condition on the action. In this formalism,
it is only necessary to list the actions that change each fluent, and it is not
necessary to specify the frame axioms directly. If an action does not satisfy the
condition, the fluent is not affected. In the following discussion the term “Reiter’s
formalism” will be used for simplicity even though others have also contributed
to its development. The fluent calculus [Thi98] is another interesting approach to
the frame problem. In this approach, a state is a conjunction of known facts. The
fluent calculus has some similarities to our approach, but our approach makes
more use of the subterm relation. Our approach expresses a planning problem
as a pure equational theorem proving problem in first-order logic. It could easily
be extended to conditional equations, giving more expressiveness.

Rewriting and completion based approaches and implementations of equa-
tional first-order logic have become highly efficient. By the known completeness
of unfailing completion [BN98],[BDP89,HR87], completion based approaches,
given enough time, are guaranteed to find a plan if one exists, but not nec-
essarily an optimal plan. One cannot bound the time that completion based
approaches may take, but our examples show that in some cases they can be
very fast even for very long plans.

Because completion based approaches might not generate plans that are op-
timal or near optimal, it is important to consider methods to improve the plans
they generate. It is possible to optimize the plan found by completion by lo-
cally replacing parts of it by more efficient sequences of actions. One way to
improve such a plan is to create plans using several different termination order-
ings to guide completion. We can then simply accept the most attractive (e.g.
the shortest) of the generated plans. These may of course be further optimised.
Another optimization is to delete the portion of the plan between duplicated
occurrences of the same state, if such exist.

General approaches to planning can guarantee near optimal plans, but even
so the cost to use these approaches can be high. Planning can be seen as a
search for a connecting path in a graph – ideally the shortest one. The states
are nodes of the graph and the actions are the edges. The cost of an edge is the
cost of the action. Then a path in the graph, corresponding to a sequence of
actions, is a plan. An optimal plan is a shortest (least cost) path. Shortest path
algorithms on graphs such as Dijkstra’s algorithm [Dij59] generally at least have
to read in all the nodes, so they take time at least proportional to the size of

Planning with Equality 3

the graph. For planning problems, the size of the graph is at least as large as
the number of states, which is often exponential (in the length of the description
of the problem). All of the examples given later have exponential search spaces.
Thus one would expect that the worst case time for planning would also be
exponential. In general, one would expect that finding an optimal path in an
exponential graph would be a lot harder than just finding one path, which is
what completion does. At least in the switches and Tower of Hanoi examples
given below, completion finds a path in polynomial time, though the numbers of
states are exponential. For the Tower of Hanoi problem, even the length of the
plan is exponential. So we have good reason to believe that our approach would
be faster than other plannng methods on these and similar examples, though
the final plan might be longer. A* search [HNR68] can be much faster than
Dijkstra’s algorithm if good heuristics are available, but even A* search takes
time proportional to the size of the graph if good heuristics are not available.

Concerning efficiency, the rewriting approach has the potential to reduce
the search space by separating the search for sub-plans that are independent
of one another. In the equational approach, rewriting on subterms can have the
effect of replacing a portion of a state while leaving the rest unchanged. This can
permit plans on independent portions of a state to be constructed independently
without multiplying the search spaces. It also implicitly gives the effect of many
frame axioms.

As far as we are aware the approach of this paper is new. As is common in
planning problems, each state specifies the value of all fluents, so that the quali-
fication problem (specifying conditions under which an action can be executed),
the ramification problem (deciding the consequences of an action on the values
of all fluents), and the frame problem (specifying formally all fluents that an
action does not change) do not arise – the latter in particular is addressed by
the fact that fluents depend directly on the structure of the encoded terms, and
actions only modify these terms locally and as needed.

As for other formalisms, the popular STRIPS formalism [FN71] is basically
propositional and each action has an add list of propositions to be added when
it is performed and a delete list. The PDDL language [GHK+98] is also popular
and much more flexible. GOLOG [LRL+97] permits planning in Reiter’s version
of the situation calculus and implements a state space search in Prolog. Another
logic-based formalism for planning is that of Soutchanski and Young [SY23]
which uses A* search in a tree of situations and is also implemented in Prolog.
The planning as satisfiability approach [KS92] expresses the planning problem
as a satisfiability problem in which a model of a set of propositional clauses
can be understood as a plan. This approach takes advantage of the impressive
performance of current satisfiability solvers.

2 State Calculus

Instead of the now usual formulation of the situation calculus due to Reiter, in
which a situation is a sequence of states or actions, and a state is the entire state

4 Plaisted, Schulz

of the world at a given time, we go back to the original formulation of McCarthy,
which we call a state calculus and use the term state to refer to the entire state
of the world at a given time. We use the term state calculus instead of the term
situation calculus to emphasize the distinction. We assume that there is some
underlying set U of axioms in first-order logic concerning states, fluents, and
actions. The semantics of this axiomatization will have domains as in many-
sorted first-order logic, for states, actions, fluents, and the values of fluents, with
fluents mapping from states to various values.

Actions in U are typically indicated by the letter a, possibly with subscripts,
and fluents are typically indicated by the letters p and q, possibly with subscripts.
F is the set of all fluents and A is the set of actions. The set of fluents and
actions are assumed to be finite. States are denoted by s′, t′, and u′, possibly
with subscripts. The set of states is S. The values of the fluents are in domain
V.

There are also functions do and Φ as follows:

do : A× S → S
Φ : F × S → V

Thus fluents are essentially functions from states to V. Also = is an equality
relation on various domains and the usual equality axioms are assumed. There
may be other domains and functions as well. Semantically, an action a in a state
s transforms it into another state do(a, s) Also, the fluents represent properties
of a state, and Φ(p, s) is the value of fluent p in state s. Some examples of sets
of axioms for state calculi are given later.

Definition 1 A state calculus is a tuple (U ,S,F ,A, Φ) with the components as
specified above.

We often use U to refer to the entire state calculus. Later it will be important
to distinguish actions that change something from those that do not.

Definition 2 For two states s′ and t′ in S, s′ ≡ t′ iff for all p ∈ F , Φ(p, s′) =
Φ(p, t′). An action a in a state calculus U is stationary on a state s′ ∈ S if
s′ ≡ do(a, s′).

We allow for the possibility that s′ ≡ t′ and s′ ̸= t′ because states might have
features other than the fluents, features that are irrelevant for planning.

Frequently actions have preconditions, the intention being that if the pre-
conditions are not satisfied, the action cannot be performed. We assume such
actions are reformulated so that they can be performed even if the preconditions
are not satisfied, but in that case the action will be stationary.

Definition 3 (Fluent dependence condition) For all states s′ and t′, if s′ ≡
t′ then do(a, s′) ≡ do(a, t′). This can be more formally stated as U |= (∀s′, t′ ∈
S)(s′ ≡ t′ → do(a, s′) ≡ do(a, t′)).

We assume that all state calculi satisfy the fluent dependence condition.

Planning with Equality 5

3 Term Rewriting Systems

Term rewriting systems[BN98] have a simple syntax and semantics. They are
a simple, natural, and sufficient formalism for expressing planning problems. In
this paper a state calculus based on first-order term rewriting is presented. States
are represented by terms and actions are represented by rewrite rules that oper-
ate on terms. This representation permits completion procedures [BN98,DP01]
to be used for planning if actions are bidirectional, and also makes use of the
subterm structure of terms to separate actions whose effects are independent.
This can improve the efficiency of the planning process. This representation is
probably most closely related to the fluent calculus of Thielscher [Thi98] among
the approaches that have been proposed to date.

The basics of term rewriting systems are as follows.

3.1 Terms

The symbols f, g, h are function symbols, x, y, z are variables, r, s, t, u, v, w are
terms, and a, b, c are individual constants. Also, i, j, k are variables that are
intended to denote integers. F is the set of function symbols and X is the set of
variables.

The arity of a function symbol is the number of arguments it takes. We
assume there is a bound on the maximum arity of any function symbol. Terms
are defined as follows: A variable or an individual constant is a term. Also, if f
has arity n and t1, . . . , tn are terms then f(t1, . . . , tn) is a term. The set of terms
over a set F of function symbols and a set X of variables is denoted T [F,X]. A
term is a ground term if it contains no variables. The notation s ≡ t for terms s
and t indicates that the terms are syntactically identical. A term s is a subterm
of f(t1, . . . , tn) if s ≡ f(t1, . . . , tn) or s is a subterm of ti for some i. Also, s is
a proper subterm of f(t1, . . . , tn) if s is a subterm of ti for some i. A maximal
term in a set T of terms is a term in t that is not a proper subterm of any other
term in T .

A context is a term with one occurrence of □ in it, such as f(a,□, b). This
is written as t[] and the result of substituting some term u for □ is written as
t[u].

A substitution is a replacement of variables xi by terms ti; this can be written
as {x1 ← t1, . . . , xn ← tn} or as {t1/x1, ...tn/xn}. Greek symbols such as θ are
commonly used for substitutions. The result of applying a substitution θ to a
term t is written as tθ. The term tθ is called an instance of t.

3.2 Rewrite Rules

A rewrite rule is of the form r → s where r and s are terms and all variables
in s also occur in r. A term rewriting system is a finite or infinite set of rewrite
rules. The relation ⇒R is defined by t1 ⇒R t2 iff there is a context t[] such that
t1 ≡ t[rθ] and t2 ≡ t[sθ] for some rewrite rule r → s in R and some substitution
θ. For example, if the rule f(g(x))→ f(h(x, x)) is in R, then f(f(g(h(a, b))))⇒R

6 Plaisted, Schulz

f(f(h(h(a, b), h(a, b)))). If q is a rewrite rule then we write t1 ⇒q t2 for t1 ⇒{q}
t2. Also, ⇒∗

R is the (reflexive) transitive closure of ⇒R. A sequence t1 ⇒R

t2 ⇒R t3 . . . is called a rewrite sequence. The system R is terminating if it has
no infinite rewrite sequences. A term s is reducible for R if there is a term t such
that s ⇒R t; otherwise s is irreducible. If s ⇒∗

R t and t is irreducible then one
writes s⇒!Rt and t is called a normal form of s. A term rewriting system R is
confluent if for all terms s, t1, and t2, if s ⇒∗

R t1 and s ⇒∗
R t2 then there is a

term u such that t1 ⇒∗
R u and t2 ⇒∗

R u. R is bidirectional or invertible if s⇒R t
implies t⇒R s for all terms s, t in T [F,X].

4 State Rewriting System

Based on a state calculus U we construct a term-rewriting system RU to simulate
the actions of U using rewrite rules. In Definition 4, T is a set of ground terms
that represent states, σ is a function from such ground terms to states that they
represent, and for all states s′ there is a term in T that essentially represents it.
Definition 5 states that given any collection of values for fluents, it is possible
to compute a ground term that represents a corresponding state if such a state
exists.

Definition 4 Given a state calculus (U ,S,F ,A, Φ), a state representing system
for U is a tuple (T , σ, Φ̂) such that T ⊆ T [F,X], T is a set of ground terms,
σ : T → S is a function, for all s′ ∈ S there is a t ∈ T such that σ(t) ≡ s′,
Φ̂(p, t) : F × T → V is a function, for all fluents p ∈ F and terms t, Φ̂(p, t) =
Φ(p, σ(t)), and Φ̂(p, t) is computable, that is, the values of the fluents can be
determined from p and the term structure of t.

Definition 5 Let Find be a function which, given a set {(p1, v1), · · · , (pn, vn)}
of fluents and their values, finds a term t such that Φ(pi, σ(t)) = vi for all i if
such a term exists, else returns ”none.” We assume that the function Find is
computable.

4.1 Rewrite Rules for State Calculus

Definition 6 A term-rewriting system R represents the state calculus (U ,S,F ,
A, Φ) if (T , σ, Φ̂) is a state representing system for U and if R = Eσ ∪Aσ where
Eσ and Aσ are sets of rewrite rules satisfying Equations 1, 2, 3, and 4 below.
We also call the tuple ((U ,S,F ,A, Φ), T , σ, Φ̂, R) a state rewriting system. We
frequently abbreviate (U ,S,F ,A, Φ) by U and ((U ,S,F ,A, Φ), T , σ, Φ̂, R) by RU .

The rules Eσ are rearrangement rules that reformat the term without affect-
ing the state; for example, they might permit a list of terms to be rearranged
in an arbitrary order. The rules Aσ are action rules that simulate actions on
states. It is assumed that rules in Eσ are invertible. These rules Eσ and Aσ are
assumed to satisfy the following axioms. The first axiom says that if a term s
rewrites to t and s represents a state then t does also. The second axiom says

Planning with Equality 7

that a term s rewrites to a term t using the set Eσ of rewrite rules if s and t
have the same values of all fluents.

If q ∈ Eσ ∪Aσ and s ∈ T and t is a term such that s⇒q t

then t ∈ T also. (1)

For terms s, t ∈ T , s⇒∗
Eσ

t iff σ(s) ≡ σ(t). (2)

For a single rule q in Aσ there can be many ground terms s and t such that
s ⇒q t and these various terms can correspond to different actions a. Thus we
have the following axiom:

If q ∈ Aσ then for all s, t ∈ T , if s⇒q t

then there exists a ∈ A such that σ(t) ≡ do(a, σ(s)). (3)

In fact we assume that some such action a is computable, given s, t, and q ∈ Aσ.
We also allow the possibility that actions in A correspond to more than one

rule in Aσ.

Definition 7 For s, t ∈ T , s ∼⇒R t if there are terms u, v ∈ T such that s⇒∗
Eσ

u⇒Aσ
v ⇒∗

Eσ
t.

For all a ∈ A and all s, t ∈ T ,
if σ(t) ≡ do(a, σ(s)) and a is non-stationary on σ(s) then s

∼⇒R t. (4)

Although T is a set of ground terms, the rewrite rules in RU need not be
ground rules, which will be clear from the examples.

4.2 Planning Using Term Rewriting

Definition 8 Suppose (U ,S,F ,A, Φ) is a state calculus and s′ and t′ are states
in S. Then a plan from s′ to t′ is a sequence of states s′1, s

′
2, · · · , s′n and actions

a1, a2, · · · , an−1 with s′ = s′1 and t′ = s′n such that for all i, 1 ≤ i ≤ n − 1,
s′i+1 = do(ai, s

′
i).

Theorem 1 (Planning Theorem). Suppose s1 and sn are terms in T and

there is a plan from σ(s1) to a state s′n with s′n ≡ σ(sn). Then s1
∼⇒

∗
Rsn. The

converse is also true.

Proof. If there is a plan then there is a plan without stationary actions. Let
s′1, s

′
2, · · · , s′n be the states in the plan as in Definition 8 with s′1 = σ(s1) and

s′n ≡ σ(sn). By Definition 4 there are terms si, 1 ≤ i ≤ n such that σ(si) ≡ s′i.
The conclusion follows by Definition 7 and Equation 4. For the converse, let
s1, · · · , sn be such that si

∼⇒Rsi+1, 1 ≤ i ≤ n − 1. Let ai be actions such that
σ(si+1) ≡ do(ai, σ(si)), 1 ≤ i ≤ n− 1 (by Equations 2 and 3) and note that
these actions are computable by Equation 3. Let s′1, s

′
2, · · · , s′n be states such

that s′1 = σ(s1) and for 1 ≤ i ≤ n− 1 s′i+1 = do(ai, s
′
i). Then by repeated use of

the fluent dependence condition, s′i ≡ σ(si). Thus s
′
n ≡ σ(sn) and the s′i form a

plan from σ(s1) to a state equivalent to σ(sn). ⊓⊔

8 Plaisted, Schulz

Thus, given the values of the fluents on s′1 and s′n, to see if it is possible to reach
a state equivalent to s′n from s′1 by a sequence of actions in U , one can construct

terms s1 and sn as in the theorem using Find and test if s1
∼⇒

∗
Rsn.

Corollary 1. With conditions as in the planning theorem, if Aσ is invertible,

then s1
∼⇔

∗
Rsn, and if s1

∼⇔
∗
Rsn then a plan exists as in the theorem.

Corollary 2. Unfailing completion can find a proof that s1
∼⇔

∗
Rsn iff there is a

plan from σ(s1) to a state s′n with s′n ≡ σ(sn).

Proof. By the planning theorem and the soundness and completeness of unfailing
completion.

This means that rewrite strategies such as completion and unfailing com-
pletion [BN98] [BDP89,HR87] can be used to test if such a plan exists. These
rewriting based approaches can show the existence of a plan even without ex-
plicitly contstructing it. Sometimes the time to show the existence of a plan can
be much smaller than the time to construct or even print out the plan.

Theorem 2. Suppose RU is a rewriting system that represents the theory U and
suppose Aσ is invertible. If s and t are ground terms then from a proof using

unfailing completion and rewriting that s
∼⇔

∗
t it is possible to construct a sequence

si, 1 ≤ i ≤ n of ground terms such that s1 = s and sn = t and si
∼⇔ si+1, 1 ≤ i <

n and a sequence of actions a1, a2, · · · , an−1 such that σ(si+1) ≡ do(ai, σ(si))
for i, 1 ≤ i ≤ n− 1.

Proof. From such an unfailing completion proof it is possible to construct a
sequence s1, s2, · · · , sn of ground terms such that si

∼⇔ si+1, 1 ≤ i < n, using
e.g. the system demonstrated in [DS96]. Then by repeated use of the decidability
assumption following Equation 3, one can find a sequence a1, a2, · · · , an−1 of
actions such that σ(si+1) ≡ do(ai, σ(si)) for all i, 1 ≤ i ≤ n− 1. ⊓⊔

This plan might not be optimal, but it might be possible to improve it after
it is found. The particular plan that is found can be influenced by the choice
of a termination ordering [BN98]. The use cases presented below show that it
is plausible to assume that the invertibility assumption holds in many inter-
esting domain. One large class of problems we can handle are in logistics with
constraints (“Bring a wolf, a goat and a cabbage over the river. . . ”).

Definition 9 Suppose a, b ∈ A and for all states r′, s′ ∈ S, s′ ≡ do(a, r′) iff
r′ ≡ do(b, s′). Then aR is defined to be some such b.

In some cases aR is not defined because such an action b might not exist.

To directly extract a plan from a proof that s1
∼⇔

∗
sn, the notation s

α1···αk⇒
R∗

U

t

can be used indicating a sequence of actions leading from σ(s) to σ(t). These
actions can be carried along in the completion procedure. We have the following
rules:

Planning with Equality 9

If r
α1···αm⇒

R∗
U

s and s
αm+1···αn⇒

R∗
U

t then r
α1···αn⇒

R∗
U

t. (5)

If s
α1···αk⇒

R∗
U

t then t
αR

k ···αR
2 αR

1⇒
R∗

U

s assuming Aσ is invertible and all αR
i exist. (6)

For all s, t in T if s⇒∗
Eσ

t then s
ϵ⇒

R∗
σ

t where ϵ is the empty sequence. (7)

The above equation says that rules in Eσ correspond to empty actions which
might change the term but do not change the state.

If σ(t) ≡ do(a, σ(s)) and s⇒Aσ t then s
a⇒

R∗
U

t. (8)

However, there might be more than one action corresponding to a given
rewrite rule in Aσ. This can cause a problem if the rule is non-ground. The
relevant ground instance of the rewrite rule might not be known until the entire
proof has been constructed.

5 Examples

Some examples will illustrate the properties of this approach to the state calculus.
The default rewriting relation s⇒ t in these examples will refer to rewriting in
the systemRU . The approach used for rewriting is unfailing completion[BDP89,HR87],
which, in the limit, produces a term rewriting system that is confluent by ordered
rewriting. We assume that RU is bidirectional.

5.1 Switches Example

In this example, there are m switches which can be on or off. For this example,
the state calculus U is as follows:

The fluents are sw1, sw2, · · · , swm and the values of the fluents are ”on” and
”off.” The actions are ”turnon(i)” and ”turnoff(i)” for 1 ≤ i ≤ m. The axioms
are as follows:

(∃s′ ∈ S)[(Φ(sw1, s
′) = ”off”) ∧ · · · ∧ (Φ(swm, s′) = ”off”)] (Existence of a

state in which all switches are off)
i ̸= j → Φ(swi, do(turnon(j), s

′)) = Φ(swi, s
′) (Frame axiom for turning a

switch on)
i ̸= j → Φ(swi, do(turnoff(j), s

′)) = Φ(swi, s
′) (Frame axiom for turning a

switch off)
Φ(swi, do(turnon(i), s

′)) = ”on” (After a switch is turned on it is on)
Φ(swi, do(turnoff(i), s

′)) = ”off” (After a switch is turned off it is off)
There are also the equality axioms on the domains.

10 Plaisted, Schulz

This set of axioms essentially assumes that the initial state has all switches
off. An axiom can be added stating that no state exists with all switches on, or
whatever the goal state is. As for the state rewriting system RU , the state of the
switches is represented by a term in T of the form f(x1, x2, · · · , xm) where all
xi can be “on” or “off”. Also Φ̂(swi, f(b1, · · · , bm)) = bi.

As for the semantics, an action turns any particular switch on or off. One
way to represent this example is by rewrite rules in RU of the form

f(x1, · · · , xi−1, off, xi+1, · · · , xm)→ f(x1, · · · , xi−1, on, xi+1, · · · , xm)

to turn the ith switch on and a rule

f(x1, · · · , xi−1, on, xi+1, · · · , xm)→ f(x1, · · · , xi−1, off, xi+1, · · · , xm)

to turn it off . The search space is exponential because each of the m switches
can either be on or off. Stationary actions (such as turning a switch on that is
already on) correspond to rewrite rules that cannot be applied to a term. This
set of rules is already bidirectional.

Now, suppose the terms s and t as in Theorem 2 are f(u1, · · · , um) and
f(v1, · · · , vm) where the ui and vi are each either ”on” or ”off”. The two rewrite
rules per switch will be represented by a single equation

f(x1, · · · , xi−1, off, xi+1, · · · , xm) = f(x1, · · · , xi−1, on, xi+1, · · · , xm)

which during unfailing completion will be oriented in either direction, depending
on the termination ordering. There are a quadratic number of critical pairs be-
tween these equations, but they are all joinable, so completion terminates quickly.
Then the reductions to normal form will take worst case time proportional to
m, which is linear time.

Suppose that “off” is larger than “on” in the termination ordering. Then
both s which is f(u1, · · · , um) and t which is f(v1, · · · , vm) will rewrite to
f(on, · · · , on), leading to a rewriting sequence f(u1, · · · , um)⇒∗ f(on, · · · , on)⇐∗

f(v1, · · · , vm), so that the plan consists of turning all the switches ui on that
are off, and then turn off all the switches vi that are on. This could result in a
switch that is off in both starting and ending states to be turned on and then off
again. This plan can be optimized by removing such pairs of actions, resulting in
a reasonable plan. The length of the plan will be at most 2m, regardless of the
positions of the switches in the original and final states. However, a breadth-first
search for a plan will result in an exponential search space.

5.2 Tower of Hanoi

For this example, there are m disks of different sizes on three pegs. On each peg
the disks have to be in order of size, with the largest disk on the bottom. Only
the top disk on a peg can be moved from one peg to another, and it has to be
the smallest disk on the peg it is moved to. The problem is to rearrange the
disks on the pegs, typically moving all of them from one peg to another.

Planning with Equality 11

For this example, the state calculus U is as follows:
The fluents are on(k, j), 1 ≤ k ≤ m, 1 ≤ j ≤ 3 indicating that disk k is

on peg j. The values of the fluents are ”true” and ”false.” The actions are
move(i, j, k), 1 ≤ i ≤ m, 1 ≤ j ≤ 3 to move disk k from peg i to peg j. This
action has no effect unless disk k is not already on peg j and disk k is smaller
than any other disk on peg i and smaller than any disk on peg j. The smallest
disk is 1 and the largest is n.

The axioms of U are as follows:
(∀i, j, 1 ≤ i, j ≤ 3)(∀k, 1 ≤ k ≤ m)(∀s′ ∈ S)[i ̸= j ∧ Φ(on(k, i), s′) =

”true”→ ¬Φ(on(k, j), s′) = ”true”] (Disk on at most one peg)
(∀k, 1 ≤ k ≤ m)(∀s′ ∈ S)[(Φ(on(k, 1), s′) = ”true”) ∨ (Φ(on(k, 2), s′) =

”true”) ∨ (Φ(on(k, 3), s′) = ”true”)] (Disk on at least one peg)
(∃s′ ∈ S)[(Φ(on(1, 1), s′) = ”true”) ∧ · · · ∧ (Φ(on(m, 1), s′) = ”true”)] (Exis-

tence of a state)
(∀i, j, k)(∀s′ ∈ S)[(1 ≤ k ≤ m)∧ (1 ≤ i, j ≤ 3)∧min(k, i, s′)∧min(k, j, s′)∧

Φ(on(k, i), s′) = ”true”) → Φ(on(k, j), do(move(i, j, k), s′)) = ”true”] (Effect of
a move)

(∀i, j, k)(∀s′ ∈ S)[(1 ≤ k ≤ m)∧(1 ≤ i, j ≤ 3)∧(¬min(k, i, s′)∨¬min(k, j, s′))∧
Φ(on(k, i), s′) = ”true”) → Φ(on(k, i), do(move(i, j, k), s′)) = ”true”] (Precon-
ditions of a move not satisfied)

(∀h, i, j, k, d)(∀s′ ∈ S)[(1 ≤ d, k ≤ m) ∧ (1 ≤ i, j, h ≤ 3) ∧ ((d ̸= k) ∨
(i ̸= h)) ∧ Φ(on(d, h), s′) = ”true”→ Φ(on(d, h), do(move(i, j, k), s′)) = ”true”)
(Frame axiom)

(∀i, j, 1 ≤ i, j ≤ 3)(∀k, 1 ≤ k ≤ m)(min(k, i, s′) ≡ [Φ(on(k − 1, i), s′) =
”false” ∧ · · · ∧ Φ(on(2, i), s′) = ”false” ∧ Φ(on(1, i), s′) = ”false”]) (Definition
of smallest disk)

There are also the equality axioms on the domains.
The search space is exponential because the largest disk can be on any of the

three pegs, the next largest disk can be on any of the three pegs, possibly on top
of the largest disk, and so on. But completion for this example takes polynomial
time, as we shall see.

The optimal sequence to move m disks from peg i to peg j, for i ̸= j, consists
of moving the m − 1 smallest disks from peg i to peg k, k ̸= i and k ̸= j, then
moving the largest disk from peg i to peg j, then moving the m − 1 smallest
disks from peg k to peg j. If m = 1 this consists of one move, so the general
sequence has 2m − 1 moves.

For the syntax of this problem, states can be encoded as terms f(u1, u2, · · · , um),
where each ui is either 1, 2, or 3 depending on which peg the disks are on, and
u1 refers to the largest disk, u2 to the next largest, and so on. The actions are
of the form move(i, j, k) to move disk k from peg i to peg j.

The rules in RU are of the form

f(i, j, j, · · · , j)→ f(k, j, j, · · · , j)

to move the largest disk and, more generally, rules are of the form

f(x1, x2, · · · , i, j, j, · · · , j)→ f(x1, x2, · · · , k, j, j, · · · , j)

12 Plaisted, Schulz

where i, j, and k are distinct elements of {1, 2, 3}. The ith largest disk can move
only from peg i to peg k if all the smaller disks are on peg j, because otherwise,
a smaller disk will be on peg i or k, preventing the move. For example, consider
the largest disk. To move it from peg 1 to peg 2, there cannot be any smaller
disks on peg 1 because they would be on top of it, and only the top disk can be
moved. There also cannot be any smaller disks on peg 2, because then a larger
disk would be put on top of a smaller one, which is not permitted. Now consider
the smallest disk. It is always on top of one of the piles, and at any time it can
move to any other pile. In general, a disk is constrained in moving only by disks
that are smaller than it is. Stationary actions (such as trying to move a disk
that is not the smallest one on its peg) correspond to rewrite rules that cannot
be applied to a term in this formalization.

Completing this set of rules generates 2m rules in all.
In general, completing the system requires a quadratic number of rewrite

operations even though the optimal action sequence requires an exponential
number of actions. Finally, rewriting the starting term and the goal term to a
common term requires a number of rewrites that is linear in m.

5.3 Blocks world

In this example, there are a fixed number of positions, each having a stack of
blocks. The blocks can be piled in any order, and at any time the top block in
any stack can be moved on top of any other stack. Then one wants a plan to
transform some specified starting state to a goal state.

We do not give a formal representation of the theory U for this example. As for
RU , states can be represented by lists f(h(s1, u1), f(h(s2, u2), · · · , f(h(sm, um),
⊥) · · ·)) where the si are lists of blocks and the ui are their locations. A stack
of blocks is represented as a list g(b1, g(b2, · · · ⊥ · · ·)) where b1 is the top block,
b2 is next under it, and so on. The actions include permuting the lists of blocks:
f(t1, f(t2, u))→ f(t2, f(t1, u)) to exchange adjacent stacks of blocks (an action
in Eσ) and an action f(h(g(b1, s1), u1), f(h(s2, u2), z)) → f(h(s1, u1), f(h(g(b1,
s2), u2), z)) to move the top block b1 from the stack g(b1, s1) at u1 to the stack
s2 at u2. This action could be represented as movetop(u1, u2) to move the top
block from the stack at u1 to the stack at u2. In this example there cannot be
two different blocks on the same block.

5.4 Generating term representations

The question arises how one can find such representations of states as terms.
One can show formally that in many cases one can construct such systems RU
but a lack of space prohibits a full discussion of this topic. The basic idea of
representing states as terms is to represent the physical structure of the state
as a corresponding term structure. A stack of objects can be represented as a
list of terms, one for each object. A sequence of objects can also be reprsented
as a list in this way. Thus a sequence of switches can be represented as a list of
terms, each being ”on” or ”off.” A stack of blocks can be represented as a list of

Planning with Equality 13

terms, where each term is a label for a particular block. A collection of stacks
of blocks can be reprsented as a list of lists, one list for each stack of blocks.
Because the collection of stacks is unordered, it is possible to reorder the lists of
blocks arbitrarily, though the blocks in each list may not be reordered except by
actions. It is also possible to use another representation if the physical structure
of the problem can be determined from it. This explains the representation of the
Tower of Hanoi problem, which is more convenient than representing the problem
as a sequence of three lists, one list for each peg. Once the term representation
is chosen, it is fairly straightforward to construct the term rewriting system.

In general, it is always possible to represent states of U by terms if actions
are deterministic. The idea is to give the values of all the fluents pi of a state s
in a list f(v1, · · · , vn) where vi = Φ(pi, s). If there is some redundancy in this
list then it can be compressed.

6 Experimental results

To put the above ideas to the test, we have performed a series of experiments
in the switches and the Tower of Hanoi domain. In particular, we have created
several variants of the problems in different sizes, and used the theorem prover
E [Sch02,SCV19] to find equational plans for these problems. We have recorded
various statistics of the problems and the run time, and we used post-processing
of the proof object generated by the prover to determine the number of rewrite
steps in the proof object and the corresponding number of actions (i.e., single
applications of the original axioms encoding actions) in these proofs.

Test examples were created with Python scripts available in the form of a
Jupyter notebook at http://www.eprover.eu/E-eu/eqplanning.html. A full de-
scription of the results, also showing examples of the problem encoding, is avail-
able in the appendix at the same address. We used the standard release of E 3.0
available at https://www.eprover.org. All experiments were run on a MacBook
Pro with M1Pro CPU and 32GB of RAM.

Unless otherwise specified, E ran a simple symbol-counting clause selection
function (eprover -sR --proof-object -H’(1*weight11 ugg)’ <problem>).
The options -sR select low-output mode during search and output of resource
usage at the end. For some experiments we explicitly modify the term ordering
via the option --precedence. These cases are noted below.

Switch banks We have created versions of the problem with the action rules
encoded in any of three different representations, further described in the ap-
pendix: Each individual action encoded by a dedicated rule mapping one ground
state to the successor state (resulting in an exponential number of rules), using
variables to represent the unchanged switches (resulting in a linear number of
rules), and using subterm rewriting, i.e. representing all actions by the single
equation off=on. The concrete problem instance is described as a disequation
between encodings of the start state and the final state. We consider two differ-
ent problem types: A minimal problem, where initial state and goal state differ

14 Plaisted, Schulz

Instance Ground Variable Subterm
size RW Actions Time RW Actions Time RW Actions Time

1 1 1 0.003 1 1 0.006 1 1 0.006
2 2 2 0.002 2 2 0.005 2 2 0.005
3 3 3 0.002 3 3 0.004 3 3 0.004
4 4 4 0.002 4 4 0.003 4 4 0.003
5 5 5 0.003 5 5 0.003 5 5 0.003
6 6 6 0.004 6 6 0.003 6 6 0.003
7 7 7 0.009 7 7 0.003 7 7 0.003
8 8 8 0.020 8 8 0.003 8 8 0.003
9 9 9 0.046 9 9 0.003 9 9 0.003

10 10 10 0.114 10 10 0.003 10 10 0.002
11 11 11 0.290 11 11 0.003 11 11 0.002
12 12 12 0.794 12 12 0.003 12 12 0.002
13 13 13 2.272 13 13 0.003 13 13 0.002
14 14 14 6.850 14 14 0.003 14 14 0.002
15 15 15 22.405 15 15 0.003 15 15 0.002
16 16 16 93.106 16 16 0.003 16 16 0.002
17 17 17 407.151 17 17 0.003 17 17 0.002
18 18 18 1845.499 18 18 0.003 18 18 0.002
19 19 19 8076.025 19 19 0.003 19 19 0.002
20 20 20 42027.167 20 20 0.003 20 20 0.002

Times are are given as total CPU time in seconds.
Table 1. Switch data (all switches different)

by only a single switch setting, and a maximal problem, where all switches differ
between initial and final state (in this case, both states alternate on and off, but
in complementary positions). For the former, the optimal plan has length 1, for
the latter length n.

We present results for sizes 1 to 20 in Table 1. Several observations can be
made. First, the prover always finds an optimal plan. Also, we cannot observe a
plan compression via interreduction and completion – each action corresponds
to exactly one rewrite step in the the proof object. Finally, we can see that for
the variable and subterm encodings, run times are within the measurement noise
of the operating system. These plans are found basically instantly. For the full
ground encoding, we see that the sheer processing of an exponentially growing
set of axioms also results in an exponential increase in runtime.

In a second setting, we consider the case where in the initial state all switches
are on, while in the final state one single switch is off. An optimal plan would
just switch the single different switch, independent of the instance size. Again,
E finds a plan for all instances and in all encodings. However, the quality of
the plan depends on the term ordering. If off>on, then the prover will find an
optimal plan. If, on the other hand, on>off, then the prover will reduce both
initial and final state to an intermediate state where all switches are off, and
thus use 2n-1 actions. Full results are available in the appendix.

Planning with Equality 15

Instance Flat encoding Recursive encoding
size RW Actions Time RW Actions Time

1 1 1 0.008 1 1 0.007
2 6 6 0.005 4 4 0.004
5 33 147 0.003 25 157 0.003

10 118 35000 0.003 100 39356 0.003
20 418 2324522914 0.004 400 2324522914 0.004
30 928 137260754729736 0.008 900 137260754729736 0.007

Table 2. Tower of Hanoi

Tower of Hanoi The Tower of Hanoi problem shows the power of completion-
based approaches to very efficiently find plans even when the size of plans grows
exponentially. Table 2 shows some selected results (full results are in the ap-
pendix) for two encodings, flat and recursive, which are described in the ap-
pendix. The ideal plan for a Hanoi problem of size n has 2n− 1 actions – or, for
an instance of size 20, about 1 million moves, for an instance of size 30 about 1
billion moves. E finds solutions to these planing problems in less than 10 millisec-
onds. We can observe an extreme compression of the plans – the interreduction
of rewrite rules leads to effective macro rules that represent very large number
of individual actions. While the proof objects even in the largest case has less
than 1000 rewrite applications, the plans represented by these proof objects are
humungous. We believe that the major reason for that is the aggressive simpli-
fication used in all modern provers – every term is rewritten to its normal form,
even if that is not required by the proof itself. However, this very effect also
opens the opportunity for local optimisations of the plan. When reconstructing
the actual equational chain, every segment connecting two identical terms can
simply be dropped.

7 Plan Representation

Earlier we discussed how to find representations of states as terms. There is
also the question how one can represent the plans. Some of the plans produced
for the Tower of Hanoi problem are very large, possibly too large to print out.
However, in general, if each rewrite rule in RU corresponds to a single action,
and aR exists for all actions a ∈ A, then a plan from term r to term s can be
expressed more succinctly by a series of equations (1) of the form x = a for an
action a, (2) of the form x = yR indicating that the plan x is the reverse of plan
y, with all actions reversed, or (3) of the form x = y ◦ z indicating the plan x is
the concatenation of plans y and z. Such a listing will be about the same length
as the number of rewrite steps in the proof so it will be much shorter than a full
plan. Also, we show how to get a term t that represents a state somewhere in
the middle of the plan, so that one can then recursively optimize the plans to
get from r to t and from t to s.

16 Plaisted, Schulz

Theorem 3. Suppose that for all rules u → v in RU there is an action a ∈ A
such that for all ground instances uθ → vθ of u→ v, σ(vθ) = do(a, σ(uθ)). Then
from a rewrite and unfailing completion proof that there is a plan between terms
r and s it is possible to construct a sequence of equations as mentioned above in
which the number of equations is at most double the number of rewrite steps in
the proof.

Proof. For simplicity we represent equations u = v as the rules u → v and
v → u, and vice versa. These imply u ⇒ v and v ⇒ u, respectively. From such
expressions u ⇒ v and v ⇒ u, a rewrite proof can be expressed in terms of
applying substitutions and the equality axioms. That is, the steps on the proof
are of the form

u⇒ u

u⇒ v

v ⇒ u

u⇒ v ∧ v ⇒ w

u⇒ w

u⇒ v

f(· · ·u · · ·)⇒ f(· · · v · · ·)
u⇒ v

uθ ⇒ vθ

Applying a substitution does not change the plan because of the assumption
about rules in RU . The identity axiom u = u corresponds to an empty plan.
The functionally reflexive axioms do not change the plan. The symmetry axiom
reverses the plan. The transitivity axiom results in the concatenation of two
plans. The number of applications of the transitivity axiom is at most the number
of rewrite or critical pair steps. It is not necessary to apply the symmetry axiom
more than once in succession. ⊓⊔

Unfailing completion makes use of semi-critical pair operations.

Theorem 4. Suppose that unfailing completion after some work produces a
proof consisting of one rewrite operation from r to s or from s to r. Then in the
proof of the existence of a plan from r to s there is at least one rewrite operation
on the large side of a rule or a (semi-) critical pair operation between rules or
equations. Suppose the (temporally) last such operation is between rules or ori-
ented equations r1 → s1 and r2 → s2. Suppose wlog. that a subterm of r1 unifies
with r2 and that α is the mgu. Let the normal form of the resulting equation be
u1 = u2 as used for the proof. Let u1β = u2β be the instance of this equation
that is used in rewriting r and s to a common term. Suppose r ≡ v[u1β] and
s ≡ v[u2β]. Then v[r1αβ] represents a term in the plan, and this term is not the
same as r or s.

Proof. Note that if the final unfailing completion proof that r ↓ s is longer than
one rewrite then some term in the middle represents a state in the middle of
the plan. Without loss of generality suppose u1β = u2β is used in rewriting r
to a normal form and r ̸⇒∗ s using RU . Because the final proof consists of a
single rewrite, r ≡ v[u1β] for some v and v[r1αβ] ⇒∗ v[u1β] and v[u2β] ≡ s.
Also v[r1αβ] ̸≡ v[u1β] for then the rule r2 → s2 would already rewrite r to s.
v[r1αβ] ̸≡ s because v[r1αβ] rewrites to s in at least one rewrite step. ⊓⊔

Planning with Equality 17

8 Conclusion

After a brief survey of the situation calculus, term-rewriting systems are intro-
duced and situation calculus concepts are presented. Instead of situation calculus
the terminology state calculus is used to avoid misunderstanding. The approach
presented here finds a plan that solves a planning problem, but not necessarily
an optimal plan. Not only the cost of a plan but the time to find it are impor-
tant parameters of a planner. A general argument is given that this approach
can be much faster than breadth-first style approaches such as Dijkstra’s method
and the A* method, and an implementation shows that the existence of a very
long plan can sometimes be shown rapidly by this approach. An approach to
encoding the state calculus by term rewriting is presented. A general method for
planning using this approach is given. Three examples illustrate the properties
of this approach. We present a number of experiments on the first two classes
of planning problems, demonstrating that even very long plans can be found in
very short times, and that the quality of the resulting plans can be improved, by
choosing a good rewrite ordering. We show that if a plan can be found quickly
by this approach then it has a succinct representation, even if the plan is very
long. Also, even without actually constructing the whole plan, it is possible to
find a term representing a state somewhere in the middle of the plan rapidly.

There is a need for more work on optimizing the plans found by this method,
as well as comparing this method to other existing approaches on a variety
of problems. In addition, the formalism can be extended to conditional term
rewriting systems. Another possible extension would be to actions that are not
bidirectional.

References

[BDP89] Leo Bachmair, N. Dershowitz, and D. Plaisted. Completion without failure.
In Hassan Aı̈t-Kaci and Maurice Nivat, editors, Resolution of Equations in
Algebraic Structures 2: Rewriting Techniques, pages 1–30, New York, 1989.
Academic Press.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Uni-
versity Press, 1998.

[Dav90] E. Davis. Representations of Commonsense Knowledge. Morgan Kaufmann,
1990.

[Dij59] Edsger W Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[DP01] N. Dershowitz and D. Plaisted. Rewriting. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, chapter 9, pages 535–
610. Elsevier Science, 2001.

[DS96] Jörg Denzinger and Stephan Schulz. Recording and Analysing Knowledge-
Based Distributed Deduction Processes. Journal of Symbolic Computation,
21(4/5):523–541, 1996.

[FN71] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the applica-
tion of theorem proving to problem solving. Artificial Intelligence, 2(3):189–
208, 1971.

18 Plaisted, Schulz

[GHK+98] M. Ghallab, A. Howe, C. Knoblock, D. Mcdermott, A. Ram, M. Veloso,
D. Weld, and D. Wilkins. PDDL—The Planning Domain Definition Lan-
guage, 1998.

[Haa87] A. R. Haas. The case for domain-specic frame axioms. In F. M. Brown,
editor, The Frame Problem in artificial intelligence. Proceedings of the 1987
workshop, pages 343–348. Morgan Kaufmann, 1987.

[HNR68] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

[HR87] J. Hsiang and M. Rusinowitch. On Word Problems in Equational Theories.
In Proc. of the 14th ICALP, Karlsruhe, volume 267 of LNCS, pages 54–71.
Springer, 1987.

[KS92] Henry A. Kautz and Bart Selman. Planning as satisfiability. In European
Conference on Artificial Intelligence, 1992.

[Lin08] Fangzhen Lin. Situation calculus. In Frank van Harmelen, Vladimir Lif-
schitz, and Bruce Porter, editors, Handbook of Knowledge Representation,
pages 649–669. Elsevier, 2008.

[LRL+97] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and
Richard B. Scherl. Golog: A logic programming language for dynamic do-
mains. The Journal of Logic Programming, 31(1):59–83, 1997. Reasoning
about Action and Change.

[MH69] J. McCarthy and P. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In Machine Intelligence 4, pages 463–502.
Edinburgh University Press, 1969.

[Ped89] E. P. D. Pednault. ADL: Exploring the middle ground between STRIPS
and the situation calculus. In Proceedings of the International Conference on
Principles of Knowledge Representation (KR-98), pages 324–332. Morgan
Kaufmann, Inc., 1989.

[Rei91] Raymond Reiter. The frame problem in the situation calculus: a simple solu-
tion (sometimes) and a completeness result for goal regression. In Vladimir
Lifschitz, editor, Artificial Intelligence and Mathematical Theory of Compu-
tation: Papers in Honor of John McCarthy, pages 359–380. Academic Press,
1991.

[Sch90] Lehnart Schubert. Monotonic solution of the frame problem in the situation
calculus: An efficient method for worlds with fully specified actions. In
Henry E. Kyburg, Ronald P. Loui, and Greg N. Carlson, editors, Knowledge
Representation and Defeasible Reasoning, volume Volume 5, pages 23–67.
Kluwer Academic Publishers, Dordrecht / Boston / London, 1990.

[Sch02] Stephan Schulz. E – A Brainiac Theorem Prover. Journal of AI Commu-
nications, 15(2/3):111–126, 2002.

[SCV19] Stephan Schulz, Simon Cruanes, and Petar Vukmirović. Faster, higher,
stronger: E 2.3. In Pascal Fontaine, editor, Proc. of the 27th CADE, Natal,
Brasil, number 11716 in LNAI, pages 495–507. Springer, 2019.

[SY23] Mikhail Soutchanski and Ryan Young. Planning as theorem proving with
heuristics, 2023.

[Thi98] Michael Thielscher. Introduction to the fluent calculus. Electron. Trans.
Artif. Intell., 2:179–192, 1998.

Planning with Equality 19

A Full experimental data

This appendix will be made available online at

http://www.eprover.eu/E-eu/eqplanning.html

Unless otherwise specified, all results are obtained with E 3.0 using the com-
mand line eprover -sR --proof-object -H’(1*weight11 ugg)’ <problem>.
All times are in seconds. Since timing by the operating system is not exact, there
is some noise, and differences in the few millisecond range are not significant.

A.1 Switches – all different

Full ground encoding In this setting, the initial and final states differ in all
switches, and the actions are encoded as equations between full ground states.
An example of size 3 is presented below. Results are in Table 3.

% Simple switchbank example. There are 3 switches

% that can be on or off. Actions flip a single switch.

%

% This is the ground version.

%

% Each possible action in each possible state is encoded

% in one rule, i.e. we have 2^n*n=24 action rules.

cnf(to_plan, negated_conjecture, f(on,off,on)!=f(off,on,off)).

cnf(g_0_on_on_on, axiom, f(on,on,on)=f(off,on,on)).

cnf(g_1_on_on_on, axiom, f(on,on,on)=f(on,off,on)).

cnf(g_2_on_on_on, axiom, f(on,on,on)=f(on,on,off)).

cnf(g_0_on_on_off, axiom, f(on,on,off)=f(off,on,off)).

cnf(g_1_on_on_off, axiom, f(on,on,off)=f(on,off,off)).

cnf(g_2_on_on_off, axiom, f(on,on,off)=f(on,on,on)).

cnf(g_0_on_off_on, axiom, f(on,off,on)=f(off,off,on)).

cnf(g_1_on_off_on, axiom, f(on,off,on)=f(on,on,on)).

cnf(g_2_on_off_on, axiom, f(on,off,on)=f(on,off,off)).

cnf(g_0_on_off_off, axiom, f(on,off,off)=f(off,off,off)).

cnf(g_1_on_off_off, axiom, f(on,off,off)=f(on,on,off)).

cnf(g_2_on_off_off, axiom, f(on,off,off)=f(on,off,on)).

cnf(g_0_off_on_on, axiom, f(off,on,on)=f(on,on,on)).

cnf(g_1_off_on_on, axiom, f(off,on,on)=f(off,off,on)).

cnf(g_2_off_on_on, axiom, f(off,on,on)=f(off,on,off)).

cnf(g_0_off_on_off, axiom, f(off,on,off)=f(on,on,off)).

cnf(g_1_off_on_off, axiom, f(off,on,off)=f(off,off,off)).

cnf(g_2_off_on_off, axiom, f(off,on,off)=f(off,on,on)).

cnf(g_0_off_off_on, axiom, f(off,off,on)=f(on,off,on)).

cnf(g_1_off_off_on, axiom, f(off,off,on)=f(off,on,on)).

cnf(g_2_off_off_on, axiom, f(off,off,on)=f(off,off,off)).

cnf(g_0_off_off_off, axiom, f(off,off,off)=f(on,off,off)).

cnf(g_1_off_off_off, axiom, f(off,off,off)=f(off,on,off)).

cnf(g_2_off_off_off, axiom, f(off,off,off)=f(off,off,on)).

20 Plaisted, Schulz

Instance size Rewrite steps Action equivalents Prover time

alldiff switch gnd001.p.prf 1 1 1 0.003
alldiff switch gnd002.p.prf 2 2 2 0.002
alldiff switch gnd003.p.prf 3 3 3 0.002
alldiff switch gnd004.p.prf 4 4 4 0.002
alldiff switch gnd005.p.prf 5 5 5 0.003
alldiff switch gnd006.p.prf 6 6 6 0.004
alldiff switch gnd007.p.prf 7 7 7 0.009
alldiff switch gnd008.p.prf 8 8 8 0.020
alldiff switch gnd009.p.prf 9 9 9 0.046
alldiff switch gnd010.p.prf 10 10 10 0.114
alldiff switch gnd011.p.prf 11 11 11 0.290
alldiff switch gnd012.p.prf 12 12 12 0.794
alldiff switch gnd013.p.prf 13 13 13 2.272
alldiff switch gnd014.p.prf 14 14 14 6.850
alldiff switch gnd015.p.prf 15 15 15 22.405
alldiff switch gnd016.p.prf 16 16 16 93.106
alldiff switch gnd017.p.prf 17 17 17 407.151
alldiff switch gnd018.p.prf 18 18 18 1845.499
alldiff switch gnd019.p.prf 19 19 19 8076.025
alldiff switch gnd020.p.prf 20 20 20 42027.167

Table 3. Results on switch banks with full ground encoding

Action encoding with variables In this setting, the initial and final states
differ in all switches, and the actions are encoded as equations using variables
to represent the unchanging parts of the state. An example of size 3 is presented
below. Results are in Table 4.

% Simple switchbank example. There are 3 switches

% that can be on or off. Actions flip a single switch.

%

% This is the version using first-order variables.

%

% The states of non-relevant switches are captured (and

% preserved) by variables, so we only need one rule to

% turn each switch on, and one to turn it off. Thus

% we have 2n=6 action rules.

cnf(to_plan, negated_conjecture, f(on,off,on)!=f(off,on,off)).

cnf(n_3_0_off, axiom, f(on,X1,X2) = f(off,X1,X2)).

cnf(n_3_0_on, axiom, f(off,X1,X2) = f(on,X1,X2)).

cnf(n_3_1_off, axiom, f(X0,on,X2) = f(X0,off,X2)).

cnf(n_3_1_on, axiom, f(X0,off,X2) = f(X0,on,X2)).

cnf(n_3_2_off, axiom, f(X0,X1,on) = f(X0,X1,off)).

cnf(n_3_2_on, axiom, f(X0,X1,off) = f(X0,X1,on)).

Planning with Equality 21

Instance size Rewrite steps Action equivalents Prover time

alldiff switch var001.p.prf 1 1 1 0.006
alldiff switch var002.p.prf 2 2 2 0.005
alldiff switch var003.p.prf 3 3 3 0.004
alldiff switch var004.p.prf 4 4 4 0.003
alldiff switch var005.p.prf 5 5 5 0.003
alldiff switch var006.p.prf 6 6 6 0.003
alldiff switch var007.p.prf 7 7 7 0.003
alldiff switch var008.p.prf 8 8 8 0.003
alldiff switch var009.p.prf 9 9 9 0.003
alldiff switch var010.p.prf 10 10 10 0.003
alldiff switch var011.p.prf 11 11 11 0.003
alldiff switch var012.p.prf 12 12 12 0.003
alldiff switch var013.p.prf 13 13 13 0.003
alldiff switch var014.p.prf 14 14 14 0.003
alldiff switch var015.p.prf 15 15 15 0.003
alldiff switch var016.p.prf 16 16 16 0.003
alldiff switch var017.p.prf 17 17 17 0.003
alldiff switch var018.p.prf 18 18 18 0.003
alldiff switch var019.p.prf 19 19 19 0.003
alldiff switch var020.p.prf 20 20 20 0.003

Table 4. Results on switch banks with frame variable encoding

Actions rewrite subterms In this setting, the initial and final states differ
in all switches, and the actions are encoded as equations directly changing the
value of a switch at the subterm level. An example of size 3 is presented below.
Results are in Table 5.

% Simple switchbank example. There are 3 switches

% that can be on or off. Actions flip a single switch.

%

% This is the version using rewriting at subterm positions,

% using a single action rule that can flip any switch.

%

% There should be two axioms, on->off and off->on. However,

% since we require bidirectionality, both are covered by a

% single equation.

cnf(to_plan, negated_conjecture, f(on,off,on)!=f(off,on,off)).

cnf(onoff,axiom, on=off).

A.2 Switches – minimal difference, default ordering

The next three examples are encoded as above, but with a conjecture represent-
ing different initial and goal states. We present only one example (in the subterm
action encoding) to demonstrate this difference. Results are in Tables 6, 7 and

22 Plaisted, Schulz

Instance size Rewrite steps Action equivalents Prover time

alldiff switch sub001.p.prf 1 1 1 0.006
alldiff switch sub002.p.prf 2 2 2 0.005
alldiff switch sub003.p.prf 3 3 3 0.004
alldiff switch sub004.p.prf 4 4 4 0.003
alldiff switch sub005.p.prf 5 5 5 0.003
alldiff switch sub006.p.prf 6 6 6 0.003
alldiff switch sub007.p.prf 7 7 7 0.003
alldiff switch sub008.p.prf 8 8 8 0.003
alldiff switch sub009.p.prf 9 9 9 0.003
alldiff switch sub010.p.prf 10 10 10 0.002
alldiff switch sub011.p.prf 11 11 11 0.002
alldiff switch sub012.p.prf 12 12 12 0.002
alldiff switch sub013.p.prf 13 13 13 0.002
alldiff switch sub014.p.prf 14 14 14 0.002
alldiff switch sub015.p.prf 15 15 15 0.002
alldiff switch sub016.p.prf 16 16 16 0.002
alldiff switch sub017.p.prf 17 17 17 0.002
alldiff switch sub018.p.prf 18 18 18 0.002
alldiff switch sub019.p.prf 19 19 19 0.002
alldiff switch sub020.p.prf 20 20 20 0.002

Table 5. Results on switch banks with subterm action encoding

8. The prover nearly always generates the optimal ordering by default, but in
the onediff switch gnd002 example (Table 6) it generates the less than optimal
on>off.

A.3 Switches – minimal difference, different orderings

These problems use the same encoding as above, but we explicitly specify the
term ordering, using --precedence=’f>off>on’ for the first (Table 9) and
--precedence=’f>on>off’ for the second (Table 10) set of experiments.

A.4 Tower of Hanoi

Flat encoding In this encoding, a state is a flat term of the form f(X1, . . . , Xn),
where Xi encodes the ith disk and can take one of the values p1, p2, p3, denoting
peg one, two or three, respectively. The task is to move all disks from peg one
to peg two. Results are in Table 11.

An example of size 3 is presented below.

Planning with Equality 23

Instance size Rewrite steps Action equivalents Prover time

onediff switch gnd001.p.prf 1 1 1 0.003
onediff switch gnd002.p.prf 2 3 3 0.002
onediff switch gnd003.p.prf 3 1 1 0.002
onediff switch gnd004.p.prf 4 1 1 0.002
onediff switch gnd005.p.prf 5 1 1 0.003
onediff switch gnd006.p.prf 6 1 1 0.004
onediff switch gnd007.p.prf 7 1 1 0.008
onediff switch gnd008.p.prf 8 1 1 0.019
onediff switch gnd009.p.prf 9 1 1 0.046
onediff switch gnd010.p.prf 10 1 1 0.111
onediff switch gnd011.p.prf 11 1 1 0.283
onediff switch gnd012.p.prf 12 1 1 0.767
onediff switch gnd013.p.prf 13 1 1 2.136
onediff switch gnd014.p.prf 14 1 1 6.257
onediff switch gnd015.p.prf 15 1 1 20.225
onediff switch gnd016.p.prf 16 1 1 83.521
onediff switch gnd017.p.prf 17 1 1 346.459
onediff switch gnd018.p.prf 18 1 1 1607.884
onediff switch gnd019.p.prf 19 1 1 6946.928
onediff switch gnd020.p.prf 20 1 1 31387.790

Table 6. Results on switch banks with one switch difference, ground encoding

Instance size Rewrite steps Action equivalents Prover time

onediff switch var001.p.prf 1 1 1 0.005
onediff switch var002.p.prf 2 1 1 0.004
onediff switch var003.p.prf 3 1 1 0.003
onediff switch var004.p.prf 4 1 1 0.003
onediff switch var005.p.prf 5 1 1 0.002
onediff switch var006.p.prf 6 1 1 0.003
onediff switch var007.p.prf 7 1 1 0.003
onediff switch var008.p.prf 8 1 1 0.003
onediff switch var009.p.prf 9 1 1 0.003
onediff switch var010.p.prf 10 1 1 0.003
onediff switch var011.p.prf 11 1 1 0.003
onediff switch var012.p.prf 12 1 1 0.003
onediff switch var013.p.prf 13 1 1 0.003
onediff switch var014.p.prf 14 1 1 0.003
onediff switch var015.p.prf 15 1 1 0.003
onediff switch var016.p.prf 16 1 1 0.003
onediff switch var017.p.prf 17 1 1 0.003
onediff switch var018.p.prf 18 1 1 0.003
onediff switch var019.p.prf 19 1 1 0.003
onediff switch var020.p.prf 20 1 1 0.003
Table 7. Results on switch banks with one switch difference, frame variable encoding

24 Plaisted, Schulz

Instance size Rewrite steps Action equivalents Prover time

onediff switch sub001.p.prf 1 1 1 0.007
onediff switch sub002.p.prf 2 1 1 0.004
onediff switch sub003.p.prf 3 1 1 0.004
onediff switch sub004.p.prf 4 1 1 0.003
onediff switch sub005.p.prf 5 1 1 0.003
onediff switch sub006.p.prf 6 1 1 0.003
onediff switch sub007.p.prf 7 1 1 0.003
onediff switch sub008.p.prf 8 1 1 0.003
onediff switch sub009.p.prf 9 1 1 0.003
onediff switch sub010.p.prf 10 1 1 0.003
onediff switch sub011.p.prf 11 1 1 0.003
onediff switch sub012.p.prf 12 1 1 0.002
onediff switch sub013.p.prf 13 1 1 0.002
onediff switch sub014.p.prf 14 1 1 0.002
onediff switch sub015.p.prf 15 1 1 0.002
onediff switch sub016.p.prf 16 1 1 0.002
onediff switch sub017.p.prf 17 1 1 0.002
onediff switch sub018.p.prf 18 1 1 0.002
onediff switch sub019.p.prf 19 1 1 0.002
onediff switch sub020.p.prf 20 1 1 0.002
Table 8. Results on switch banks with one switch difference, subterm action encoding

Instance size Rewrite steps Action equivalents Prover time

off ononediff switch sub001.p.prf 1 1 1 0.003
off ononediff switch sub002.p.prf 2 1 1 0.003
off ononediff switch sub003.p.prf 3 1 1 0.003
off ononediff switch sub004.p.prf 4 1 1 0.002
off ononediff switch sub005.p.prf 5 1 1 0.002
off ononediff switch sub006.p.prf 6 1 1 0.002
off ononediff switch sub007.p.prf 7 1 1 0.002
off ononediff switch sub008.p.prf 8 1 1 0.002
off ononediff switch sub009.p.prf 9 1 1 0.002
off ononediff switch sub010.p.prf 10 1 1 0.002
off ononediff switch sub011.p.prf 11 1 1 0.002
off ononediff switch sub012.p.prf 12 1 1 0.002
off ononediff switch sub013.p.prf 13 1 1 0.002
off ononediff switch sub014.p.prf 14 1 1 0.002
off ononediff switch sub015.p.prf 15 1 1 0.002
off ononediff switch sub016.p.prf 16 1 1 0.002
off ononediff switch sub017.p.prf 17 1 1 0.002
off ononediff switch sub018.p.prf 18 1 1 0.002
off ononediff switch sub019.p.prf 19 1 1 0.002
off ononediff switch sub020.p.prf 20 1 1 0.002
Table 9. Results on switch banks with one switch difference, subterm action encoding,
off>on

Planning with Equality 25

Instance size Rewrite steps Action equivalents Prover time

on offonediff switch sub001.p.prf 1 1 1 0.005
on offonediff switch sub002.p.prf 2 3 3 0.003
on offonediff switch sub003.p.prf 3 5 5 0.003
on offonediff switch sub004.p.prf 4 7 7 0.003
on offonediff switch sub005.p.prf 5 9 9 0.002
on offonediff switch sub006.p.prf 6 11 11 0.002
on offonediff switch sub007.p.prf 7 13 13 0.002
on offonediff switch sub008.p.prf 8 15 15 0.002
on offonediff switch sub009.p.prf 9 17 17 0.002
on offonediff switch sub010.p.prf 10 19 19 0.002
on offonediff switch sub011.p.prf 11 21 21 0.002
on offonediff switch sub012.p.prf 12 23 23 0.002
on offonediff switch sub013.p.prf 13 25 25 0.002
on offonediff switch sub014.p.prf 14 27 27 0.002
on offonediff switch sub015.p.prf 15 29 29 0.002
on offonediff switch sub016.p.prf 16 31 31 0.002
on offonediff switch sub017.p.prf 17 33 33 0.002
on offonediff switch sub018.p.prf 18 35 35 0.002
on offonediff switch sub019.p.prf 19 37 37 0.002
on offonediff switch sub020.p.prf 20 39 39 0.002
Table 10. Results on switch banks with one switch difference, subterm action encoding,
on>off

% This is a flat encoding of the Tower of Hanoi puzzle.

% There are 3 differently sized disks sitting on one of the

% 3 pegs p1, p2, p3. A bigger disk may never sit on a smaller

% disk. One can move the top disk from one peg to another peg

% if this does nor violate the size constraint.

% The goal is to move all disks from p1 to p2.

%

% The flat encoding represents the disks as argument position

% in a term of the form f(arg1, arg2, ..., argn), where each

% arg can take the value p1, p2 or p3. The largest disk is on

% the left, the smallest on the right.

%

% There should be 6n=18 axioms (plus inital and goal state), one each

% to move disk k from any peg to any other peg (for all 6

% combinations of two distinct pegs). However, because the axioms

% are bidirectional, half of them are redundant, so we only need

% 3n = 9 axioms.

cnf(to_plan, negated_conjecture, f(p1,p1,p1)!=f(p2,p2,p2)).

cnf(h3_0p1p2p3, axiom, f(p1,p3,p3)=f(p2,p3,p3)).

cnf(h3_1p1p2p3, axiom, f(X0,p1,p3)=f(X0,p2,p3)).

cnf(h3_2p1p2p3, axiom, f(X0,X1,p1)=f(X0,X1,p2)).

cnf(h3_0p1p3p2, axiom, f(p1,p2,p2)=f(p3,p2,p2)).

cnf(h3_1p1p3p2, axiom, f(X0,p1,p2)=f(X0,p3,p2)).

cnf(h3_2p1p3p2, axiom, f(X0,X1,p1)=f(X0,X1,p3)).

cnf(h3_0p2p3p1, axiom, f(p2,p1,p1)=f(p3,p1,p1)).

cnf(h3_1p2p3p1, axiom, f(X0,p2,p1)=f(X0,p3,p1)).

cnf(h3_2p2p3p1, axiom, f(X0,X1,p2)=f(X0,X1,p3)).

26 Plaisted, Schulz

Instance size Rewrite steps Action equivalents Prover time

hanoi var001.p.prf 1 1 1 0.008
hanoi var002.p.prf 2 6 6 0.005
hanoi var003.p.prf 3 13 17 0.004
hanoi var004.p.prf 4 27 47 0.004
hanoi var005.p.prf 5 33 147 0.003
hanoi var006.p.prf 6 46 436 0.004
hanoi var007.p.prf 7 61 1301 0.004
hanoi var008.p.prf 8 78 3894 0.003
hanoi var009.p.prf 9 97 11671 0.003
hanoi var010.p.prf 10 118 35000 0.003
hanoi var011.p.prf 11 141 104985 0.003
hanoi var012.p.prf 12 163 321495 0.003
hanoi var013.p.prf 13 193 944795 0.004
hanoi var014.p.prf 14 208 3188632 0.003
hanoi var015.p.prf 15 238 9565923 0.004
hanoi var016.p.prf 16 270 28697798 0.003
hanoi var017.p.prf 17 304 86093425 0.004
hanoi var018.p.prf 18 340 258280308 0.004
hanoi var019.p.prf 19 378 774840959 0.004
hanoi var020.p.prf 20 418 2324522914 0.004
hanoi var021.p.prf 21 460 6973568781 0.004
hanoi var022.p.prf 22 504 20920706384 0.005
hanoi var023.p.prf 23 550 62762119195 0.005
hanoi var024.p.prf 24 598 188286357630 0.005
hanoi var025.p.prf 25 648 564859072937 0.006
hanoi var026.p.prf 26 700 1694577218860 0.006
hanoi var027.p.prf 27 754 5083731656631 0.007
hanoi var028.p.prf 28 810 15251194969946 0.007
hanoi var029.p.prf 29 868 45753584909893 0.007
hanoi var030.p.prf 30 928 137260754729736 0.008

Table 11. Results on Tower of Hanoi, flat encoding, default ordering

Flat encoding, different orderings Tables 12 to 17 show the results for the
Tower of Hanoi problem with flat encoding and different term orderings.

List (recursive) encoding with subterm actions In this encoding of the
Tower of Hanoi problem, a state is a recursively encoded list of positions, f(X1,
f(X2, f(. . . ,⊥))), where again Xi encodes the ith disk and can take one of the
values p1, p2, p3. The task is to move all disks from peg one to peg two. The
largest disk is on the left, the smallest on the right.

A bigger disk may never sit on a smaller disk. One can move the top disk
from one peg to another peg if this does nor violate the size constraint.The goal
is to move all disks from p1 to p2. Results are in Table 18.

There should be 6n = 18 axioms (plus inital and goal state), one each to
move disk k from any peg to any other peg (for all 6 combinations of two distinct

Planning with Equality 27

Instance size Rewrite steps Action equivalents Prover time

p1p2p3 hanoi var001.p.prf 1 1 1 0.009
p1p2p3 hanoi var002.p.prf 2 10 13 0.004
p1p2p3 hanoi var003.p.prf 3 11 14 0.002
p1p2p3 hanoi var004.p.prf 4 20 33 0.002
p1p2p3 hanoi var005.p.prf 5 30 110 0.002
p1p2p3 hanoi var006.p.prf 6 42 339 0.002
p1p2p3 hanoi var007.p.prf 7 56 1024 0.002
p1p2p3 hanoi var008.p.prf 8 72 3077 0.002
p1p2p3 hanoi var009.p.prf 9 90 9234 0.002
p1p2p3 hanoi var010.p.prf 10 110 27703 0.003
p1p2p3 hanoi var011.p.prf 11 132 83108 0.003
p1p2p3 hanoi var012.p.prf 12 155 354304 0.003
p1p2p3 hanoi var013.p.prf 13 182 747958 0.003
p1p2p3 hanoi var014.p.prf 14 209 3188658 0.003
p1p2p3 hanoi var015.p.prf 15 239 9565951 0.003
p1p2p3 hanoi var016.p.prf 16 271 28697828 0.003
p1p2p3 hanoi var017.p.prf 17 305 86093457 0.004
p1p2p3 hanoi var018.p.prf 18 341 258280342 0.004
p1p2p3 hanoi var019.p.prf 19 379 774840995 0.004
p1p2p3 hanoi var020.p.prf 20 419 2324522952 0.004
p1p2p3 hanoi var021.p.prf 21 461 6973568821 0.005
p1p2p3 hanoi var022.p.prf 22 505 20920706426 0.005
p1p2p3 hanoi var023.p.prf 23 551 62762119239 0.005
p1p2p3 hanoi var024.p.prf 24 599 188286357676 0.005
p1p2p3 hanoi var025.p.prf 25 649 564859072985 0.006
p1p2p3 hanoi var026.p.prf 26 701 1694577218910 0.006
p1p2p3 hanoi var027.p.prf 27 755 5083731656683 0.007
p1p2p3 hanoi var028.p.prf 28 811 15251194970000 0.007
p1p2p3 hanoi var029.p.prf 29 869 45753584909949 0.007
p1p2p3 hanoi var030.p.prf 30 929 137260754729794 0.008

Table 12. Results on Tower of Hanoi, flat encoding, p1 > p2 > p3

pegs). However, because the axioms are bidirectional, half of them are redun-
dant, so we need only 3n = 9 axioms. The axioms also are shortened with iden-
tical variables to the left removed so for example f(X1, f(X2, f(p1, f(p2,⊥)))) =
f(X1, f(X2, f(p3, f(p2,⊥))) can be shortened to f(p1, f(p2,⊥)) = f(p3, f(p2,⊥)).

An example of the recursive ordering of size 3 is presented below. In the
example of size 3 given below, there are 3 differently sized disks sitting on one
of the 3 pegs p1, p2, p3.

28 Plaisted, Schulz

Instance size Rewrite steps Action equivalents Prover time

p1p3p2 hanoi var001.p.prf 1 1 1 0.008
p1p3p2 hanoi var002.p.prf 2 7 8 0.004
p1p3p2 hanoi var003.p.prf 3 13 17 0.002
p1p3p2 hanoi var004.p.prf 4 28 51 0.002
p1p3p2 hanoi var005.p.prf 5 34 155 0.002
p1p3p2 hanoi var006.p.prf 6 47 462 0.002
p1p3p2 hanoi var007.p.prf 7 62 1381 0.002
p1p3p2 hanoi var008.p.prf 8 79 4136 0.002
p1p3p2 hanoi var009.p.prf 9 98 12399 0.002
p1p3p2 hanoi var010.p.prf 10 119 37186 0.003
p1p3p2 hanoi var011.p.prf 11 142 111545 0.003
p1p3p2 hanoi var012.p.prf 12 168 354301 0.003
p1p3p2 hanoi var013.p.prf 13 194 1003843 0.003
p1p3p2 hanoi var014.p.prf 14 353 3188646 0.003
p1p3p2 hanoi var015.p.prf 15 408 9565937 0.003
p1p3p2 hanoi var016.p.prf 16 467 28697814 0.003
p1p3p2 hanoi var017.p.prf 17 530 86093441 0.004
p1p3p2 hanoi var018.p.prf 18 597 258280326 0.004
p1p3p2 hanoi var019.p.prf 19 668 774840977 0.004
p1p3p2 hanoi var020.p.prf 20 743 2324522934 0.004
p1p3p2 hanoi var021.p.prf 21 822 6973568801 0.005
p1p3p2 hanoi var022.p.prf 22 905 20920706406 0.005
p1p3p2 hanoi var023.p.prf 23 992 62762119217 0.005
p1p3p2 hanoi var024.p.prf 24 1083 188286357654 0.005
p1p3p2 hanoi var025.p.prf 25 1178 564859072961 0.006
p1p3p2 hanoi var026.p.prf 26 1277 1694577218886 0.006
p1p3p2 hanoi var027.p.prf 27 1380 5083731656657 0.007
p1p3p2 hanoi var028.p.prf 28 1487 15251194969974 0.007
p1p3p2 hanoi var029.p.prf 29 1598 45753584909921 0.007
p1p3p2 hanoi var030.p.prf 30 1713 137260754729766 0.008

Table 13. Results on Tower of Hanoi, flat encoding, p1 > p3 > p2

List (recursive) encoding of Tower of Hanoi for size 3

cnf(to_plan, negated_conjecture, f(p1,f(p1,f(p1,bot)))!=f(p2,f(p2,f(p2,bot)))).

cnf(h3_0p1p2p3, axiom, f(p1,f(p3,f(p3,bot)))=f(p2,f(p3,f(p3,bot)))).

cnf(h3_1p1p2p3, axiom, f(p1,f(p3,bot))=f(p2,f(p3,bot))).

cnf(h3_2p1p2p3, axiom, f(p1,bot)=f(p2,bot)).

cnf(h3_0p1p3p2, axiom, f(p1,f(p2,f(p2,bot)))=f(p3,f(p2,f(p2,bot)))).

cnf(h3_1p1p3p2, axiom, f(p1,f(p2,bot))=f(p3,f(p2,bot))).

cnf(h3_2p1p3p2, axiom, f(p1,bot)=f(p3,bot)).

cnf(h3_0p2p3p1, axiom, f(p2,f(p1,f(p1,bot)))=f(p3,f(p1,f(p1,bot)))).

cnf(h3_1p2p3p1, axiom, f(p2,f(p1,bot))=f(p3,f(p1,bot))).

cnf(h3_2p2p3p1, axiom, f(p2,bot)=f(p3,bot)).

Recursive encoding, different orderings Tables 19 to 24 show the results for
the Tower of Hanoi problem with recursive encoding and different term orderings.

Planning with Equality 29

Instance size Rewrite steps Action equivalents Prover time

p2p1p3 hanoi var001.p.prf 1 1 1 0.005
p2p1p3 hanoi var002.p.prf 2 9 9 0.004
p2p1p3 hanoi var003.p.prf 3 10 10 0.002
p2p1p3 hanoi var004.p.prf 4 19 25 0.002
p2p1p3 hanoi var005.p.prf 5 29 82 0.002
p2p1p3 hanoi var006.p.prf 6 41 251 0.002
p2p1p3 hanoi var007.p.prf 7 55 756 0.002
p2p1p3 hanoi var008.p.prf 8 71 2269 0.002
p2p1p3 hanoi var009.p.prf 9 89 6806 0.002
p2p1p3 hanoi var010.p.prf 10 109 20415 0.003
p2p1p3 hanoi var011.p.prf 11 131 61240 0.003
p2p1p3 hanoi var012.p.prf 12 154 236206 0.003
p2p1p3 hanoi var013.p.prf 13 181 551130 0.003
p2p1p3 hanoi var014.p.prf 14 208 2125776 0.003
p2p1p3 hanoi var015.p.prf 15 238 6377305 0.003
p2p1p3 hanoi var016.p.prf 16 270 19131890 0.003
p2p1p3 hanoi var017.p.prf 17 304 57395643 0.004
p2p1p3 hanoi var018.p.prf 18 340 172186900 0.004
p2p1p3 hanoi var019.p.prf 19 378 516560669 0.004
p2p1p3 hanoi var020.p.prf 20 418 1549681974 0.004
p2p1p3 hanoi var021.p.prf 21 460 4649045887 0.005
p2p1p3 hanoi var022.p.prf 22 504 13947137624 0.005
p2p1p3 hanoi var023.p.prf 23 550 41841412833 0.005
p2p1p3 hanoi var024.p.prf 24 598 125524238458 0.006
p2p1p3 hanoi var025.p.prf 25 648 376572715331 0.006
p2p1p3 hanoi var026.p.prf 26 700 1129718145948 0.006
p2p1p3 hanoi var027.p.prf 27 754 3389154437797 0.007
p2p1p3 hanoi var028.p.prf 28 810 10167463313342 0.007
p2p1p3 hanoi var029.p.prf 29 868 30502389939975 0.007
p2p1p3 hanoi var030.p.prf 30 928 91507169819872 0.008

Table 14. Results on Tower of Hanoi, flat encoding, p2 > p1 > p3

30 Plaisted, Schulz

Instance size Rewrite steps Action equivalents Prover time

p2p3p1 hanoi var001.p.prf 1 1 1 0.005
p2p3p1 hanoi var002.p.prf 2 6 6 0.003
p2p3p1 hanoi var003.p.prf 3 13 17 0.002
p2p3p1 hanoi var004.p.prf 4 27 47 0.002
p2p3p1 hanoi var005.p.prf 5 33 147 0.002
p2p3p1 hanoi var006.p.prf 6 46 436 0.002
p2p3p1 hanoi var007.p.prf 7 61 1301 0.002
p2p3p1 hanoi var008.p.prf 8 78 3894 0.002
p2p3p1 hanoi var009.p.prf 9 97 11671 0.002
p2p3p1 hanoi var010.p.prf 10 118 35000 0.003
p2p3p1 hanoi var011.p.prf 11 141 104985 0.003
p2p3p1 hanoi var012.p.prf 12 163 321495 0.003
p2p3p1 hanoi var013.p.prf 13 193 944795 0.003
p2p3p1 hanoi var014.p.prf 14 208 3188632 0.003
p2p3p1 hanoi var015.p.prf 15 238 9565923 0.003
p2p3p1 hanoi var016.p.prf 16 270 28697798 0.003
p2p3p1 hanoi var017.p.prf 17 304 86093425 0.004
p2p3p1 hanoi var018.p.prf 18 340 258280308 0.004
p2p3p1 hanoi var019.p.prf 19 378 774840959 0.004
p2p3p1 hanoi var020.p.prf 20 418 2324522914 0.004
p2p3p1 hanoi var021.p.prf 21 460 6973568781 0.004
p2p3p1 hanoi var022.p.prf 22 504 20920706384 0.005
p2p3p1 hanoi var023.p.prf 23 550 62762119195 0.005
p2p3p1 hanoi var024.p.prf 24 598 188286357630 0.005
p2p3p1 hanoi var025.p.prf 25 648 564859072937 0.006
p2p3p1 hanoi var026.p.prf 26 700 1694577218860 0.006
p2p3p1 hanoi var027.p.prf 27 754 5083731656631 0.006
p2p3p1 hanoi var028.p.prf 28 810 15251194969946 0.007
p2p3p1 hanoi var029.p.prf 29 868 45753584909893 0.007
p2p3p1 hanoi var030.p.prf 30 928 137260754729736 0.008

Table 15. Results on Tower of Hanoi, flat encoding, p2 > p3 > p1

Planning with Equality 31

Instance size Rewrite steps Action equivalents Prover time

p3p1p2 hanoi var001.p.prf 1 1 1 0.004
p3p1p2 hanoi var002.p.prf 2 5 6 0.003
p3p1p2 hanoi var003.p.prf 3 11 17 0.002
p3p1p2 hanoi var004.p.prf 4 19 53 0.002
p3p1p2 hanoi var005.p.prf 5 29 161 0.002
p3p1p2 hanoi var006.p.prf 6 41 485 0.002
p3p1p2 hanoi var007.p.prf 7 55 1457 0.002
p3p1p2 hanoi var008.p.prf 8 71 4373 0.002
p3p1p2 hanoi var009.p.prf 9 89 13121 0.002
p3p1p2 hanoi var010.p.prf 10 109 39365 0.003
p3p1p2 hanoi var011.p.prf 11 131 118097 0.003
p3p1p2 hanoi var012.p.prf 12 156 354293 0.003
p3p1p2 hanoi var013.p.prf 13 181 1062881 0.003
p3p1p2 hanoi var014.p.prf 14 353 3188646 0.003
p3p1p2 hanoi var015.p.prf 15 408 9565937 0.003
p3p1p2 hanoi var016.p.prf 16 467 28697814 0.003
p3p1p2 hanoi var017.p.prf 17 530 86093441 0.004
p3p1p2 hanoi var018.p.prf 18 597 258280326 0.004
p3p1p2 hanoi var019.p.prf 19 668 774840977 0.004
p3p1p2 hanoi var020.p.prf 20 743 2324522934 0.004
p3p1p2 hanoi var021.p.prf 21 822 6973568801 0.005
p3p1p2 hanoi var022.p.prf 22 905 20920706406 0.005
p3p1p2 hanoi var023.p.prf 23 992 62762119217 0.005
p3p1p2 hanoi var024.p.prf 24 1083 188286357654 0.005
p3p1p2 hanoi var025.p.prf 25 1178 564859072961 0.006
p3p1p2 hanoi var026.p.prf 26 1277 1694577218886 0.006
p3p1p2 hanoi var027.p.prf 27 1380 5083731656657 0.007
p3p1p2 hanoi var028.p.prf 28 1487 15251194969974 0.007
p3p1p2 hanoi var029.p.prf 29 1598 45753584909921 0.007
p3p1p2 hanoi var030.p.prf 30 1713 137260754729766 0.008

Table 16. Results on Tower of Hanoi, flat encoding, p3 > p1 > p2

32 Plaisted, Schulz

Instance size Rewrite steps Action equivalents Prover time

p3p2p1 hanoi var001.p.prf 1 1 1 0.005
p3p2p1 hanoi var002.p.prf 2 4 4 0.003
p3p2p1 hanoi var003.p.prf 3 11 17 0.002
p3p2p1 hanoi var004.p.prf 4 19 53 0.002
p3p2p1 hanoi var005.p.prf 5 29 161 0.002
p3p2p1 hanoi var006.p.prf 6 41 485 0.002
p3p2p1 hanoi var007.p.prf 7 55 1457 0.002
p3p2p1 hanoi var008.p.prf 8 71 4373 0.002
p3p2p1 hanoi var009.p.prf 9 89 13121 0.002
p3p2p1 hanoi var010.p.prf 10 109 39365 0.003
p3p2p1 hanoi var011.p.prf 11 131 118097 0.003
p3p2p1 hanoi var012.p.prf 12 154 314927 0.003
p3p2p1 hanoi var013.p.prf 13 181 1062881 0.003
p3p2p1 hanoi var014.p.prf 14 208 3188632 0.003
p3p2p1 hanoi var015.p.prf 15 238 9565923 0.003
p3p2p1 hanoi var016.p.prf 16 270 28697798 0.003
p3p2p1 hanoi var017.p.prf 17 304 86093425 0.003
p3p2p1 hanoi var018.p.prf 18 340 258280308 0.004
p3p2p1 hanoi var019.p.prf 19 378 774840959 0.004
p3p2p1 hanoi var020.p.prf 20 418 2324522914 0.004
p3p2p1 hanoi var021.p.prf 21 460 6973568781 0.004
p3p2p1 hanoi var022.p.prf 22 504 20920706384 0.005
p3p2p1 hanoi var023.p.prf 23 550 62762119195 0.005
p3p2p1 hanoi var024.p.prf 24 598 188286357630 0.005
p3p2p1 hanoi var025.p.prf 25 648 564859072937 0.006
p3p2p1 hanoi var026.p.prf 26 700 1694577218860 0.006
p3p2p1 hanoi var027.p.prf 27 754 5083731656631 0.006
p3p2p1 hanoi var028.p.prf 28 810 15251194969946 0.007
p3p2p1 hanoi var029.p.prf 29 868 45753584909893 0.007
p3p2p1 hanoi var030.p.prf 30 928 137260754729736 0.008

Table 17. Results on Tower of Hanoi, flat encoding, p3 > p2 > p1

Planning with Equality 33

Instance size Rewrite steps Action equivalents Prover time

hanoi sub001.p.prf 1 1 1 0.007
hanoi sub002.p.prf 2 4 4 0.004
hanoi sub003.p.prf 3 9 15 0.004
hanoi sub004.p.prf 4 16 50 0.004
hanoi sub005.p.prf 5 25 157 0.003
hanoi sub006.p.prf 6 36 480 0.003
hanoi sub007.p.prf 7 49 1451 0.003
hanoi sub008.p.prf 8 64 4366 0.003
hanoi sub009.p.prf 9 81 13113 0.003
hanoi sub010.p.prf 10 100 39356 0.003
hanoi sub011.p.prf 11 121 118087 0.003
hanoi sub012.p.prf 12 144 354282 0.003
hanoi sub013.p.prf 13 169 1062869 0.003
hanoi sub014.p.prf 14 196 3188632 0.003
hanoi sub015.p.prf 15 225 9565923 0.003
hanoi sub016.p.prf 16 256 28697798 0.003
hanoi sub017.p.prf 17 289 86093425 0.003
hanoi sub018.p.prf 18 324 258280308 0.004
hanoi sub019.p.prf 19 361 774840959 0.004
hanoi sub020.p.prf 20 400 2324522914 0.004
hanoi sub021.p.prf 21 441 6973568781 0.004
hanoi sub022.p.prf 22 484 20920706384 0.004
hanoi sub023.p.prf 23 529 62762119195 0.004
hanoi sub024.p.prf 24 576 188286357630 0.005
hanoi sub025.p.prf 25 625 564859072937 0.005
hanoi sub026.p.prf 26 676 1694577218860 0.005
hanoi sub027.p.prf 27 729 5083731656631 0.005
hanoi sub028.p.prf 28 784 15251194969946 0.006
hanoi sub029.p.prf 29 841 45753584909893 0.006
hanoi sub030.p.prf 30 900 137260754729736 0.007
Table 18. Results on Tower of Hanoi, recursive encoding, default ordering

34 Plaisted, Schulz

Instance size Rewrite steps Action equivalents Prover time

p1p2p3 hanoi sub001.p.prf 1 1 1 0.009
p1p2p3 hanoi sub002.p.prf 2 5 6 0.003
p1p2p3 hanoi sub003.p.prf 3 10 21 0.003
p1p2p3 hanoi sub004.p.prf 4 18 68 0.002
p1p2p3 hanoi sub005.p.prf 5 28 211 0.002
p1p2p3 hanoi sub006.p.prf 6 40 642 0.002
p1p2p3 hanoi sub007.p.prf 7 54 1937 0.002
p1p2p3 hanoi sub008.p.prf 8 70 5824 0.002
p1p2p3 hanoi sub009.p.prf 9 88 17487 0.002
p1p2p3 hanoi sub010.p.prf 10 108 52478 0.003
p1p2p3 hanoi sub011.p.prf 11 130 157453 0.003
p1p2p3 hanoi sub012.p.prf 12 154 472380 0.003
p1p2p3 hanoi sub013.p.prf 13 180 1417163 0.003
p1p2p3 hanoi sub014.p.prf 14 208 4251514 0.003
p1p2p3 hanoi sub015.p.prf 15 238 12754569 0.004
p1p2p3 hanoi sub016.p.prf 16 270 38263736 0.004
p1p2p3 hanoi sub017.p.prf 17 304 114791239 0.004
p1p2p3 hanoi sub018.p.prf 18 340 344373750 0.004
p1p2p3 hanoi sub019.p.prf 19 378 1033121285 0.005
p1p2p3 hanoi sub020.p.prf 20 418 3099363892 0.005
p1p2p3 hanoi sub021.p.prf 21 460 9298091715 0.005
p1p2p3 hanoi sub022.p.prf 22 504 27894275186 0.006
p1p2p3 hanoi sub023.p.prf 23 550 83682825601 0.006
p1p2p3 hanoi sub024.p.prf 24 598 251048476848 0.007
p1p2p3 hanoi sub025.p.prf 25 648 753145430591 0.007
p1p2p3 hanoi sub026.p.prf 26 700 2259436291822 0.007
p1p2p3 hanoi sub027.p.prf 27 754 6778308875517 0.008
p1p2p3 hanoi sub028.p.prf 28 810 20334926626604 0.008
p1p2p3 hanoi sub029.p.prf 29 868 61004779879867 0.009
p1p2p3 hanoi sub030.p.prf 30 928 183014339639658 0.009

Table 19. Results on Tower of Hanoi, recursive encoding, p1 > p2 > p3

Planning with Equality 35

Instance size Rewrite steps Action equivalents Prover time

p1p3p2 hanoi sub001.p.prf 1 1 1 0.006
p1p3p2 hanoi sub002.p.prf 2 5 6 0.003
p1p3p2 hanoi sub003.p.prf 3 11 17 0.002
p1p3p2 hanoi sub004.p.prf 4 21 54 0.002
p1p3p2 hanoi sub005.p.prf 5 35 161 0.002
p1p3p2 hanoi sub006.p.prf 6 53 486 0.002
p1p3p2 hanoi sub007.p.prf 7 75 1457 0.002
p1p3p2 hanoi sub008.p.prf 8 101 4374 0.002
p1p3p2 hanoi sub009.p.prf 9 131 13121 0.002
p1p3p2 hanoi sub010.p.prf 10 165 39366 0.002
p1p3p2 hanoi sub011.p.prf 11 203 118097 0.002
p1p3p2 hanoi sub012.p.prf 12 245 354294 0.003
p1p3p2 hanoi sub013.p.prf 13 291 1062881 0.003
p1p3p2 hanoi sub014.p.prf 14 341 3188646 0.003
p1p3p2 hanoi sub015.p.prf 15 395 9565937 0.003
p1p3p2 hanoi sub016.p.prf 16 453 28697814 0.003
p1p3p2 hanoi sub017.p.prf 17 515 86093441 0.003
p1p3p2 hanoi sub018.p.prf 18 581 258280326 0.003
p1p3p2 hanoi sub019.p.prf 19 651 774840977 0.004
p1p3p2 hanoi sub020.p.prf 20 725 2324522934 0.004
p1p3p2 hanoi sub021.p.prf 21 803 6973568801 0.004
p1p3p2 hanoi sub022.p.prf 22 885 20920706406 0.004
p1p3p2 hanoi sub023.p.prf 23 971 62762119217 0.005
p1p3p2 hanoi sub024.p.prf 24 1061 188286357654 0.005
p1p3p2 hanoi sub025.p.prf 25 1155 564859072961 0.005
p1p3p2 hanoi sub026.p.prf 26 1253 1694577218886 0.005
p1p3p2 hanoi sub027.p.prf 27 1355 5083731656657 0.006
p1p3p2 hanoi sub028.p.prf 28 1461 15251194969974 0.006
p1p3p2 hanoi sub029.p.prf 29 1571 45753584909921 0.006
p1p3p2 hanoi sub030.p.prf 30 1685 137260754729766 0.007

Table 20. Results on Tower of Hanoi, recursive encoding, p1 > p3 > p2

36 Plaisted, Schulz

Instance size Rewrite steps Action equivalents Prover time

p2p1p3 hanoi sub001.p.prf 1 1 1 0.005
p2p1p3 hanoi sub002.p.prf 2 4 4 0.003
p2p1p3 hanoi sub003.p.prf 3 8 13 0.002
p2p1p3 hanoi sub004.p.prf 4 14 38 0.002
p2p1p3 hanoi sub005.p.prf 5 22 111 0.002
p2p1p3 hanoi sub006.p.prf 6 32 328 0.002
p2p1p3 hanoi sub007.p.prf 7 44 977 0.002
p2p1p3 hanoi sub008.p.prf 8 58 2922 0.002
p2p1p3 hanoi sub009.p.prf 9 74 8755 0.002
p2p1p3 hanoi sub010.p.prf 10 92 26252 0.002
p2p1p3 hanoi sub011.p.prf 11 112 78741 0.003
p2p1p3 hanoi sub012.p.prf 12 134 236206 0.003
p2p1p3 hanoi sub013.p.prf 13 158 708599 0.003
p2p1p3 hanoi sub014.p.prf 14 184 2125776 0.003
p2p1p3 hanoi sub015.p.prf 15 212 6377305 0.003
p2p1p3 hanoi sub016.p.prf 16 242 19131890 0.004
p2p1p3 hanoi sub017.p.prf 17 274 57395643 0.004
p2p1p3 hanoi sub018.p.prf 18 308 172186900 0.004
p2p1p3 hanoi sub019.p.prf 19 344 516560669 0.004
p2p1p3 hanoi sub020.p.prf 20 382 1549681974 0.005
p2p1p3 hanoi sub021.p.prf 21 422 4649045887 0.005
p2p1p3 hanoi sub022.p.prf 22 464 13947137624 0.005
p2p1p3 hanoi sub023.p.prf 23 508 41841412833 0.006
p2p1p3 hanoi sub024.p.prf 24 554 125524238458 0.006
p2p1p3 hanoi sub025.p.prf 25 602 376572715331 0.006
p2p1p3 hanoi sub026.p.prf 26 652 1129718145948 0.007
p2p1p3 hanoi sub027.p.prf 27 704 3389154437797 0.007
p2p1p3 hanoi sub028.p.prf 28 758 10167463313342 0.008
p2p1p3 hanoi sub029.p.prf 29 814 30502389939975 0.008
p2p1p3 hanoi sub030.p.prf 30 872 91507169819872 0.008

Table 21. Results on Tower of Hanoi, recursive encoding, p2 > p1 > p3

Planning with Equality 37

Instance size Rewrite steps Action equivalents Prover time

p2p3p1 hanoi sub001.p.prf 1 1 1 0.004
p2p3p1 hanoi sub002.p.prf 2 4 4 0.003
p2p3p1 hanoi sub003.p.prf 3 9 15 0.002
p2p3p1 hanoi sub004.p.prf 4 16 50 0.002
p2p3p1 hanoi sub005.p.prf 5 25 157 0.002
p2p3p1 hanoi sub006.p.prf 6 36 480 0.002
p2p3p1 hanoi sub007.p.prf 7 49 1451 0.002
p2p3p1 hanoi sub008.p.prf 8 64 4366 0.002
p2p3p1 hanoi sub009.p.prf 9 81 13113 0.002
p2p3p1 hanoi sub010.p.prf 10 100 39356 0.002
p2p3p1 hanoi sub011.p.prf 11 121 118087 0.002
p2p3p1 hanoi sub012.p.prf 12 144 354282 0.003
p2p3p1 hanoi sub013.p.prf 13 169 1062869 0.003
p2p3p1 hanoi sub014.p.prf 14 196 3188632 0.003
p2p3p1 hanoi sub015.p.prf 15 225 9565923 0.003
p2p3p1 hanoi sub016.p.prf 16 256 28697798 0.003
p2p3p1 hanoi sub017.p.prf 17 289 86093425 0.003
p2p3p1 hanoi sub018.p.prf 18 324 258280308 0.003
p2p3p1 hanoi sub019.p.prf 19 361 774840959 0.004
p2p3p1 hanoi sub020.p.prf 20 400 2324522914 0.004
p2p3p1 hanoi sub021.p.prf 21 441 6973568781 0.004
p2p3p1 hanoi sub022.p.prf 22 484 20920706384 0.004
p2p3p1 hanoi sub023.p.prf 23 529 62762119195 0.005
p2p3p1 hanoi sub024.p.prf 24 576 188286357630 0.005
p2p3p1 hanoi sub025.p.prf 25 625 564859072937 0.005
p2p3p1 hanoi sub026.p.prf 26 676 1694577218860 0.005
p2p3p1 hanoi sub027.p.prf 27 729 5083731656631 0.005
p2p3p1 hanoi sub028.p.prf 28 784 15251194969946 0.006
p2p3p1 hanoi sub029.p.prf 29 841 45753584909893 0.006
p2p3p1 hanoi sub030.p.prf 30 900 137260754729736 0.006

Table 22. Results on Tower of Hanoi, recursive encoding, p2 > p3 > p1

38 Plaisted, Schulz

Instance size Rewrite steps Action equivalents Prover time

p3p1p2 hanoi sub001.p.prf 1 1 1 0.004
p3p1p2 hanoi sub002.p.prf 2 5 6 0.003
p3p1p2 hanoi sub003.p.prf 3 11 17 0.002
p3p1p2 hanoi sub004.p.prf 4 21 54 0.002
p3p1p2 hanoi sub005.p.prf 5 35 161 0.002
p3p1p2 hanoi sub006.p.prf 6 53 486 0.002
p3p1p2 hanoi sub007.p.prf 7 75 1457 0.002
p3p1p2 hanoi sub008.p.prf 8 101 4374 0.002
p3p1p2 hanoi sub009.p.prf 9 131 13121 0.002
p3p1p2 hanoi sub010.p.prf 10 165 39366 0.002
p3p1p2 hanoi sub011.p.prf 11 203 118097 0.002
p3p1p2 hanoi sub012.p.prf 12 245 354294 0.003
p3p1p2 hanoi sub013.p.prf 13 291 1062881 0.003
p3p1p2 hanoi sub014.p.prf 14 341 3188646 0.003
p3p1p2 hanoi sub015.p.prf 15 395 9565937 0.003
p3p1p2 hanoi sub016.p.prf 16 453 28697814 0.003
p3p1p2 hanoi sub017.p.prf 17 515 86093441 0.003
p3p1p2 hanoi sub018.p.prf 18 581 258280326 0.003
p3p1p2 hanoi sub019.p.prf 19 651 774840977 0.004
p3p1p2 hanoi sub020.p.prf 20 725 2324522934 0.004
p3p1p2 hanoi sub021.p.prf 21 803 6973568801 0.004
p3p1p2 hanoi sub022.p.prf 22 885 20920706406 0.004
p3p1p2 hanoi sub023.p.prf 23 971 62762119217 0.005
p3p1p2 hanoi sub024.p.prf 24 1061 188286357654 0.005
p3p1p2 hanoi sub025.p.prf 25 1155 564859072961 0.005
p3p1p2 hanoi sub026.p.prf 26 1253 1694577218886 0.005
p3p1p2 hanoi sub027.p.prf 27 1355 5083731656657 0.005
p3p1p2 hanoi sub028.p.prf 28 1461 15251194969974 0.006
p3p1p2 hanoi sub029.p.prf 29 1571 45753584909921 0.006
p3p1p2 hanoi sub030.p.prf 30 1685 137260754729766 0.006

Table 23. Results on Tower of Hanoi, recursive encoding, p3 > p1 > p2

Planning with Equality 39

Instance size Rewrite steps Action equivalents Prover time

p3p2p1 hanoi sub001.p.prf 1 1 1 0.003
p3p2p1 hanoi sub002.p.prf 2 4 4 0.004
p3p2p1 hanoi sub003.p.prf 3 9 15 0.002
p3p2p1 hanoi sub004.p.prf 4 16 50 0.002
p3p2p1 hanoi sub005.p.prf 5 25 157 0.002
p3p2p1 hanoi sub006.p.prf 6 36 480 0.002
p3p2p1 hanoi sub007.p.prf 7 49 1451 0.002
p3p2p1 hanoi sub008.p.prf 8 64 4366 0.002
p3p2p1 hanoi sub009.p.prf 9 81 13113 0.002
p3p2p1 hanoi sub010.p.prf 10 100 39356 0.002
p3p2p1 hanoi sub011.p.prf 11 121 118087 0.002
p3p2p1 hanoi sub012.p.prf 12 144 354282 0.003
p3p2p1 hanoi sub013.p.prf 13 169 1062869 0.003
p3p2p1 hanoi sub014.p.prf 14 196 3188632 0.003
p3p2p1 hanoi sub015.p.prf 15 225 9565923 0.003
p3p2p1 hanoi sub016.p.prf 16 256 28697798 0.003
p3p2p1 hanoi sub017.p.prf 17 289 86093425 0.003
p3p2p1 hanoi sub018.p.prf 18 324 258280308 0.003
p3p2p1 hanoi sub019.p.prf 19 361 774840959 0.004
p3p2p1 hanoi sub020.p.prf 20 400 2324522914 0.004
p3p2p1 hanoi sub021.p.prf 21 441 6973568781 0.004
p3p2p1 hanoi sub022.p.prf 22 484 20920706384 0.004
p3p2p1 hanoi sub023.p.prf 23 529 62762119195 0.005
p3p2p1 hanoi sub024.p.prf 24 576 188286357630 0.005
p3p2p1 hanoi sub025.p.prf 25 625 564859072937 0.005
p3p2p1 hanoi sub026.p.prf 26 676 1694577218860 0.005
p3p2p1 hanoi sub027.p.prf 27 729 5083731656631 0.005
p3p2p1 hanoi sub028.p.prf 28 784 15251194969946 0.006
p3p2p1 hanoi sub029.p.prf 29 841 45753584909893 0.006
p3p2p1 hanoi sub030.p.prf 30 900 137260754729736 0.006

Table 24. Results on Tower of Hanoi, recursive encoding, p3 > p2 > p1

