SAT Solving 2024

Beyond SAT

Bernhard Gstrein, Armin Biere
June 27, 2024

Overview

- MaxSAT, \#SAT, Model enumeration, QBF, DQBF, CP
- Local search solvers
- Incremental SAT solving
- Projects/Theses

Local Search SAT Solvers

- Try to find a satisfying solution by local search
- Cannot prove UNSAT
- Are good for solving random benchmarks
- But those are not considered interesting
- Used to find variable phases in stable mode
- Stable mode: less restarts, better for SAT
- Focused mode: more restarts, better for UNSAT
- More on phase saving and target phases here

How to Local Search Solve

- Start with global assignment, e.g., random, then compute how many unsat clauses there are
- Put unsat clauses in working stack
- As long as this working stack is not empty
- Pick one clause according to heuristic
- Flip literals in that clause
- Which literal to flip?
- One which would not break many other clauses
- Sample on break value

State of the Art as of Today

- YalSAT is used in Kissat for rephasing

Local Search Using Continuous Energy Models

- Use fuzzy logic: literals $I_{i} \in[-1,1]$ instead of $\{0,1\}$
- Energy function: $E(\mathbf{I})=\sum_{c \in C}\left(\prod_{i \in c} \frac{1-l_{i}}{2}\right)$
- C: set of clauses
- I: continuous assignment
- Minimize energy using ODE: $\frac{d \mathrm{~d}}{d t}=-\nabla E(\mathrm{I})$
- Algorithm:

1. Initialize I (according to some heuristic)
2. Solve ODE numerically until convergence
3. Transform back: $x_{i}=\operatorname{sign}\left(l_{i}\right)>0$

- Leverage ODE solvers from and GPU computation
- Continuous optimization, possibly parallel computation

[Project/Thesis] Write an Energy-Based Local Search Solver

- Implement a local search solver based on continuous energy models
- Use ODE solvers and possibly GPU computation
- Compare performance to state-of-the-art local search solvers
- Reference implementation

MaxSAT

- Goal: find an assignment that maximizes the number of satisfied clauses in a CNF formula
- Weighed MaxSAT: maximize the sum of weights of satisfied clauses
- Partial MaxSAT
- Hard Clauses: Clauses that must be satisfied
- Soft Clauses: Clauses that we wish to satisfy but are not strictly necessary
- Weighed Partial MaxSAT: soft clauses are weighed

Solving MaxSAT

- Iteratively call a SAT solver on a modified version of the original formula
- In each iteration, try to satisfy as many clauses as possible
- If it fails, identify a subset of unsat clauses that are most likely to be the cause of unsat
- This subset is called the "unsat core"
- Add constraints to the formula that exclude the core and tries again
- Repeated until a satisfying assignment is found or no more cores can be identified

Example Weighed Partial MaxSAT Formula

c This is a comment
c Example 1...another comment
h 12340
$\begin{array}{llllll}1 & -3 & -5 & 6 & 7 & 0\end{array}$
$6-1-20$
$\begin{array}{lllll}4 & 1 & 6 & -7 & 0\end{array}$

[Project/Thesis] MaxSAT: Lookup-Table Network

- Given: truth table of arity n, and consequently 2^{n} entries
- $2^{8}=256$
- $2^{16}=65536$
- $2^{784} \approx 10^{236}$, all but 60000 are don't-cares
- Given: skeleton of lookup-table (LUT) network
- Task: adjust LUT parameters such that LUT network output matches truth table

[Project/Thesis] MaxSAT: Lookup-Table Network

0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	1	0	0
0	0	0	1	1	0
0	0	1	0	0	1
0	0	1	0	1	0
0	0	1	1	0	1
0	0	1	1	1	0
0	1	0	0	0	0
0	1	0	0	1	1
0	1	0	1	0	0
0	1	0	1	1	1
0	1	1	0	0	1
0	1	1	0	1	0
0	1	1	1	0	1

[Project/Thesis] Project LUT Network

[Project/Thesis] Predicting Optimal MaxSAT Encoding MaxSAT Using ML

- Goal: Develop a Machine Learning (ML) model to predict the best encoding for a MaxSAT solver based on WCNF features
- Importance: Proper feature extraction from WCNFs is crucial for the success of the ML model
- Key paper: Feature Extraction for CNFs

[Project/Thesis] Predicting Optimal MaxSAT Encoding MaxSAT Using ML

1. Feature Extraction

- Identify extractable features from WCNFs (literature review)
- Implement feature extraction in a compiled language

2. Benchmarking

- Run the solver on various benchmarks with different encodings to gather time data (staff task)

3. ML Model Development

- Experiment with different ML models in Python to find the best performer
- Integrate the best model into the MaxSAT solver

4. Model Integration

- Use C++ bindings of PyTorch or ggml library for ML backend integration if needed

\#SAT (SharpSAT)

- Goal: determine the number of satisfying assignments for a given Boolean formula
- While SAT is interested in finding a single solution (or knowing if one exists), \#SAT wants to count all possible solutions
- Significantly harder than SAT
- Exact counting: couple of hundred variables
- Approximate counting: around 1000 variables

How to \#SAT

- Knowledge Compilation
- Transform input formula into a tractable form, such as d-DNNF (deterministic Decomposable Negation Normal Form)
- From this form, counting the number of satisfying assignments becomes efficient
- DPLL-style Exhaustive Search
- Systematically explore all possible assignments to variables
- Pruning techniques like unit propagation and pure literal elimination to reduce search space
- Approximate Techniques
- Randomized Algorithms: Use probabilistic methods to estimate the count
- Markov Chain Monte Carlo (MCMC): Sample from the space of satisfying assignments to approximate the count
- Hashing-based Methods: Use universal hashing to partition the solution space and count within each partition

\#SAT Use Case: Probabilistic reasoning

Paper: Characterization of Possibly Detected Faults by Accurately Computing their Detection Probability

- Testing crucial for complex Very Large Scale Integration (VLSI) devices
- Commercial Automatic Test Pattern Generation (ATPG) tools struggle with faults involving unspecified input values
- Possibly detected faults may be over- or underestimated
- SAT-based algorithm computes the detection probability for faults marked as possibly detected

\#SAT Use Case: Critical Infrastructure Reliability

Paper: A Weighted Model Counting Approach for Critical Infrastructure Reliability

- Model counting method for estimating network reliability

\#SAT Extensions

- Weighed model counting
- Each assignment is associated with a weight
- Sum the weights of all satisfying assignments
- Projected model counting (\#ヨSAT)
- Count assignments of a subset of variables that can be extended to a satisfying assignment of entire formula
- Existentially quantify irrelevant variables
- Projected weighed model counting
- Combination of the above

Model Enumeration

- Goal: finding all models (or satisfying assignments) for a given Boolean formula
- Example Problem Statement: Given a CNF formula, enumerate all satisfying assignments
- Very similar to \#SAT, but the implementation will differ

Quantified Boolean Formula (QBF)

- Extension of SAT with universal and existential quantification of variables
- Key Concepts:
- Existential Quantification: There exists an assignment for the variable that makes the formula true
- Universal Quantification: For all assignments to the variable, the formula is true
- Theoretical complexity: PSPACE
- Notation is exponentially more succinct than SAT, but therefore the problems harder
- Example of QBF: $\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)$

QBF Example Formula

```
\forallx}\exists\exists\mp@subsup{x}{2}{}\forall\mp@subsup{x}{3}{}\exists\mp@subsup{x}{4}{}(\mp@subsup{x}{1}{}\vee\neg\mp@subsup{x}{2}{})\wedge(\mp@subsup{x}{3}{}\vee\mp@subsup{x}{4}{}
p cnf 4 2
a 1
e 2
a 3
e 4
1 -2 0
340
```


QBF Solving

- Several decision procedures for QBFs have been proposed and implemented
- Mostly based either on search or on variable elimination, or on a combination of the two

QBF Solving: Search

- QBF φ
- Left-most variable z
- Simplify φ to φ_{z} and (or, respectively) $\varphi_{\bar{z}}$ recursively
- Until either an empty clause (conflict) or the empty set of clauses (sat) are produced

QBF Solving: Variable Elimination

- Eliminate variables till the formula contains the empty clause or becomes empty
- For any QBF $\varphi, \exists x \varphi$ and $\forall y \varphi$ are logically equivalent to $\left(\varphi_{x} \vee \varphi_{\bar{x}}\right)$ and ($\varphi_{y} \wedge \varphi_{\bar{y}}$)
- Main problem: at each step, the formula can double its size
- There are, however, several ways to address this

QBF Use Cases: Bounded Model Checking

- A Survey on Applications of Quantified Boolean Formulas
- Check if a system can reach a bad state within k steps
- Transition relation R^{i}
- Initial state I
- Bad state B

SAT encoding:

$$
\bigvee_{i=0}^{k-1}\left(I \wedge R^{i} \wedge B\right)
$$

QBF encoding:

$$
\exists i \in[0, k-1]:\left(I \wedge R^{i} \wedge B\right)
$$

Non-CNF Example of QBF

- We do not necessarily have to use CNF for QBF
- Solutions and counter-examples should be in the same format
- But if you negate a CNF, it is not a CNF anymore
- See qpro

$$
\forall a_{2} \exists e_{3} e_{4}\left(e_{4} \forall a_{5} a_{6}\left(\left(a_{5} \wedge \neg a_{6}\right) \vee \exists e_{7} e_{8} e_{9} e_{10}\left(e_{7} \wedge e_{8} \wedge e_{9} \wedge e_{10}\right)\right)\right)
$$

Dependent Quantified Boolean Formulas (DQBF)

- Generalization of QBF that includes dependencies among the quantified variables
- Dependencies: A variable's quantification can be dependent on other variables
- Theoretical Complexity: NEXPTIME (even more complex than PSPACE)
- An example of dQBF: $\forall x_{1} \exists x_{2}\left(x_{1}\right) \forall x_{3}\left(x_{1}, x_{2}\right) \exists x_{4}\left(x_{1}, x_{2}, x_{3}\right)\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)$
- Here, x_{2} depends on x_{1}, x_{3} depends on x_{1} and x_{2}, and so on

Complexities

DQBF Use Cases

Dependency Quantified Boolean Formulas: An Overview of Solution Methods and Applications

Controller Synthesis

- Vector of present state bits \mathbf{s}, vector of next state bits \mathbf{s}^{\prime}
- Uncontrollable primary inputs \mathbf{x}
- Controllable inputs $\mathbf{c}(\mathbf{s}, \mathbf{x})$
- Transition function $\Lambda(\mathbf{s}, \mathbf{x}, \mathbf{c})$
- Invariant properties inv(s, $\mathbf{x})$, must hold in any case
- Is there an implementation of the controller such that the resulting sequential circuit satisfies the invariant $\operatorname{inv}(\mathbf{s}, \mathbf{x})$?

$$
\begin{aligned}
& \forall \boldsymbol{s} \forall \boldsymbol{s}^{\prime} \forall \boldsymbol{x} \exists w(\boldsymbol{s}) \exists w^{\prime}\left(\boldsymbol{s}^{\prime}\right) \exists \boldsymbol{c}(\boldsymbol{s}, \boldsymbol{x}): \\
& \qquad \begin{array}{l}
(\operatorname{init}(\boldsymbol{s}) \Rightarrow w) \wedge(w \Rightarrow \operatorname{inv}(\boldsymbol{s}, \boldsymbol{x})) \wedge\left(\boldsymbol{s} \equiv \boldsymbol{s}^{\prime} \Rightarrow w \equiv w^{\prime}\right) \wedge \\
\left(\left(w \wedge\left(\boldsymbol{s}^{\prime} \equiv \boldsymbol{\Lambda}(\boldsymbol{s}, \boldsymbol{x}, \boldsymbol{c})\right)\right) \Rightarrow w^{\prime}\right)
\end{array}
\end{aligned}
$$

Constraint Programming (CP)

- Express problems as variables and constraints
- Each variable has a domain of possible values
- Constraints define relationships between variables and restrict their possible values
- Constraint solvers aim to find values that satisfy all constraints through search and propagation
- Declarative, with the solver determining the solution process

Google OR-Tools

- Website
- Solving a CP Problem
- Knapsack Problem
- Google OR-Tools Github: SAT Solver

Why use CP and not SAT?!

- In CP, variables can be complex types (integers, sets, tuples)
- Constraints can be complex and flexible
- Interactive solving: add and remove constraints on the go
- In constrast, solving a problem via SAT requires low-level CNF
- Allegory: programming in assembly vs. C
- SAT: assembly
- CP: C

Pseudo-Boolean Solving

Taken from Pseudo-Boolean Solving Tutorial

- Pseudo-Boolean function: $f:\{0,1\}^{n} \rightarrow \mathbb{R}$
- Pseudo-Boolean constraint: $\sum_{i} a_{i} l_{i} \bowtie A$
- $\bowtie \in\{\geq, \leq,=,>,<$,
- $a_{i}, A \in \mathbb{Z}$
- Literals $l_{i}: x_{i}$ or $\bar{x}_{i}\left(\right.$ where $\left.x_{i}+\bar{x}_{i}=1\right)$
- Variables x_{i} take values $0=$ false or $1=$ true
- Example: $x_{1}+x_{2}+x_{3} \geq 3$

How to PB Solving

- Conversion to disjunctive clauses
- Lazy approach: learn clauses from PB constraints
- Eager approach: re-encode to clauses and run CDCL
- Native reasoning with pseudo-Boolean constraints
- RoundingSAT
- More in Pseudo-Boolean Solving Tutorial

Incremental SAT Solving

From Practical SAT Solving

- We often need to solve a sequence of similar SAT instances
- for example planning as sat, sokoban, bounded model checking
- the instances share most of the clauses with their neighbors
- Can we solve these sequences of instances more efficiently?
- What is incremental SAT solving?
- Clauses can be added to and removed from the SAT solver
- Why not call the solver with the new formula every time?
- The solver can remember learned clauses and other stuff (variable scores required for heuristics)
- (de)initialization overheads removed

Incremental SAT Solving: Example

- System with three switches A, B, C which can either be ON or OFF

$$
A \vee B \vee C
$$

- New requirement: B cannot be ON at the same time as C
- Add:

$$
\neg(B \wedge C)
$$

The End That's it folks!

I wish you could learn something useful!

Bernhard Gstrein
gstrein@cs.uni-freiburg.de +49 7612038147

Armin Biere
biere@cs.uni-freiburg.de +497612038148

