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1 Background

Inductive invariants are a staple of the deductive verification of programs and algo-
rithms: for example, verifiers such as Dafny [9], Viper [11] or Why3 [4] rely on pro-
grammers annotating loops and classes with invariants. When proving the correctness
of concurrent and distributed algorithms, global inductive invariants characterize the set
of reachable system states, and they are notoriously hard to come up with. For exam-
ple, when verifying the Pastry algorithm [14] that implements a distributed hash table
in a peer-to-peer network, more than 80 invariants were developed as part of an inter-
active proof of roughly 30,000 lines [1]. Beyond their fundamental role in correctness
proofs for algorithms and systems, invariants provide insights into possible variants and
improvements. Thus, the invariants developed for the Pastry proof suggested a simpli-
fication of the protocol for incoming nodes to join the overlay network.

Because finding inductive invariants is difficult, techniques for assisting proof en-
gineers in designing them are of great interest. Modern symbolic model checking algo-
rithms such as IC3/PDR [2, 3] can compute inductive invariants for finite-state systems
as a byproduct of verification. For the verification of parameterized systems, one can
use these techniques for computing invariants for finite instances and then try to gener-
alize them. The IC3PO algorithm by Goel and Sakallah [6] discovers symmetries in the
invariants computed for the finite-state case and introduces quantifiers for generalizing
them to the parameterized specification. For example, suppose that when verifying an
instance of a system with 4 nodes numbered 1 .. 4, IC3 generated an invariant of the
form

∧ P (2) ⇒ Q(1)
∧ P (3) ⇒ Q(1) ∧Q(2)
∧ P (4) ⇒ Q(1) ∧Q(2) ∧Q(3)

then IC3PO can suggest the generalized invariant

∀m,n ∈ 1 .. N : P (m) ∧ n < m ⇒ Q(n)

for a generic instance containing N nodes. IC3PO’s input language is based on that
of Ivy [10], and it relies on the Ivy model checker for inferring inductive invariants
for finite instances. Computing symmetries in a set of clauses is efficient, and IC3PO
handles fully symmetric domains, as well as linear orders, as in the above example.
It can also introduce quantifier alternations. However, in general there is no formal
guarantee that the inferred formula is indeed an invariant of the parameterized system.
IC3PO employs a saturation loop by incrementing the parameter in order to weed out
spurious invariant candidates, and to detect when the algorithm has stabilized.



2 Invariant Synthesis in Practice

In joint work with Goel and Sakallah [5], we used IC3PO for inferring an inductive
invariant for the well-known Bakery algorithm. The inferred invariant turned out to be
remarkably similar to a handwritten invariant used in an existing correctness proof of
that algorithm [8]; it is actually a little more permissive than the original invariant.

A more ambitious project is the verification of the Raft consensus protocol [12],
designed to tolerate crash faults. In Raft, every node stores a log, i.e. a sequence of
entries (v, t) where v is a value and t is a term. Terms (natural numbers) designate
periods for which a node was elected leader. A leader for term t appends new entries
to its log and tries to disseminate its entries, say the entry at position i in the log,
to other nodes. A non-leader node accepts an entry (v, t) at position i from a node
whose term is t′ if t′ is at least high as its own term number (which it will then update
to t′ if necessary) and if i = 0 or if its entry at position i − 1 agrees with the entry
at position i − 1 of the node pushing the new entry. Observe that this may lead to a
previously existing entry at position i to be overwritten. When the leader for term t has
pushed an entry (v, t) to a quorum (a majority of nodes), the entry is committed, as well
as all entries that appear earlier in the log. A node that suspects the current leader to
have failed, chooses a term number t′ that is higher than its current term and becomes
candidate for becoming the leader for term t′, sending out vote requests to other nodes.
A node votes for a candidate at term t′ if t′ is higher than its current term number, if it
has not yet voted for any node at t′, and if the log of the candidate is at least as up to
date as its own log. A candidate is elected when it has received votes from a quorum of
nodes. The following properties are to be verified:

Leader uniqueness. No two distinct nodes n ̸= n′ can be leaders for any given term.
Agreement. If two nodes n, n′ hold entries (v, t) and (v′, t) at the i-th position of their

log for the same term t, then v = v′.
Commitment. Any committed entry is held by a majority of nodes, including the cur-

rent leader, and is therefore permanent.

Proving the uniqueness of leaders for any given term t is quite easy, given that any
node submits at most one vote for term t, and that any two quorums intersect. Indeed,
IC3PO quickly computes an inductive invariant that implies that property.

Proving the agreement property is harder. The first difficulty is how to represent the
logs of nodes: note that the rule for accepting an entry refers to the preceding entry
in the log, but this cannot directly be expressed in the theory of total orders supported
by Ivy and IC3PO. Given uninterpreted sorts node, value and totally ordered sorts
term and index, we can represent the logs of Raft nodes as two functions

log value : node× index → value
log term : node× index → term

satisfying the predicate

(log value(N, I) = nullv) ⇔ (log term(N, I) = nullt)

for constants nullv and nullt representing the absence of a value or term of an entry.
In the initial state, no values and terms are present. In this representation, the logs may



contain “holes” in the sense that their entries at some positions i and j may be defined
(different from null), yet all entries at positions k with i < k < j may be undefined. In
this representation, the position I of the predecessor of an entry at position J of node
N can be identified using the relation

pred(N, I, J)
△
= ∧ I < J ∧ log value(N, I) ̸= nullv

∧ ∀K. I < K ∧K < J ⇒ log value(N,K) = nullv

The second difficulty comes from the fact that entries may be overwritten, but in
order to express a suitable inductive invariant, it is convenient to refer to old entries.
We therefore represent not only the actual logs of nodes, but also “ghost entries” (v, t)
that existed at some point during the execution but may have been overwritten. With
these preparations, and relying on the inductive invariant established for leader election,
IC3PO computes an inductive invariant that asserts the following facts:

– A log entry at a higher index position cannot have a lower term value than that at
any lower position.

– The actual log is contained in the log of ghost entries.
– For any node n and ghost entry (v, t) at index position i, the following hold:

• t is at most the current term of node n, and is strictly lower than the current
term if n is currently a candidate for leader election,

• there exists a server l that was elected by a quorum for term t such that (v, t)
appears among the ghost entries of l at position i; moreover, if l is currently
leader for term t, then the entry appears in the actual log of l at position i.

– If the logs of two nodes contain entries (v, t) at (v′, t) at some index i, then the
prefixes of their logs up to position i agree.

Observe that some quantified subformulas appear in this invariant, such as a server
having obtained a quorum. In order for IC3PO to be able to generate the invariant,
these subformulas had to be introduced as auxiliary definitions in the specification.
The invariant underlying the commitment property is even more complex and relies on
additional ghost variables. Its mechanical synthesis is the subject of ongoing work.

3 Concluding Remarks

Techniques for synthesizing inductive invariants are becoming applicable to non-trivial
algorithms. They rely on a combination of symbolic verification techniques and heuris-
tics, precise reasoning techniques, and even machine learning [13, 15, 17, 18].

Choosing decidable logical fragments underlying the synthesis techniques helps
them to be robust. For example, Ivy is based on a generalization of the EPR fragment of
first-order logic. It also limits the scope in which the techniques are applicable, although
proof engineers may be able to push the boundaries, as in the “sequence with holes” ab-
straction used for the proof of Raft. In particular, a specification written in a decidable
fragment is amenable to independent verification of the synthesized invariant candidate,
and techniques such as IC3 have been extended directly beyond propositional logic.

In this perspective, the design of expressive and decidable fragments of first-order
theories, as in [7, 16], is an important and practically relevant subject of scientific in-
vestigation, beyond pure theoretical curiosity. Happy birthday, Christoph!
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