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Abstract. I introduce slam, an Isabelle/HOL tactic and automated theorem prover
based on the λ-superposition calculus. An alternative to Isabelle’s metis tactic,
slam targets higher-order logic directly, avoiding the overhead introduced by metis’
translations to first-order logic. Like metis, slam can be used as a reconstruction
backend for Sledgehammer to improve the reconstruction rate of proofs produced
by external higher-order automated theorem provers such as E, Vampire, and
Zipperposition.

Sledgehammer [10] is a proof tool for Isabelle/HOL [8] that integrates external first- and
higher-order automated theorem provers (ATPs). For an external proof to be accepted by
Isabelle, it needs to be reconstructed using Isabelle’s inference kernel. One widely used
proof reconstruction method is the metis [11] tactic, which is based on the Metis [6] ATP.
A weakness of metis is that it relies on potentially inefficient, incomplete translations
from polymorphic higher-order logic to Metis’ untyped first-order logic. As a result,
reconstruction can fail for proofs found by higher-order provers such as E [12, 16],
Vampire [3, 7], and Zipperposition [1, 5]. To solve this issue, I introduce slam,1 a tactic
that natively reasons about higher-order logic.

Architecture The slam tactic consists of an ATP which performs proof search and a
proof reconstruction module. This split into two phases is also used by the metis and
blast [9] tactics. It allows the proof search to be more flexible, as it does not need to
justify the steps it performs and can make use of efficient data structures. Once a proof
has been found, reconstruction takes over and replays only that part of the search that
is needed for the proof. Still, to ensure as good a reconstruction rate as possible, slam
reuses many parts of Isabelle’s implementation during the proof search, like the term
data structure and unification algorithm.

Calculus Like E, Vampire, and Zipperposition, slam implements a variant of λ-super-
position—a generalization of the first-order superposition calculus to higher-order logic.
Superposition calculi are refutational: they work by assuming the negation of the goal and
deriving a contradiction. The λ-superposition calculi [1, 2] are refutationally complete
with respect to Henkin semantics. In practice, however, provers have more success using
incomplete, pragmatic variants, which try to tame the combinatorial explosions inherent
to higher-order logic [2, Fig. 5].

1 https://github.com/mguerdi/slam
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Booleans The calculus implemented by slam is based on λ-superposition with booleans
(oλSup) [1]. A clause in oλSup is a disjunction of equality literals. Since the calculus
has first-class support for booleans, it is not necessary to fully clausify the input problem.
Instead, slam relies on certain inference and simplification rules to perform stepwise
clausification during the proof search.

Proof Search Following Schulz [12], slam uses the DISCOUNT variant of the given-
clause procedure. Unlike Zipperposition’s complete modes, where some inferences
generate an infinite number of conclusions, slam only ever considers a finite number,
discarding the rest. It also uses Isabelle’s incomplete higher-order unification procedure.
To simplify and prune the search state, slam implements most of the simplifications from
Schulz [12]. It uses fingerprint indexing [13, 15] and feature-vector indexing [14, 16] to
speed up inferences and simplifications.

Proof Reconstruction The initial setup of the tactic provides lemmas passed in by the
user, assumptions in the proof state, and the negated conjecture as elements of Isabelle’s
theorem datatype. The reconstruction module must then produce a theorem carrying a
proof of False to close the goal. Each clause derived by slam during proof search carries
an origin that records the premises, how they were instantiated, and which inference
rule was used. This information is used to reconstruct all ancestors of the contradiction,
in chronological order, storing each derived theorem in a cache.

Skolemization A noteworthy aspect of proof reconstruction is the treatment of inference
rules that introduce Skolem constants. Using a similar approach to Böhme [4], slam’s
proof reconstruction realizes Skolem constants free variables ski. To logically justify
the introduction of a Skolem constant ski in a reconstructed clause, an extra premise is
added to the clause, which defines ski as a function λy.λx1. . . . λxn. εz.Pz that returns
the corresponding witness, using Hilbert’s ε operator. Each x j abstracts over one of the
schematic variables occurring in the expression P being skolemized. The variable y is
unused in the body, but has a dummy type that accounts for hidden polymorphism. The
last step of proof reconstruction is to eliminate these premises by instantiating the ski’s
with the right-hand side of their defining equation, at which point the extra premises
become true by reflexivity.

Evaluation To evaluate slam, it was integrated as a proof reconstruction backend into
Sledgehammer and compared to metis on 1127 evenly distributed goals from 49 randomly
chosen entries from the Archive of Formal Proofs2. The goals were chosen by running
Sledgehammer with Zipperposition, which, for each successful goal, yielded a set of
lemmas that were then passed to metis and slam.

Of these, 1011 goals were successfully solved by some variant of metis, while slam
solved 549. There were 8 goals on which slam was successful, while all variants of metis
failed with a timeout of 2 seconds.

The results show that slam, despite lagging behind in performance on first-order
goals, is still able to prove some goals on which metis fails because their proof involves

2 https://www.isa-afp.org/
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higher-order reasoning. I believe that narrowing the performance gap on first-order goals
will also improve slam’s performance on higher-order goals, making it a useful addition
to Sledgehammer’s suite of proof reconstruction backends.
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