universitätfreiburg

SAT Solving 2024

Beyond SAT

Bernhard Gstrein, Armin Biere

June 27, 2024

Overview

- MaxSAT, #SAT, Model enumeration, QBF, DQBF, CP
- Local search solvers
- Incremental SAT solving
- Projects/Theses

Local Search SAT Solvers

- Try to find a satisfying solution by local search
- Cannot prove UNSAT
- Are good for solving random benchmarks
 - · But those are not considered interesting
- Used to find variable phases in stable mode
 - · Stable mode: less restarts, better for SAT
 - Focused mode: more restarts, better for UNSAT
 - More on phase saving and target phases here

How to Local Search Solve

- Start with global assignment, e.g., random, then compute how many unsat clauses there are
- Put unsat clauses in working stack
- · As long as this working stack is not empty
 - Pick one clause according to heuristic
 - · Flip literals in that clause
- Which literal to flip?
 - · One which would not break many other clauses
 - Sample on break value

State of the Art as of Today

• YalSAT is used in Kissat for rephasing

Local Search Using Continuous Energy Models

- Use fuzzy logic: literals $I_i \in [-1, 1]$ instead of $\{0, 1\}$
- Energy function: $E(\mathbf{I}) = \sum_{c \in C} \left(\prod_{i \in c} \frac{1-l_i}{2} \right)$
 - C: set of clauses
 - I: continuous assignment
- Minimize energy using ODE: $\frac{dI}{dt} = -\nabla E(I)$
- Algorithm:
 - 1. Initialize I (according to some heuristic)
 - 2. Solve ODE numerically until convergence
 - 3. Transform back: $x_i = \operatorname{sign}(I_i) > 0$
- Leverage ODE solvers from and GPU computation
- · Continuous optimization, possibly parallel computation

[Project/Thesis] Write an Energy-Based Local Search Solver

- · Implement a local search solver based on continuous energy models
- Use ODE solvers and possibly GPU computation
- Compare performance to state-of-the-art local search solvers
- Reference implementation

- Goal: find an assignment that maximizes the number of satisfied clauses in a CNF formula
- Weighed MaxSAT: maximize the sum of weights of satisfied clauses
- Partial MaxSAT
 - Hard Clauses: Clauses that must be satisfied
 - Soft Clauses: Clauses that we wish to satisfy but are not strictly necessary
- Weighed Partial MaxSAT: soft clauses are weighed

Solving MaxSAT

- · Iteratively call a SAT solver on a modified version of the original formula
- · In each iteration, try to satisfy as many clauses as possible
- If it fails, identify a subset of unsat clauses that are most likely to be the cause of unsat
 - This subset is called the "unsat core"
- Add constraints to the formula that exclude the core and tries again
- · Repeated until a satisfying assignment is found or no more cores can be identified

Example Weighed Partial MaxSAT Formula

```
c This is a comment
c Example 1...another comment
h 1 2 3 4 0
1 -3 -5 6 7 0
6 -1 -2 0
4 1 6 -7 0
```

[Project/Thesis] MaxSAT: Lookup-Table Network

- Given: truth table of arity *n*, and consequently 2^{*n*} entries
 - $2^8 = 256$
 - $2^{16} = 65536$
 - $2^{784} \approx 10^{236}$, all but 60000 are don't-cares
- Given: skeleton of lookup-table (LUT) network
- Task: adjust LUT parameters such that LUT network output matches truth table

[Project/Thesis] MaxSAT: Lookup-Table Network

input ->	0	0	0	0	0	0	0
	Λ.	0	0	0	0	1	0
	o <- lookup-table	0	0	0	1	0	0
input ->		0	0	0	1	1	0
	$\langle \rangle / \rangle$	0	0	1	0	0	1
	0 0	0	0	1	0	1	0
	$/ \setminus / \setminus$	0	0	1	1	0	1
input ->	o o o <- output	0	0	1	1	1	0
	$\land / \land /$	0	1	0	0	0	0
		0	1	0	0	1	1
input ->		0	1	0	1	0	0
	$\langle \rangle$	0	1	0	1	1	1
	0	0	1	1	0	0	1
	/	0	1	1	0	1	0
input ->	0	0	1	1	1	0	1

. . .

[Project/Thesis] Project LUT Network

Exact logic synthesis using SAT solvers is still an open question

universität freiburg

SAT Solving 2024 - Bernhard Gstrein, Armin Biere

[Project/Thesis] Predicting Optimal MaxSAT Encoding MaxSAT Using ML

- Goal: Develop a Machine Learning (ML) model to predict the best encoding for a MaxSAT solver based on WCNF features
- Importance: Proper feature extraction from WCNFs is crucial for the success of the ML model
 - Key paper: Feature Extraction for CNFs

[Project/Thesis] Predicting Optimal MaxSAT Encoding MaxSAT Using ML

1. Feature Extraction

- Identify extractable features from WCNFs (literature review)
- Implement feature extraction in a compiled language

2. Benchmarking

Run the solver on various benchmarks with different encodings to gather time data (staff task)

3. ML Model Development

- · Experiment with different ML models in Python to find the best performer
- Integrate the best model into the MaxSAT solver

4. Model Integration

• Use C++ bindings of PyTorch or ggml library for ML backend integration if needed

- · Goal: determine the number of satisfying assignments for a given Boolean formula
- While SAT is interested in finding a single solution (or knowing if one exists), #SAT wants to **count all** possible solutions
- Significantly harder than SAT
 - Exact counting: couple of hundred variables
 - Approximate counting: around 1000 variables

How to **#SAT**

- Knowledge Compilation
 - Transform input formula into a tractable form, such as d-DNNF (deterministic Decomposable Negation Normal Form)
 - · From this form, counting the number of satisfying assignments becomes efficient
- DPLL-style Exhaustive Search
 - · Systematically explore all possible assignments to variables
 - Pruning techniques like unit propagation and pure literal elimination to reduce search space
- Approximate Techniques
 - · Randomized Algorithms: Use probabilistic methods to estimate the count
 - Markov Chain Monte Carlo (MCMC): Sample from the space of satisfying assignments to approximate the count
 - Hashing-based Methods: Use universal hashing to partition the solution space and count within each partition

#SAT Use Case: Probabilistic reasoning

Paper: Characterization of Possibly Detected Faults by Accurately Computing their Detection Probability

- Testing crucial for complex Very Large Scale Integration (VLSI) devices
- Commercial Automatic Test Pattern Generation (ATPG) tools struggle with faults involving unspecified input values
- · Possibly detected faults may be over- or underestimated
- SAT-based algorithm computes the detection probability for faults marked as possibly detected

#SAT Use Case: Critical Infrastructure Reliability

Paper: A Weighted Model Counting Approach for Critical Infrastructure Reliability

· Model counting method for estimating network reliability

#SAT Extensions

- Weighed model counting
 - · Each assignment is associated with a weight
 - · Sum the weights of all satisfying assignments
- Projected model counting (#∃SAT)
 - Count assignments of a subset of variables that can be extended to a satisfying assignment of entire formula
 - Existentially quantify irrelevant variables
- Projected weighed model counting
 - Combination of the above

Model Enumeration

- · Goal: finding all models (or satisfying assignments) for a given Boolean formula
- Example Problem Statement: Given a CNF formula, enumerate all satisfying assignments
- Very similar to #SAT, but the implementation will differ

Quantified Boolean Formula (QBF)

- · Extension of SAT with universal and existential quantification of variables
- Key Concepts:
 - Existential Quantification: There exists an assignment for the variable that makes the formula true
 - Universal Quantification: For all assignments to the variable, the formula is true
- Theoretical complexity: PSPACE
- · Notation is exponentially more succinct than SAT, but therefore the problems harder
- Example of QBF: $\forall x_1 \exists x_2 \forall x_3 \exists x_4(x_1 \lor \neg x_2) \land (x_3 \lor x_4)$

QBF Example Formula

 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 \lor \neg x_2) \land (x_3 \lor x_4)$

p cnf 4 2

a 1

e 2

a 3

e 4

1 -2 0

340

- · Several decision procedures for QBFs have been proposed and implemented
- Mostly based either on search or on variable elimination, or on a combination of the two

QBF Solving: Search

- QBF φ
- Left-most variable z
- Simplify φ to φ_z and (or, respectively) $\varphi_{\overline{z}}$ recursively
- Until either an empty clause (conflict) or the empty set of clauses (sat) are produced

QBF Solving: Variable Elimination

- · Eliminate variables till the formula contains the empty clause or becomes empty
- For any QBF φ , $\exists x \varphi$ and $\forall y \varphi$ are logically equivalent to $(\varphi_x \lor \varphi_{\overline{x}})$ and $(\varphi_y \land \varphi_{\overline{y}})$
- Main problem: at each step, the formula can double its size
 - There are, however, several ways to address this

QBF Use Cases: Bounded Model Checking

- A Survey on Applications of Quantified Boolean Formulas
- Check if a system can reach a bad state within k steps
- Transition relation Rⁱ
- Initial state /
- Bad state B

SAT encoding:

$$\bigvee_{i=0}^{k-1}(I\wedge R^i\wedge B)$$

QBF encoding:

$$\exists i \in [0, k-1] : (I \wedge R^i \wedge B)$$

Non-CNF Example of QBF

- · We do not necessarily have to use CNF for QBF
- · Solutions and counter-examples should be in the same format
 - But if you negate a CNF, it is not a CNF anymore
- See qpro

 $\forall a_2 \exists e_3 e_4 (e_4 \forall a_5 a_6 ((a_5 \land \neg a_6) \lor \exists e_7 e_8 e_9 e_{10} (e_7 \land e_8 \land e_9 \land e_{10})))$

Dependent Quantified Boolean Formulas (DQBF)

- Generalization of QBF that includes dependencies among the quantified variables
- Dependencies: A variable's quantification can be dependent on other variables
- Theoretical Complexity: NEXPTIME (even more complex than PSPACE)
- An example of dQBF: $\forall x_1 \exists x_2(x_1) \forall x_3(x_1, x_2) \exists x_4(x_1, x_2, x_3)(x_1 \lor \neg x_2) \land (x_3 \lor x_4)$
 - Here, x_2 depends on x_1 , x_3 depends on x_1 and x_2 , and so on

Complexities

30/40

Dependency Quantified Boolean Formulas: An Overview of Solution Methods and Applications

Controller Synthesis

- Vector of present state bits s, vector of next state bits s'
- Uncontrollable primary inputs x
- Controllable inputs **c**(**s**, **x**)
- Transition function Λ(**s**, **x**, **c**)
- Invariant properties inv(s, x), must hold in any case
- Is there an implementation of the controller such that the resulting sequential circuit satisfies the invariant inv(s, x)?

$$\begin{array}{l} \forall \boldsymbol{s} \, \forall \boldsymbol{s}' \forall \boldsymbol{x} \, \exists w(\boldsymbol{s}) \, \exists w'(\boldsymbol{s}') \exists \boldsymbol{c}(\boldsymbol{s}, \boldsymbol{x}) : \\ \left(\mathrm{init}(\boldsymbol{s}) \Rightarrow w \right) \land \left(w \Rightarrow \mathrm{inv}(\boldsymbol{s}, \boldsymbol{x}) \right) \land \left(\boldsymbol{s} \equiv \boldsymbol{s}' \Rightarrow w \equiv w' \right) \land \\ \left(\left(w \land \left(\boldsymbol{s}' \equiv \boldsymbol{\Lambda}(\boldsymbol{s}, \boldsymbol{x}, \boldsymbol{c}) \right) \right) \Rightarrow w' \right) \end{array}$$

Constraint Programming (CP)

- · Express problems as variables and constraints
- · Each variable has a domain of possible values
- · Constraints define relationships between variables and restrict their possible values
- Constraint solvers aim to find values that satisfy all constraints through search and propagation
- Declarative, with the solver determining the solution process

Google OR-Tools

- Website
- Solving a CP Problem
- Knapsack Problem
- Google OR-Tools Github: SAT Solver

Why use CP and not SAT?!

- In CP, variables can be complex types (integers, sets, tuples)
- Constraints can be complex and flexible
- · Interactive solving: add and remove constraints on the go
- In constrast, solving a problem via SAT requires low-level CNF
- · Allegory: programming in assembly vs. C
 - SAT: assembly
 - CP: C

Pseudo-Boolean Solving

Taken from Pseudo-Boolean Solving Tutorial

- Pseudo-Boolean function: $f: \{0, 1\}^n \to \mathbb{R}$
- Pseudo-Boolean constraint: $\sum_i a_i l_i \bowtie A$
- $\bullet \quad \bowtie \in \{\geq, \leq, =, >, <, \}$
- $a_i, A \in \mathbb{Z}$
- Literals I_i : x_i or \overline{x}_i (where $x_i + \overline{x}_i = 1$)
- Variables x_i take values 0 =false or 1 =true
- Example: $x_1 + x_2 + x_3 \ge 3$

How to PB Solving

- Conversion to disjunctive clauses
 - · Lazy approach: learn clauses from PB constraints
 - Eager approach: re-encode to clauses and run CDCL
- Native reasoning with pseudo-Boolean constraints
 - RoundingSAT
- More in Pseudo-Boolean Solving Tutorial

Incremental SAT Solving

From Practical SAT Solving

- · We often need to solve a sequence of similar SAT instances
 - for example planning as sat, sokoban, bounded model checking
 - the instances share most of the clauses with their neighbors
- · Can we solve these sequences of instances more efficiently?
- What is incremental SAT solving?
 - · Clauses can be added to and removed from the SAT solver
- · Why not call the solver with the new formula every time?
 - The solver can remember learned clauses and other stuff (variable scores required for heuristics)
 - (de)initialization overheads removed

Incremental SAT Solving: Example

- System with three switches *A*, *B*, *C* which can either be ON or OFF $A \lor B \lor C$
- New requirement: *B* cannot be ON at the same time as *C*
- Add:

 $\neg (B \land C)$

The End That's it folks!

I wish you could learn something useful!

Bernhard Gstrein gstrein@cs.uni-freiburg.de +49 761 203 8147 Armin Biere biere@cs.uni-freiburg.de +49 761 203 8148

universität freiburg