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Overview

• MaxSAT, #SAT, Model enumeration, QBF, DQBF, CP

• Local search solvers

• Incremental SAT solving

• Projects/Theses
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Local Search SAT Solvers

• Try to find a satisfying solution by local search
• Cannot prove UNSAT
• Are good for solving random benchmarks

• But those are not considered interesting
• Used to find variable phases in stable mode

• Stable mode: less restarts, better for SAT
• Focused mode: more restarts, better for UNSAT
• More on phase saving and target phases here
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How to Local Search Solve

• Start with global assignment, e.g., random, then compute how many unsat clauses
there are

• Put unsat clauses in working stack
• As long as this working stack is not empty

• Pick one clause according to heuristic
• Flip literals in that clause

• Which literal to flip?
• One which would not break many other clauses
• Sample on break value
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State of the Art as of Today

• YalSAT is used in Kissat for rephasing
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Local Search Using Continuous Energy Models

• Use fuzzy logic: literals li ∈ [−1,1] instead of {0,1}
• Energy function: E(l) =

∑
c∈C

(∏
i∈c

1−li
2

)

• C: set of clauses
• l: continuous assignment

• Minimize energy using ODE: d l
dt = −∇E(l)

• Algorithm:
1. Initialize l (according to some heuristic)
2. Solve ODE numerically until convergence
3. Transform back: xi = sign(li) > 0

• Leverage ODE solvers from and GPU computation

• Continuous optimization, possibly parallel computation
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[Project/Thesis] Write an Energy-Based Local Search Solver

• Implement a local search solver based on continuous energy models

• Use ODE solvers and possibly GPU computation

• Compare performance to state-of-the-art local search solvers

• Reference implementation
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MaxSAT

• Goal: find an assignment that maximizes the number of satisfied clauses in a CNF
formula

• Weighed MaxSAT: maximize the sum of weights of satisfied clauses
• Partial MaxSAT

• Hard Clauses: Clauses that must be satisfied
• Soft Clauses: Clauses that we wish to satisfy but are not strictly necessary

• Weighed Partial MaxSAT: soft clauses are weighed

SAT Solving 2024 – Bernhard Gstrein, Armin Biere 8/40

mailto:gstrein@cs.uni-freiburg.de
mailto:biere@cs.uni-freiburg.de


Solving MaxSAT

• Iteratively call a SAT solver on a modified version of the original formula
• In each iteration, try to satisfy as many clauses as possible
• If it fails, identify a subset of unsat clauses that are most likely to be the cause of

unsat
• This subset is called the ”unsat core”

• Add constraints to the formula that exclude the core and tries again
• Repeated until a satisfying assignment is found or no more cores can be identified
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Example Weighed Partial MaxSAT Formula

c This is a comment

c Example 1...another comment

h 1 2 3 4 0

1 -3 -5 6 7 0

6 -1 -2 0

4 1 6 -7 0
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[Project/Thesis] MaxSAT: Lookup-Table Network

• Given: truth table of arity n, and consequently 2n entries
• 28 = 256
• 216 = 65536
• 2784 ≈ 10236, all but 60000 are don’t-cares

• Given: skeleton of lookup-table (LUT) network
• Task: adjust LUT parameters such that LUT network output matches truth table
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[Project/Thesis] MaxSAT: Lookup-Table Network

input -> o

\

o <- lookup-table

/ \

input -> o o

\ / \

o o

/ \ / \

input -> o o o <- output

\ / \ /

o o

/ \ /

input -> o o

\ /

o

/

input -> o

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 1 1 0

0 0 1 0 0 1

0 0 1 0 1 0

0 0 1 1 0 1

0 0 1 1 1 0

0 1 0 0 0 0

0 1 0 0 1 1

0 1 0 1 0 0

0 1 0 1 1 1

0 1 1 0 0 1

0 1 1 0 1 0

0 1 1 1 0 1

...
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[Project/Thesis] Project LUT Network

Connections exist only between adjacent layers. A LUT network with zero hidden layers is a
single LUT.

The examples so far were very small. In practice, we will consider much higher dimensional
datasets. There are several parameters which we have to choose when constructing a LUT
network, which are

1. the arity of the individual LUTs,

2. the number of hidden layers, and

3. the number of LUTs per hidden layer.

One important thing to note is that the output layer is just one LUT because in the end we want
to obtain either 0 or 1. Figure 3.5 shows a 2-LUT network with five inputs, three hidden layers
and four LUTs per hidden layer. We can see that the LUT that gives us the final prediction, f12,
has two connections to the previous layer (as every LUT in the network). That means two
LUTs in the final layer do not contribute to the prediction at all. It is also possible that LUTs in
other layers or even inputs do not contribute to the final prediction. In Figure 3.5, everything
that does not influence the final prediction is dotted. Algorithm 1 shows the just described
scheme.

x0

x1

x2

x3
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Figure 3.5.: Generic 2-LUT network with five inputs, three hidden layers and four LUTs per hidden
layer. A single LUT gives the final prediction and it takes two inputs, as all LUTs in the
network. That means there are parts that do not contribute to the final prediction at all
which are shown dotted.

June 2022 Bernhard Gstrein, 13/59

Exact logic synthesis using SAT solvers is
still an open question
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[Project/Thesis] Predicting Optimal MaxSAT Encoding MaxSAT Using ML

• Goal: Develop a Machine Learning (ML) model to predict the best encoding for a
MaxSAT solver based on WCNF features

• Importance: Proper feature extraction from WCNFs is crucial for the success of the
ML model

• Key paper: Feature Extraction for CNFs

SAT Solving 2024 – Bernhard Gstrein, Armin Biere 14/40

https://easychair.org/publications/paper/xw2
mailto:gstrein@cs.uni-freiburg.de
mailto:biere@cs.uni-freiburg.de


[Project/Thesis] Predicting Optimal MaxSAT Encoding MaxSAT Using ML

1. Feature Extraction
• Identify extractable features from WCNFs (literature review)
• Implement feature extraction in a compiled language

2. Benchmarking
• Run the solver on various benchmarks with different encodings to gather time data (staff

task)
3. ML Model Development

• Experiment with different ML models in Python to find the best performer
• Integrate the best model into the MaxSAT solver

4. Model Integration
• Use C++ bindings of PyTorch or ggml library for ML backend integration if needed
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#SAT (SharpSAT)

• Goal: determine the number of satisfying assignments for a given Boolean formula

• While SAT is interested in finding a single solution (or knowing if one exists), #SAT
wants to count all possible solutions

• Significantly harder than SAT
• Exact counting: couple of hundred variables

• Approximate counting: around 1000 variables
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How to #SAT

• Knowledge Compilation
• Transform input formula into a tractable form, such as d-DNNF (deterministic

Decomposable Negation Normal Form)
• From this form, counting the number of satisfying assignments becomes efficient

• DPLL-style Exhaustive Search
• Systematically explore all possible assignments to variables
• Pruning techniques like unit propagation and pure literal elimination to reduce search

space
• Approximate Techniques

• Randomized Algorithms: Use probabilistic methods to estimate the count
• Markov Chain Monte Carlo (MCMC): Sample from the space of satisfying assignments

to approximate the count
• Hashing-based Methods: Use universal hashing to partition the solution space and

count within each partition
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#SAT Use Case: Probabilistic reasoning

Paper: Characterization of Possibly Detected Faults by Accurately Computing their
Detection Probability
• Testing crucial for complex Very Large Scale Integration (VLSI) devices
• Commercial Automatic Test Pattern Generation (ATPG) tools struggle with faults

involving unspecified input values
• Possibly detected faults may be over- or underestimated
• SAT-based algorithm computes the detection probability for faults marked as possibly

detected
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#SAT Use Case: Critical Infrastructure Reliability

Paper: A Weighted Model Counting Approach for Critical Infrastructure Reliability
• Model counting method for estimating network reliability
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#SAT Extensions

• Weighed model counting
• Each assignment is associated with a weight
• Sum the weights of all satisfying assignments

• Projected model counting (#∃SAT)
• Count assignments of a subset of variables that can be extended to a satisfying

assignment of entire formula
• Existentially quantify irrelevant variables

• Projected weighed model counting
• Combination of the above
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Model Enumeration

• Goal: finding all models (or satisfying assignments) for a given Boolean formula

• Example Problem Statement: Given a CNF formula, enumerate all satisfying
assignments

• Very similar to #SAT, but the implementation will differ
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Quantified Boolean Formula (QBF)

• Extension of SAT with universal and existential quantification of variables
• Key Concepts:

• Existential Quantification: There exists an assignment for the variable that makes the
formula true

• Universal Quantification: For all assignments to the variable, the formula is true
• Theoretical complexity: PSPACE
• Notation is exponentially more succinct than SAT, but therefore the problems harder
• Example of QBF: ∀x1∃x2∀x3∃x4(x1 ∨ ¬x2) ∧ (x3 ∨ x4)
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QBF Example Formula

∀x1∃x2∀x3∃x4(x1 ∨ ¬x2) ∧ (x3 ∨ x4)

p cnf 4 2

a 1

e 2

a 3

e 4

1 -2 0

3 4 0
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QBF Solving

• Several decision procedures for QBFs have been proposed and implemented

• Mostly based either on search or on variable elimination, or on a combination of the
two
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QBF Solving: Search

• QBF φ

• Left-most variable z

• Simplify φ to φz and (or, respectively) φz recursively

• Until either an empty clause (conflict) or the empty set of clauses (sat) are produced
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QBF Solving: Variable Elimination

• Eliminate variables till the formula contains the empty clause or becomes empty

• For any QBF φ, ∃xφ and ∀yφ are logically equivalent to (φx ∨ φx) and (φy ∧ φy )

• Main problem: at each step, the formula can double its size
• There are, however, several ways to address this
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QBF Use Cases: Bounded Model Checking

• A Survey on Applications of Quantified Boolean Formulas
• Check if a system can reach a bad state within k steps
• Transition relation R i

• Initial state I
• Bad state B
SAT encoding:

k−1∨

i=0

(I ∧ R i ∧ B)

QBF encoding:
∃i ∈ [0, k − 1] : (I ∧ R i ∧ B)
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Non-CNF Example of QBF

• We do not necessarily have to use CNF for QBF

• Solutions and counter-examples should be in the same format
• But if you negate a CNF, it is not a CNF anymore

• See qpro
∀a2∃e3e4(e4∀a5a6((a5 ∧ ¬a6) ∨ ∃e7e8e9e10(e7 ∧ e8 ∧ e9 ∧ e10)))
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Dependent Quantified Boolean Formulas (DQBF)

• Generalization of QBF that includes dependencies among the quantified variables

• Dependencies: A variable’s quantification can be dependent on other variables

• Theoretical Complexity: NEXPTIME (even more complex than PSPACE)

• An example of dQBF: ∀x1∃x2(x1)∀x3(x1, x2)∃x4(x1, x2, x3)(x1 ∨ ¬x2) ∧ (x3 ∨ x4)
• Here, x2 depends on x1, x3 depends on x1 and x2, and so on
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Complexities

SAT Solving 2024 – Bernhard Gstrein, Armin Biere 30/40

mailto:gstrein@cs.uni-freiburg.de
mailto:biere@cs.uni-freiburg.de


DQBF Use Cases

Dependency Quantified Boolean Formulas: An Overview of Solution Methods and
Applications
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Controller Synthesis

• Vector of present state bits s, vector of next state bits s′

• Uncontrollable primary inputs x
• Controllable inputs c(s,x)
• Transition function Λ(s,x,c)
• Invariant properties inv(s,x), must hold in any case
• Is there an implementation of the controller such that the resulting sequential circuit

satisfies the invariant inv(s,x)?

depends on the current state and is supposed to be true for a state 𝑠 if 𝑠 is in
the winning set. The variable 𝑤′ depends on the next state variables 𝑠′ and has
the same Skolem function as 𝑤 (but defined over 𝑠′ instead of 𝑠). To ensure that
𝑤 and 𝑤′ have the same semantics the condition

(︀
𝑠 ≡ 𝑠′ ⇒ 𝑤 ≡ 𝑤′)︀ is used.

Using those two encodings of the winning set the controller synthesis problem is
reduced to the following DQBF [8]:

∀𝑠∀𝑠′∀𝑥 ∃𝑤(𝑠) ∃𝑤′(𝑠′)∃𝑐(𝑠,𝑥) :
(︀
init(𝑠) ⇒ 𝑤

)︀
∧
(︀
𝑤 ⇒ inv(𝑠,𝑥)

)︀
∧
(︀
𝑠 ≡ 𝑠′ ⇒ 𝑤 ≡ 𝑤′)︀ ∧

(︁(︀
𝑤 ∧ (𝑠′ ≡ 𝛬(𝑠,𝑥, 𝑐))

)︀
⇒ 𝑤′

)︁
. (1)

The controlled input variables 𝑐 are allowed to depend on the current state
variables 𝑠 and uncontrolled inputs 𝑥 only. If the DQBF is satisfied, then the
Skolem functions for 𝑐 provide a suitable controller implementation. (Note that
the solver HQS can compute Skolem functions with very little overhead compared
to the mere solution of the formula [35].)

4.3 Realizability Checking for Sequential Circuits

The controller synthesis problem can be seen as a special sequential problem
with the controller as a single Black Boxes having access to all state bits and all
primary circuit inputs. Here we look into a generalization where sequential circuits
may contain an arbitrary number of Black Boxes and the exact interface of the
Black Boxes, i. e., the signals entering and leaving the Black Boxes, is strictly
taken into account [39]. That means that Black Boxes are not necessarily able to
read all primary inputs and state bits. We confine ourselves to combinational
Black Boxes or Black Boxes with bounded memory. The even more general
problem considering distributed architectures containing several Black Boxes
with unbounded memory is undecidable [31].

Black Boxes with bounded memory can be reduced to combinational Black
Boxes, simply by extracting the memory elements out of the Black Box into
the known part of the circuit, such that the incoming and outgoing signals of
these memory elements are written and read only by the Black Boxes. Thus, we
assume w. l. o. g. sequential circuits with arbitrary combinational Black Boxes in
the circuit implementing their transition function.

As in Sect. 4.1, we assume 𝑛 Black Boxes BB1, . . . ,BB𝑛 with input signals 𝐼𝑖
and output signals 𝑂𝑖, respectively. Again, the input cone computing the input
signals 𝐼𝑖 of BB𝑖 represents a vector of Boolean functions 𝐹 𝑖(𝑥,𝑂1, . . . ,𝑂𝑖−1).
The transition function depending on the current state variables 𝑠, the primary
inputs 𝑥 and the Black Box outputs 𝑂1, . . . ,𝑂𝑛 is given by 𝛬(𝑠,𝑥,𝑂1, . . . ,𝑂𝑛).
As before, the transition function computes new valuations to the next state
variables 𝑠′.

We investigate the following problem:

Definition 10. The realizability problem for incomplete sequential circuits
(RISC) is defined as follows: Given an incomplete sequential circuit with multiple
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Constraint Programming (CP)

• Express problems as variables and constraints
• Each variable has a domain of possible values
• Constraints define relationships between variables and restrict their possible values
• Constraint solvers aim to find values that satisfy all constraints through search and

propagation
• Declarative, with the solver determining the solution process
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Google OR-Tools

• Website

• Solving a CP Problem

• Knapsack Problem

• Google OR-Tools Github: SAT Solver
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Why use CP and not SAT?!

• In CP, variables can be complex types (integers, sets, tuples)

• Constraints can be complex and flexible

• Interactive solving: add and remove constraints on the go

• In constrast, solving a problem via SAT requires low-level CNF

• Allegory: programming in assembly vs. C
• SAT: assembly
• CP: C
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Pseudo-Boolean Solving

Taken from Pseudo-Boolean Solving Tutorial
• Pseudo-Boolean function: f : {0,1}n → R
• Pseudo-Boolean constraint:

∑
i ai li ▷◁ A

• ▷◁∈ {≥,≤,=, >,<, }
• ai ,A ∈ Z
• Literals li : xi or x i (where xi + x i = 1)
• Variables xi take values 0 = false or 1 = true
• Example: x1 + x2 + x3 ≥ 3
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How to PB Solving

• Conversion to disjunctive clauses
• Lazy approach: learn clauses from PB constraints
• Eager approach: re-encode to clauses and run CDCL

• Native reasoning with pseudo-Boolean constraints
• RoundingSAT

• More in Pseudo-Boolean Solving Tutorial
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Incremental SAT Solving

From Practical SAT Solving
• We often need to solve a sequence of similar SAT instances

• for example planning as sat, sokoban, bounded model checking
• the instances share most of the clauses with their neighbors

• Can we solve these sequences of instances more efficiently?
• What is incremental SAT solving?

• Clauses can be added to and removed from the SAT solver
• Why not call the solver with the new formula every time?

• The solver can remember learned clauses and other stuff (variable scores required for
heuristics)

• (de)initialization overheads removed
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Incremental SAT Solving: Example

• System with three switches A,B,C which can either be ON or OFF
A ∨ B ∨ C

• New requirement: B cannot be ON at the same time as C
• Add:

¬(B ∧ C)

SAT Solving 2024 – Bernhard Gstrein, Armin Biere 39/40

mailto:gstrein@cs.uni-freiburg.de
mailto:biere@cs.uni-freiburg.de


The End
That’s it folks!

I wish you could learn something useful!

Bernhard Gstrein
gstrein@cs.uni-freiburg.de

+49 761 203 8147

Armin Biere
biere@cs.uni-freiburg.de

+49 761 203 8148


