
Master’s Thesis

Reimplications for Parallel Clause
Sharing

Florian Pollitt

Examiners: Prof. Dr. Armin Biere,
Prof. Dr. Christoph Scholl

Co-Adviser: Dr. Mathias Fleury

University of Freiburg

Faculty of Engineering

Department of Computer Science

Chair of Computer Architecture

March 26, 2024

Writing Period

02. 10. 2023 – 02. 04. 2024

First Examiner

Prof. Dr. Armin Biere

Second Examiner

Prof. Dr. Christoph Scholl

Co-Adviser

Dr. Mathias Fleury

Declaration

I hereby declare that I am the sole author and composer of my thesis and that no

sources or learning aids, other than those listed, have been used. Furthermore, I

declare that I have acknowledged the work of others by providing detailed references

of said work.

I hereby also declare that my Thesis has not been prepared for another examination

or assignment, either wholly or excerpts thereof.

i

Abstract

Sharing clauses in a parallel SAT solver can disrupt the search by forcing the solver

to backtrack. Chronological backtracking counteracts this by making backtracking

optional. However, it also breaks some invariants of classic CDCL which can have

negative impact on the solver. Reimplication restores these invariants without

backtracking by finding and fixing missed implications. The technique is complex

and requires changing the watch invariants of Boolean constraint propagation and

the management of the trail of assigned literals among other things.

In this work we provide an analysis of three different implementations of reimplication

where two of them are implemented by us, one for this thesis and one in a previous

project. Our implementations are based on a new intuition on reimplication which

simplifies understanding and leads to a different approach for trail management. In

an extensive experimental section we focus on the impact of reimplication on our

parallel SAT solver Gimsatul and complement the previously lacking analysis with

detailed statistics and inconclusive run-time results.

iii

Contents

1 Introduction 1

2 Related Work 3

2.1 Chronological Backtracking . 3

2.2 Incremental SAT Solving . 3

2.3 User Propagator . 4

2.4 Trail Saving . 4

2.5 SAT Modulo Theories . 4

3 Background 5

3.1 SAT solving . 5

3.2 Conflict Driven Clause Learning . 7

3.3 Boolean Constraint Propagation with Watch Lists 11

3.4 Parallel SAT Solving . 13

3.5 Chronological Backtracking . 18

4 Approach 25

4.1 Reimplication . 25

4.2 Implementation in IntelSAT . 27

4.3 Implementation in CaDiCaL . 29

4.4 Implementation in Gimsatul . 39

v

5 Experiments 53

5.1 Setup . 53

5.2 Results . 54

5.3 Statistics . 56

5.4 Statistics for Parallel Clause Sharing 63

6 Conclusion 77

7 Acknowledgments 79

Bibliography 84

vi

List of Figures

1 Solved instances for all solvers with and without reimplication 55

2 Solved instances for Gimsatul with and without reimplication . . . 55

3 Solved instances for different chronological backtracking heuristics . . 57

4 Total number of chronological backtracks and conflicts for all solvers

on a logarithmic scale . 58

5 Chronological backtracks in percent of conflicts for all solvers 58

6 Average number of levels saved per chronological backtrack for all

solvers on a logarithmic scale . 59

7 Average number of propagations per second for all solvers 60

8 Total number of all propagations and reimplication propagations for

all solvers on a logarithmic scale . 61

9 Reimplication propagations in percent of all propagations for all solvers

on a logarithmic scale . 61

10 Total number of elevations for all solvers on a logarithmic scale . . . 62

11 Average number of elevations per reimplication propagation for all solvers 63

12 Average number of elevations per chronological backtrack for all solvers

on a logarithmic scale . 64

13 Average number of elevations per level saved with chronological back-

tracking for all solvers on a logarithmic scale 64

14 Solved instances for Gimsatul with and without chronological back-

tracking . 65

vii

15 Total number of conflicts and chronological backtracks for Gimsatul

on a logarithmic scale . 66

16 Chronological backtracks in percent of conflicts for Gimsatul . . . 67

17 Average number of levels saved per chronological backtrack for Gimsatul

on a logarithmic scale . 67

18 Average number of propagations per second for Gimsatul 68

19 Average number of propagations per second for Gimsatul without

chronological backtracking . 69

20 Total number of all propagations and reimplication propagations for

Gimsatul on a logarithmic scale . 70

21 Total number of all propagations and reimplication propagations for

Gimsatul without chronological backtracking on a logarithmic scale 70

22 Total number of elevations for Gimsatul on a logarithmic scale . . . 71

23 Total number of elevations for Gimsatul without chronological back-

tracking on a logarithmic scale . 71

24 Reimplication propagations in percent of all propagations for Gimsatul

on a logarithmic scale . 72

25 Average number of elevations per reimplication propagation for Gimsatul

. 73

26 Average number of elevations per chronological backtrack for Gimsatul

on a logarithmic scale . 73

27 Average number of elevations per level saved with chronological back-

tracking for Gimsatul on a logarithmic scale 74

28 Average number of conflicts per propagation for Gimsatul 74

29 Average number of elevations per reimplication propagation for Gimsatul

without chronological backtracking 75

viii

List of Algorithms

1 Overview of Boolean Constraint Propagation, refined by Alg. 7 . . . 10

2 Making Decisions . 10

3 Assigning Literals, refined by Alg. 13 10

4 Backtracking to a lower Decision Level, refined by Alg. 8 10

5 Learning new Clauses through Conflict Analysis, refined by Alg. 9 . 12

6 Overview of the CDCL Loop . 12

7 Boolean Constraint Propagation with Watch Lists, replacing Alg. 1 . 14

8 Backtracking with Watch Lists, replacing Alg. 4 14

9 Watching Clauses after Conflict Analysis, replacing Alg. 5 15

10 CDCL Loop with Import and Export of Clauses, replacing Alg. 6 . . 16

11 Exporting Clauses after Conflict Analysis, replacing Alg. 5 17

12 Importing Clauses . 19

13 Assigning Literals with Chronological Backtracking, replacing Alg. 3 21

14 Backtracking with Chronological Backtracking, replacing Alg. 8 . . . 21

15 Conflict Analysis with Chronological Backtracking, replacing Alg. 9 . 22

16 Importing Clauses with Chronological Backtracking, replacing Alg. 12 24

17 Backtracking in IntelSAT, using Alg. 4 28

18 Conflict analysis in IntelSAT, replacing Alg. 9 28

19 Assigning literals in IntelSAT, replacing Alg. 13 30

20 Boolean constraint propagation in IntelSAT, replacing Alg. 7 . . . 30

ix

21 Inner loop of Boolean constraint propagation with reimplication in

IntelSAT, compare with Alg. 32 and Alg. 41 31

22 Reimplication in IntelSAT . 32

23 Elevating literals in IntelSAT, compare with Alg. 19 33

24 Conflict handling in IntelSAT . 33

25 Elevating literals in CaDiCaL, compare with Alg. 27 35

26 Backtracking in CaDiCaL, replacing Alg. 14 35

27 Assigning literals in CaDiCaL, replacing Alg. 13 36

28 Conflict analysis in CaDiCaL, replacing Alg. 15 36

29 Boolean constraint propagation without reimplication in CaDiCaL,

compare with Alg. 7 . 37

30 CDCL loop in CaDiCaL, replacing Alg. 6 38

31 Boolean constraint propagation with reimplication in CaDiCaL, com-

pare with Alg. 7 . 40

32 Inner loop of Boolean constraint propagation with reimplication in

CaDiCaL, compare with Alg. 21 and Alg. 41 41

33 Conflict handling in CaDiCaL . 43

34 Elevating literals in Gimsatul, compare with Alg. 36 43

35 Backtracking in Gimsatul, replacing Alg. 14 44

36 Assigning literals in Gimsatul, replacing Alg. 13 45

37 Conflict analysis in Gimsatul, replacing Alg. 15 46

38 Boolean constraint propagation without reimplication in Gimsatul,

compare with Alg. 7 . 47

39 CDCL loop in Gimsatul, replacing Alg. 10 48

40 Boolean constraint propagation with reimplication in Gimsatul, com-

pare with Alg. 7 . 49

41 Inner loop of Boolean constraint propagation with reimplication in

Gimsatul, compare with Alg. 21 and Alg. 32 50

42 Importing clauses with reimplication in Gimsatul, replacing Alg. 16 51

x

1 Introduction

Propositional satisfiability (SAT) solving is used for many applications in industry,

e.g., in formal verification of hardware [1]. Big companies like Intel have adopted

formal verification approaches, especially in safety critical applications [2]. Amazon

Web Services provide formal reasoning based on SAT solving for billions of users [3].

Therefore, achieving progress in this field continues to be of big interest.

Conflict driven clause learning (CDCL) took off with the introduction of GRASP [4]

in sovers such as Chaff [5] in the late 1990s and early 2000s. Since then, it has been

the main paradime used in SAT solving and has shown great success. There is a

steady stream of novel ideas for extending and improving CDCL based SAT solvers.

Recent developments include the addition of chronological backtracking [6] which

breaks CDCL invariants previously considered crucial. Fortunately, small adjustments

to the solver can restore correctness and completness without these invariants [7].

However, there are unwanted side-effects to applying chronological backtracking, like

repeating previously performed propagations for correctness.

The reimplication procedure proposed by Nadel [8] is a novel method to fix implica-

tions on lower decision levels. This way, repropagation is avoided and other invariants

are restored. In this work we provide a detailed analysis of two new implementations

of reimplication and compare them to the original implementation by Nadel. Fur-

thermore, we focus on its impact on parallel SAT solving, where clause sharing leads

to increased numbers of chronological backtracking.

1

2 Related Work

2.1 Chronological Backtracking

CDCL evolved from the decision procedure of Davis, Logemann and Loveland

(DLL) [9]. Originally, the DLL algorithm did not perform conflict analysis. When

encountering a conflict it was forced to backtrack chronologically, level by level. With

conflict analysis in modern solvers, this has been improved by backjumping, i.e.,

undoing unused decision levels below the conflict level. However, if there are many

such decision levels, backjumping might erase work which is repeated later. This

observation lead to the introduction of chronological backtracking in CDCL solvers

by Nadel and Ryvchin in 2018 [6]. It can be applied with a simple heuristic and small

changes to the solver. Intuitively, chronological backtracking improves performance

when the decision levels which would be undone by backjumping are repeated later

in the search. It has been formalized and proven to be correct [7]. The reimplication

technique [8] which is the main focus of this thesis serves to improve chronological

backtracking. However, there are contexts exceeding pure SAT solving in which

reimplication can be triggered independently of chronological backtracking.

2.2 Incremental SAT Solving

Incremental SAT solvers like MiniSAT [10] allow the user to pose several similar

problems in sequence and can reuse information derived from previous problems to

3

solve the current one. Incremental SAT has various applications, from using MiniSAT

to verify ciruits with bounded model checking [11] to solving optimisation problems

with maximal satisfiability solvers such as Pacose [12]. One of the main features

of incremental SAT solving allows adding clauses in between each solve call. When

applying incremental lazy backtracking [8] this can trigger reimplication without

chronological backtracking.

2.3 User Propagator

The IPASIR-UP interface [13] allows adding clauses and propagating literals during

the search phase of the SAT solver. This is similar to importing clauses in parallel

SAT or adding clauses in incremental SAT and can lead to out-of-order assignments

and missed implications which will be introduced later in this thesis.

2.4 Trail Saving

There is an alternative to chronological backtracking called trail saving by Hickney

and Bacchus [14]. Trail saving can be applied after backtracking to speed up the

reassignment of the variables on the old trail. It serves a similar goal as chronological

backtracking without disrupting other parts of the solver which can be negatively

impacted by chronological backtracking.

2.5 SAT Modulo Theories

There has been work on reimplication and chronological backtracking in the context

of SMT solving [15]. In his thesis, Coutelier implemented chronological backtracking

and reimplication in the SMT solver veriT.

4

3 Background

In this chapter we introduce the CDCL framework step by step. We start by defining

SAT solving as well as relevant concepts, then proceed with the core CDCL algorithms.

In the second part of this chapter we introduce parallel SAT solving which extends

CDCL with clause sharing. Finally, we refine all previous algorithms for chronological

backtracking. For more details on SAT solving and CDCL we refer to the Handbook

of Satisfiability [16].

3.1 SAT solving

Definition 1 (Boolean Variables). A (Boolean) variable v can take values in

{1, 0,−1}. Variables with value 0 are called unassigned, otherwise they are called

assigned.

Definition 2 (Literals). A literal ℓ is either a variable v or its negation −v. −ℓ is

the negation of a literal and |ℓ| refers to the variable.

Definition 3 (Clauses). A clause C is the conjunction of literals C = ℓ1 ∨ · · · ∨ ℓn.

We typically use set notation for clauses, i.e., C = {ℓ1, . . . , ℓn}.

Definition 4 (Formula). A Boolean formula F in conjunctive normal form (CNF) is

a disjunction of clauses F = C1 ∧ · · · ∧Ck. As for clauses, formulas can be expressed

with set notation F = {C1, . . . , Ck}.

5

A formula F implicitly defines a set of variables by the occuring literals. We identify

this set with V and further define L := {v | v ∈ V}∪{−v | v ∈ V} as the corresponding

set of literals.

Definition 5 (Assignments). A function σ : V → {1, 0,−1} is called partial assign-

ment. If σ assigns all variables in V it is called a full assignment.

We abuse function notation by extending assignments to literals in the obvious way:

σ(ℓ) :=

σ(v), if ℓ = v

−σ(v), if ℓ = −v

Definition 6 (Satisfying Formulas). The (partial) assignment σ satisfies a literal ℓ

if σ(ℓ) = 1. A clause C is satisfied if at least one literal in C is satisfied. A formula

F is satisfied if all the clauses in F are satisfied.

Definition 7 (Falsifying Formulas). Correspondingly, σ falsifies a literal ℓ if σ(ℓ) =

−1. A clause C is falsified if all the literals in C are falsified. A formula F is falsified

if at least one clause in F is falsified.

For any set of literals (or variables) L we define satisfiedσ(L) := {ℓ ∈ L | σ(ℓ) = 1}

and falsifiedσ(L) := {ℓ ∈ L | σ(ℓ) = −1} as the subset of satisfied and falsifed

literals respectively. Furthermore, we define assignedσ(L) := {ℓ ∈ L | σ(ℓ) ̸= 0} and

unassignedσ(L) := {ℓ ∈ L | σ(ℓ) = 0} as the set of assigned and unassigned literals in

L. Note that both definitions apply to clauses.

Definition 8 (Model). A full assignment M which satisfies F is called a model, also

written M |= F .

Definition 9 (Solution). Any Model M of the Formula F together with the claim

SATISFIABLE (SAT) is a solution to the corresponding SAT problem. If no model

exists then the solution is the claim UNSATISFIABLE (UNSAT).

6

Definition 10 (Consistent Assignments). Two (partial) assignments σ, σ′ are consis-

tent if they agree on the value for all variables that are assigned by both σ and σ′.

That is, if σ(v) = 1 for any variable v, then σ′(v) ̸= −1 and vice versa.

We say that σ′ extends σ if they are consistent and the set of unassigned variables of

σ′ is a subset of the unassigned varibles of σ: unassigned′σ(V) ⊊ unassignedσ(V)

Definition 11 (Unit Clauses and Conflicts). Given a partial assignment σ, a clause

C is called unit, if σ falsifies all the literal of C except one, which is unassigned. The

unassigned literal is called unit literal. If the clause is completely falsified instead, it

is called conflicting or conflict.

The only way to consistently extend σ and not falsify some unit clause is to assign

the unit literal to 1.

Definition 12 (Resolution). Given two Clauses C,C ′, where ℓ ∈ C, −ℓ ∈ C ′,

−ℓ /∈ C and ℓ /∈ C ′. Then the resolvent of C and C ′ on ℓ is defined as C ⊗ℓ C
′ :=

(C \ {ℓ}) ∪ (C ′ \ {−ℓ}). For a Formula F with C,C ′ ∈ F any model of F satisfies

C⊗ℓC
′. Therefore the solver can add any clauses derived by resolution to the formula

without losing correctness or completeness.

3.2 Conflict Driven Clause Learning

As part of its global state, the solver builds a partial assignment σ. It can assign

values in the following two ways:

Definition 13 (BCP (Alg. 1)). The act of finding conflicts and unit clauses, and

assigning unit literals is called Boolean constraint propagation (BCP). If a conflict

exists it is returned, otherwise BCP returns ⊥ when no more unit clauses exist.

7

Definition 14 (Decide (Alg. 2)). If there are no unit clauses and no conflicts, then

the solver can make a decision, assigning an unassigned variable to 1 or −1.

The order of assignments is stored on the trail. Classically, the trail is defined as a

sequence of literals. This works well because newly assigned literals are always added

to the top, while unassigning literals through backtracking removes blocks of literals

from the top. However, chronological backtracking breaks the latter invariant and

reimplication also breaks the former. We give a more abstract defintion of the trail

which can easily be extended to chronological backtracking and reimplication.

Definition 15 (Trail). τ : N→ satsifiedσ(L) ∪ {⊥} is called trail. It is used to store

the order in which literals are assigned, that is, whenever a literal ℓ is assigned to

true the solver sets τ(n) = ℓ for the smallest number n with τ(n) = ⊥. It keeps the

invariant that the position of a satisfied literal ℓ on the trail is uniquely determined. To

access the position of literals we define τ−1(ℓ) := n such that τ(n) = ℓ. As variables

cannot be assigned to multiple values at once we can extend this notation:

τ−1(v) :=

τ−1(v), if σ(v) = 1

τ−1(−v), if σ(v) = −1

The size of the trail |τ | is defined as the smallest n ∈ N where τ(n) = ⊥.

Definition 16 (Decision Level). Each assigned variable is given a decision level by

δ : assignedσ(V) → N. The decision level of an assigned variable v is always equal

to the number of decisions on the trail before and including τ−1(v). We extend δ to

literals δ(ℓ) := δ(|ℓ|) and sets of literals δ(L) := max(0, {δ(ℓ) | ℓ ∈ assignedσ(L)}).

A conflict on decision level 0, also global conflict, implies that the formula is unsat-

isfiable. To simplify handling of decision levels, the solver has a global value level,

which is always equal to current the number of decisions.

8

Definition 17 (Reasons). The solver has a reason function ρ : assignedσ(V) →

F ∪ {⊥} which allocates a clause to each literal when it is assigned. If it is a decision

we mark it with the decision reason ⊥. Otherwise it assigned during BCP, and the

allocated reason is the responsible unit clause C.

Definition 18 (Assign (Alg. 3)). Whenever a literal is assigned, its decision level

and reason are updated and the trail is extended as described above.

Definition 19 (Backtracking (Alg. 4)). Undoing assigments is always done in

blocks from the top of the trail up to a certain decision level.

Conflict analysis is performed whenever a conflict is found by BCP.

Definition 20 (Analyze (Alg. 5)). The solver learns a new clause which is derived

from the conflict by successive resolution steps. For every assignment which appears

in the conflict with opposite sign, it is resolved with the corresponding reason clause.

This is done in the order given by trail, until the new clause only has one literal left

assigned on the current level.

There are several invariants for this process. Firstly, conflicts which are found always

have at least two literals assigned on the current level. This means the solver needs

to resolve at least once in order to satisfy the termination criterium. Secondly, also

the reason clauses which are used in the resolution steps have at least two literals

assigned on the current level, where one of them is the unit literal. This means we

can never remove all literals on the current level from the resulting clause. Thirdly,

for each resolution step all the literals which are added to the clause are ordered on

the trail below the literal which is removed. At some point the resulting clause must

have exactly one literal on the current level, which might be the decision. Literals on

the trail below the decision do not have to be considered for resolution.

9

Algorithm 1 Overview of Boolean Constraint Propagation, refined by Alg. 7
1: function BCP() → F ∪ {⊥}
2: while there is a unit clause or conflict in F do
3: if there is a conflict C ∈ F then
4: return C
5: end if
6: if there is a unit clause C ∈ F with unit literal ℓ then
7: Assign(C, ℓ)
8: end if
9: end while

10: return ⊥
11: end function

Algorithm 2 Making Decisions
1: function Decide()
2: ℓ← any literal with σ(ℓ) = 0
3: Assign(⊥, ℓ)
4: end function

Algorithm 3 Assigning Literals, refined by Alg. 13
1: function Assign(reason clause C, literal ℓ)
2: if C = ⊥ then ▷ increase level for decisions
3: level← level + 1
4: end if
5: δ(ℓ)← level ▷ assign decision level, value, reason and trail
6: σ(ℓ)← 1
7: ρ(ℓ)← C
8: n← |τ |
9: τ(n)← ℓ

10: end function

Algorithm 4 Backtracking to a lower Decision Level, refined by Alg. 8
1: function Backtrack(decision level dl)
2: n← |τ | − 1
3: while n > 0 and δ(τ(n)) > dl do
4: ℓ← τ(n) ▷ unassign top most literal on trail
5: τ(n)← ⊥
6: n← n− 1
7: σ(ℓ)← 0 ▷ no need to change ρ and δ, since ℓ is unassigned
8: end while
9: level← dl ▷ update decision level

10: end function

10

Definition 21 (Solve (Alg. 6)). The main CDCL loop runs until a global conflict is

found or the partial assignment σ is extended to a full assignment without conflicting

clauses in the formula. Whenever a new assignment is made, the solver applies

Boolean constraint propagation until either a conflict is found or there are no more

unit clauses. If a conflict is found it is analyzed, which triggers backtracking and

learns a new clause. Otherwise the solver makes a new decision. Either way a new

assignment is made and the solver proceeds with BCP.

Note that if the size of the trail |τ | equals the number of variables |V|, all variables

have been assigned. If BCP terminates without conflicting clause the solver has found

a model of the formula.

3.3 Boolean Constraint Propagation with Watch Lists

The main driver of a CDCL solver is Boolean constraint propagation. It is where

the solver spends most of its time [17]. This is the reason why BCP has been highly

optimized in modern SAT solvers. One of these optimizations which is implemented

in all modern solvers is the addition of watch lists [18] in order to efficiently find new

unit clauses and conflicts.

Definition 22 (Watch Lists). Watch lists ω : L → 2F map each literal to a set of

clauses. Every clause is always assigned to two of its literals such that it occurs in

exactly two watch lists. We can access the watched literals (or watches) of a clause

with ω−1 : F → L× L.

Clauses of size one are not watched. They can be assigned at decision level 0 where

they will never be unassigned. The watch lists are changed during BCP or when

adding new clauses. When a literal ℓ is falsified, every clause in its watch list ω(ℓ) is

moved to one of its non-falsified literals if possible. It is made sure that every clause

11

Algorithm 5 Learning new Clauses through Conflict Analysis, refined by Alg. 9
1: function Analyze(conflict clause C)
2: C ′ ← C
3: n← |τ | − 1
4: while |{ℓ ∈ C ′ | δ(ℓ) = level}| > 1 do ▷ repeat until only one literal

on the current level remains
5: ℓ← τ(n)
6: if −ℓ ∈ C ′ then
7: C ′ ← ρ(ℓ)⊗ℓ C

′

8: end if
9: n← n− 1

10: end while
11: ℓ← the literal in C ′ with δ(ℓ) = level
12: Backtrack(δ(C ′ \ {ℓ})) ▷ unassigns ℓ but no other literal in C ′

13: F ← F ∪ C ′

14: Assign(C ′, ℓ) ▷ C ′ is now unit on ℓ
15: end function

Algorithm 6 Overview of the CDCL Loop
1: function Solve(CNF F) → {UNSAT , (SAT ,M |= F)}
2: if ∅ ∈ F then ▷ formula trivially unsatisfiable
3: return UNSAT
4: end if
5: while true do
6: C ← BCP() ▷ returns a conflict or ⊥
7: if C ̸= ⊥ then
8: if δ(C) = 0 then ▷ global conflict
9: return UNSAT

10: end if
11: Analyze(C)
12: continue
13: end if
14: if |τ | = |V| then ▷ σ is a model
15: return (SAT , σ)
16: end if
17: Decide() ▷ make a decision
18: end while
19: end function

12

appears in exactly two watch lists. Moving the clause is not necessary if the other

watched literal is already satisfied.

This ensures that all unit clauses and conflicts can be found by just looking at

the watch lists of newly falsified literals. Literals are processed in order of their

assignment. To identify which watch lists have already been processed, the solver

keeps a global value propagated which points to the first literal on the trail that has

not been processed yet.

We refine BCP to make use of watch lists (Alg. 7). This requires two more changes:

The value of propagated is updated at the end of Backtrack (Alg. 8, Line 10) and

the newly learned clauses are watched in Analyze (Alg. 9, Lines 14-18).

There are further optimizations like blocking literals [19, 20] which we will not discuss

here as they extend to reimplication in an obvious way.

3.4 Parallel SAT Solving

There are many attempts to leverage the power of modern CPU’s for SAT solving,

which are able to compute many things at once and can be combined into clusters of

hundreds or thousands of nodes. Possibly the most prominent of these is the portfolio

approach as pioneered by ManySAT [21]. In this apprach, many solver instances

try to solve the same problem in parallel, while being able to share information with

the others. Usually the solver instances are diversified in order to explore different

parts of the search space and share knowledge in form of clauses. Gimsatul [22, 23]

follows the portfolio approach with shared memory, which avoids copying of clauses.

It relies on fast memory access and therefore does not scale beyond single CPU’s.

The clause sharing scheme selects clauses for export when they are learned and may

import clauses before a decision is made. We highlight the changes to the algorithm

in Solve (Alg. 10, Lines 11, 17-23) and Analyze (Alg. 11, Line 19).

13

Algorithm 7 Boolean Constraint Propagation with Watch Lists, replacing Alg. 1
1: function BCP() → F ∪ {⊥}
2: while τ(propagated) ̸= ⊥ do
3: ℓprop ← τ(propagated)
4: propagated← propagated+ 1
5: for C ∈ ω(−ℓprop) do
6: ⟨ℓ1, ℓ2⟩ ← ω−1(C) ▷ get the two watched literals for C

7: ℓother ←

{
ℓ2, if − ℓprop = ℓ1

ℓ1, otherwise

8: if σ(ℓother) = 1 then ▷ no update required
9: continue

10: end if
11: if C is unit on ℓother then
12: Assign(C, ℓother)
13: continue
14: end if
15: if C is not falsified then
16: ℓ← literal in C \ {ℓother} with σ(ℓ) ̸= −1
17: ω(−ℓprop)← ω(−ℓprop) \ {C}
18: ω(ℓ)← ω(ℓ) ∪ {C} ▷ swap watched literal
19: continue
20: end if
21: return C ▷ conflict
22: end for
23: end while
24: return ⊥
25: end function

Algorithm 8 Backtracking with Watch Lists, replacing Alg. 4
1: function Backtrack(decision level dl)
2: n← |τ | − 1
3: while n > 0 and δ(τ(n)) > dl do
4: ℓ← τ(n) ▷ unassign top most literal on trail
5: τ(n)← ⊥
6: n← n− 1
7: σ(ℓ)← 0 ▷ no need to change ρ and δ, since ℓ is unassigned
8: end while
9: level← dl ▷ update decision level

10: propagated← |τ | ▷ update propagated
11: end function

14

Algorithm 9 Watching Clauses after Conflict Analysis, replacing Alg. 5
1: function Analyze(conflict clause C)
2: C ′ ← C
3: n← |τ | − 1
4: while |{ℓ ∈ C ′ | δ(ℓ) = level}| > 1 do ▷ repeat until only one literal

on the current level remains
5: ℓ← τ(n)
6: if −ℓ ∈ C ′ then
7: C ′ ← ρ(ℓ)⊗ℓ C

′

8: end if
9: n← n− 1

10: end while
11: ℓ← the literal in C ′ with δ(ℓ) = level
12: Backtrack(δ(C ′ \ {ℓ})) ▷ unassigns ℓ but no other literal in C ′

13: F ← F ∪ C ′

14: if |C ′| > 1 then
15: ℓ′ ← any literal in C ′ with δ(ℓ′) = level ▷ backtracking changed level
16: ω(ℓ)← ω(ℓ) ∪ C ′

17: ω(ℓ′)← ω(ℓ′) ∪ C ′ ▷ set watches
18: end if
19: Assign(C ′, ℓ) ▷ C ′ is now unit on ℓ
20: end function

15

Algorithm 10 CDCL Loop with Import and Export of Clauses, replacing Alg. 6
1: function Solve(CNF F) → {UNSAT , (SAT ,M |= F)}
2: if ∅ ∈ F then ▷ formula trivially unsatisfiable
3: return UNSAT
4: end if
5: while true do
6: C ← BCP() ▷ returns a conflict or ⊥
7: if C ̸= ⊥ then
8: if δ(C) = 0 then ▷ global conflict
9: return UNSAT

10: end if
11: AnalyzeAndExport(C)
12: continue
13: end if
14: if |τ | = |V| then ▷ σ is a model
15: return (SAT , σ)
16: end if
17: C ← Import() ▷ returns ⊤, ∅ or ⊥
18: if C = ∅ then ▷ global conflict
19: return UNSAT
20: end if
21: if C = ⊤ then ▷ new propagation
22: continue
23: end if
24: Decide() ▷ otherwise new decision
25: end while
26: end function

16

Algorithm 11 Exporting Clauses after Conflict Analysis, replacing Alg. 5
1: function AnalyzeAndExport(conflict clause C)
2: C ′ ← C
3: n← |τ | − 1
4: while |{ℓ ∈ C ′ | δ(ℓ) = level}| > 1 do ▷ repeat until only one literal

on the current level remains
5: ℓ← τ(n)
6: if −ℓ ∈ C ′ then
7: C ′ ← ρ(ℓ)⊗ℓ C

′

8: end if
9: n← n− 1

10: end while
11: ℓ← the literal in C ′ with δ(ℓ) = level
12: Backtrack(δ(C ′ \ {ℓ})) ▷ unassigns ℓ but no other literal in C ′

13: F ← F ∪ C ′

14: if |C ′| > 1 then
15: ℓ′ ← any literal in C ′ with δ(ℓ′) = level ▷ backtracking changed level
16: ω(ℓ)← ω(ℓ) ∪ C ′

17: ω(ℓ′)← ω(ℓ′) ∪ C ′ ▷ set watches
18: end if
19: Export(C ′)
20: Assign(C ′, ℓ) ▷ C ′ is now unit on ℓ
21: end function

17

When importing clauses, new situations can occur. To talk about these we use the

definitions from Nadel [8].

Definition 23 (Fake Conflicts). A conflicting clause C is called fake, if only one

literal in C is assigned on tevel δ(C).

Definition 24 (Unisatisfied Clauses and Missed Implications). Given a partial

assignment σ, a clause C is called unisatisfied or unisat, if σ falsifies all the literal of

C except one, which is satisfied. If the level of the satisfied literal ℓ is higher then the

level of the rest of the clause, i.e., δ(ℓ) > δ(C \ {ℓ}), it is called a missed implication.

Fake conflicts, conflicting clauses where clause level and solver level differ, as well

as missed implications could not occur previously, but they do with chronological

backtracking or when importing new clauses. For now we ensure that these situations

are resolved in the new function Import (Alg. 12), such that changes stay local and

the previous algorithms are untouched. In the following section we will discuss the

changes to the CDCL algorithms introduced by adding chronological backtracking to

the solver. This also allows us to refine the Import function.

3.5 Chronological Backtracking

As introduced in Section 2.1, instead of backjumping to the lowest level where the

new clause is still unit, a solver with chronological backtracking will simply backtrack

one level after analyzing the conflict clause. This seemingly small change introduces

missed implications, fake conflicts, and lower conflict levels further down the line.

Following the notion of Möhle and Biere [7], we uncouple the level of the solver from

the level of assignments by redefining the decision level δ.

18

Algorithm 12 Importing Clauses
1: function Import() → {⊥, ∅,⊤}
2: C ← ImportClause() ▷ maybe get a clause from another thread
3: if C = ⊥ then ▷ no new clause
4: return ⊥
5: end if
6: if C contains satisfied literal ℓ with δ(ℓ) = 0 then ▷ skip import
7: return ⊥
8: end if
9: if C is conflicting then

10: if δ(C) = 0 then
11: return ∅
12: end if
13: if |{ℓ ∈ C | δ(ℓ) = δ(C)}| = 1 then
14: ℓ← literal in C with δ(ℓ) = δ(C)
15: Backtrack(δ(C \ {ℓ}))
16: end if
17: end if
18: F ← F ∪ {C} ▷ really import the clause
19: if |C| > 1 then

20: ℓ← literal in C with

{
σ(ℓ) ̸= −1, if possible
δ(ℓ) = δ(C), otherwise

21: ℓ′ ← literal in C \ {ℓ} with

{
σ(ℓ′) ̸= −1, if possible
δ(ℓ′) = δ(C \ {ℓ}), otherwise

22: ω(ℓ)← ω(ℓ) ∪ C
23: ω(ℓ′)← ω(ℓ′) ∪ C ▷ set watches
24: if C is conflicting then
25: Backtrack(δ(C))
26: propagated = τ−1(ℓ) ▷ handle conflict implicitly in BCP
27: return ⊤
28: end if
29: if C is unisat and δ(ℓ) > δ(ℓ′) then ▷ missed implication
30: Backtrack(δ(ℓ′))
31: end if
32: end if
33: if |C| = 1 and C is satisfied then
34: Backtrack(0)
35: end if
36: if C is unit on ℓ then
37: Assign(C, ℓ)
38: return ⊤
39: end if
40: return ⊥
41: end function

19

Definition 25 (Assignment Level). The value assigned by δ : assignedσ(V)→ N is

now called assignment level. The assignment level is equal to the highest level of a

literal in the responsible unit clause, i.e., the level on which the assignment is implied

(Alg. 13, Lines 7-9). That is, for an assignment ℓ with reason C, the assignment level

δ(ℓ) is equal δ(C). For decisions the assignment level is equal to the decision level as

defined previously (Alg. 13, Line 5).

Assignments on the trail are no longer ordered by level. Hence we call assignments

made at a certain decision level with a lower assignment level out-of-order assignments.

Möhle and Biere [7] propose the concept of blocks and slices. Blocks are a sequence

of consecutive literals on the trail between two decisions whereas a slice refers to all

literals with a certain assignment level. Without chronological backtracking, blocks

and slices refer to the same thing. This means that the solver can remove entire

blocks of literals from the trail. With chronological backtracking it needs to unassign

slices instead, which can stretch over multiple blocks. In order to implement this

efficiently we need a helper structure called stack.

Definition 26 (Control Stack). The control stack γ : {1, . . . , level} → {0, . . . , |τ |}

keeps track of the starting point on the trail of every decision level. This is done by

assigning the position of the decision on the trail to each level (Alg. 13, Line 4). For

simplicity we define γ(level + 1) := |τ |.

Backtracking (Alg. 14) uses the stack to unassign literals starting at the backtrack

level and to re-order out-of-order literals in-place (Lines 2, 3, 5, and 8-13). To ensure

that BCP does not miss conflicts or unit clauses, these are repropagated by resetting

propagate (Line 4).

With these changes we can now apply chronological backtracking to Analyze (Alg. 15,

Line 13). Additionally, it is ensured that the conflict level matches the solver level

20

Algorithm 13 Assigning Literals with Chronological Backtracking, replacing Alg. 3
1: function Assign(reason clause C, literal ℓ)
2: if C = ⊥ then
3: level← level + 1
4: γ(level)← |τ | ▷ add a new decision level to the stack
5: δ(ℓ)← level
6: end if
7: if C ̸= ⊥ then ▷ level of ℓ now depends on C
8: δ(ℓ)← δ(C \ {ℓ})
9: end if

10: σ(ℓ)← 1
11: ρ(ℓ)← C
12: n← |τ |
13: τ(n)← ℓ
14: end function

Algorithm 14 Backtracking with Chronological Backtracking, replacing Alg. 8
1: function Backtrack(decision level dl)
2: n, n′ ← γ(dl)
3: m← |τ |
4: propagated← n ▷ moved assignments are repropagated
5: while n < m do ▷ no longer unassign from the top
6: ℓ← τ(n)
7: τ(n)← ⊥
8: n← n+ 1
9: if δ(ℓ) ≤ dl then ▷ move ℓ to the lowest empty trail position

10: τ(n′) = ℓ
11: n′ ← n′ + 1
12: continue
13: end if
14: σ(ℓ)← 0 ▷ unassign ℓ
15: end while
16: level← dl ▷ γ changes implicitly
17: end function

21

Algorithm 15 Conflict Analysis with Chronological Backtracking, replacing Alg. 9
1: function Analyze(conflict clause C)
2: Backtrack(δ(C)) ▷ backtrack to the conflict level
3: C ′ ← C
4: n← |τ | − 1
5: while |{ℓ ∈ C ′ | δ(ℓ) = level}| > 1 do ▷ repeat until only one literal

on the current level remains
6: ℓ← τ(n)
7: if δ(ℓ) = level and −ℓ ∈ C ′ then ▷ skip out-of-order assignments
8: C ′ ← ρ(ℓ)⊗ℓ C

′

9: end if
10: n← n− 1
11: end while
12: ℓ← the literal in C ′ with δ(ℓ) = level
13: Backtrack(δ(ℓ)− 1) ▷ chronological backtracking
14: if C ′ ̸= C then
15: F ← F ∪ C ′ ▷ C was a true conflict
16: if |C ′| > 1 then
17: ℓ′ ← any literal in C ′ with δ(ℓ′) = δ(C \ ℓ)
18: ω(ℓ)← ω(ℓ) ∪ C ′

19: ω(ℓ′)← ω(ℓ′) ∪ C ′ ▷ set watches
20: end if
21: end if
22: Assign(C ′, ℓ) ▷ C ′ is now unit on ℓ
23: end function

22

(Line 2), out-of-order literals are skipped in the resultion step (Line 7), and fake

conflicts do not result in a learned clause (Line 14).

This version of the solver can handle assignments on arbitrary levels, which we can

use for the Import function in a parallel setting (Alg. 16, Lines 14, 23, 28, and 32).

23

Algorithm 16 Importing Clauses with Chronological Backtracking, replacing Alg. 12
1: function Import() → {⊥, ∅,⊤}
2: C ← ImportClause() ▷ maybe get a clause from another thread
3: if C = ⊥ then ▷ no new clause
4: return ⊥
5: end if
6: if C contains satisfied literal ℓ with δ(ℓ) = 0 then ▷ skip import
7: return ⊥
8: end if
9: if C is conflicting then

10: if δ(C) = 0 then
11: return ∅
12: end if
13: if |{ℓ ∈ C | δ(ℓ) = δ(C)}| = 1 then
14: Backtrack(δ(C)− 1) ▷ chronological backtracking
15: end if
16: end if
17: F ← F ∪ {C} ▷ really import the clause
18: if |C| > 1 then ▷ find watches

19: ℓ← literal in C with

{
σ(ℓ) ̸= −1, if possible
δ(ℓ) = δ(C), otherwise

20: ℓ′ ← literal in C \ {ℓ} with

{
σ(ℓ′) ̸= −1, if possible
δ(ℓ′) = δ(C \ {ℓ}), otherwise

21: ω(ℓ)← ω(ℓ) ∪ C ▷ set watches
22: ω(ℓ′)← ω(ℓ′) ∪ C
23: if C is conflicting then ▷ no backtrack
24: propagated = τ−1(ℓ) ▷ handle conflict implicitly in BCP
25: return ⊤
26: end if
27: if C is unisat and δ(ℓ) > δ(ℓ′) then ▷ missed implication
28: Backtrack(δ(C)− 1) ▷ chronological backtracking
29: end if
30: end if
31: if |C| = 1 and C is satisfied then
32: Backtrack(δ(C)− 1) ▷ chronological backtracking
33: end if
34: if C is unit on ℓ then
35: Assign(C, ℓ)
36: return ⊤
37: end if
38: return ⊥
39: end function

24

4 Approach

In the following we describe and contrast three different implementations of reim-

plication, first the original implementation in IntelSAT [8], then our two new

implementations, one in the SAT solver CaDiCaL [24, 23], the other in the parallel

SAT solver Gimsatul [22].

4.1 Reimplication

In the previous chapter we have described chronological backtracking, which produces

missed implications and fake conflicts. Additionally, the formula can contain multiple

conflicts on different levels at the same time. Soundness and completeness of the

algorithm is still guaranteed, however at the cost of some unintended side effects.

When backtracking, out-of-order assignments have to be repropagated even though

chronological backtracking is supposed to save work. This is how missed implications

are found after they have turned into unit clauses through backtracking without

changing the watch scheme for BCP. Reimplication adresses this problem by fixing

missed implications eagerly, thus avoiding repropagation after backtracking.

In chronological backtracking as well as with reimplication, fake conflicts trigger

backtracking instead of conflict analysis. If multiple conflicts exist, chronological

backtracking only guarantees that they are found eventually, while reimplication seeks

25

to find the conflict with the lowest level directly. This avoids potentially unnecessary

iterations of BCP and conflict analysis.

To guarantee that BCP can find all missed implications the watch scheme has to be

modified. Previously, when a watched literal was satisfied, the solver could ignore the

clause. Now, unisatisfied clauses can not be ignored if they are a missed implication.

The new scheme guarantees that skipped clauses are no missed implications by

checking the level of the two watched literals if the clause is watched by a satisified

and a falsified literal. If the falsified literal is assigned at the same or higher level

then the satisfied literal, the clause can not be a missed implication and can savely

be ignored. By updating the watched literals of conflicts and unit clauses it is

ensured that a clause is never watched by a falsified and an unassigned literal after

backtracking which could then be missed by BCP.

The skipping criterium is applied to BCP in all three implementations (Alg. 21,

Alg. 32 and Alg. 41, Line 5). When watching new clauses or changing watched literals

it is enough to always prioritize unassigned literals, then satisified literals and finally

the falsified literal with the highest level.

Before continuing with the implementation in IntelSAT from the original paper [8],

we introduce the following definition for fixing missed implications as it reflects our

understanding of reimplication.

Definition 27 (Elevating Literals). A missed implication is fixed by changing the level

and reason of the unisatisifed literal to the missed implication clause and corresponding

level. We call this process elevation.

Intuitively, literals can be elevated until they are assigned at the lowest possible level.

This is realisation guides our two implementations of reimplication.

26

4.2 Implementation in IntelSAT

For conflict analysis to work, all assignments with the same level need to be ordered

on the trail chronologically, i.e., by the time they were assigned. Changing the order

of literals which are assigned on different levels however is possible. Expressed in

terms of blocks and slices we have to ensure that the relative order of every slice is

preserved. IntelSAT uses this fact to avoid dealing with out-of-order assignments

in Backtrack (Alg. 17) and Analyze (Alg. 18). Apart from chronologically back-

tracking (Alg. 18, Line 10), these are the same as without chronological backtracking.

When assigning literals they are inserted into the trail after the last assignment on

their respective level, keeping all literals with the same assignment level in blocks

(Alg. 19, Lines 12-15). This is implemented efficiently using a doubly linked list and

keeping track of the beginning and end of each block with the control stack γ.

This re-ordered trail can not be used for BCP anymore because there is no way to

differentiate between already processed literals and newly assigned ones. Instead,

literals to be propagated are pushed on the propagation queue.

Definition 28 (Propagation Queue). π ⊆ satsifiedσ(L) is called propagation queue.

It stores all literals that have to be processed by BCP. Whenever a literal ℓ is assigned

to true the solver inserts ℓ into π (Alg. 19, Line 16). BCP removes one literal of π

at a time and processes it (Alg. 20, Lines 3 and 4).

The simplest implementation of the propagation queue is a stack which can only be

changed by adding a literal to the top or removing the top most literal. Interestingly,

this flips the order in which literals are processed by BCP when compared to using

the trail, from first assigned literal first to last assigned literal first.

All conflict clauses and missed implications are saved until they are processed.

27

Algorithm 17 Backtracking in IntelSAT, using Alg. 4
1: function Backtrack(decision level dl)
2: n← |τ | − 1
3: while n > 0 and δ(τ(n)) > dl do
4: ℓ← τ(n) ▷ unassign top most literal on trail
5: τ(n)← ⊥
6: n← n− 1
7: σ(ℓ)← 0 ▷ no need to change ρ and δ, since ℓ is unassigned
8: end while
9: level← dl ▷ update decision level

10: end function

Algorithm 18 Conflict analysis in IntelSAT, replacing Alg. 9
1: function Analyze(conflict clause C)
2: C ′ ← C
3: n← |τ | − 1
4: while |{ℓ ∈ C ′ | δ(ℓ) = level}| > 1 do ▷ repeat until only one literal

on the current level remains
5: ℓ← τ(n)
6: C ′ ← ρ(ℓ)⊗ℓ C

′

7: n← n− 1
8: end while
9: ℓ← the literal in C ′ with δ(ℓ) = level

10: Backtrack(δ(ℓ)− 1) ▷ chronological backtracking
11: F ← F ∪ C ′

12: if |C ′| > 1 then
13: ℓ′ ← any literal in C ′ with δ(ℓ′) = δ(C \ ℓ) ▷ ℓ′ on highest possible level
14: ω(ℓ)← ω(ℓ) ∪ C ′

15: ω(ℓ′)← ω(ℓ′) ∪ C ′ ▷ set watches
16: end if
17: Assign(C ′, ℓ) ▷ C ′ is now unit on ℓ
18: end function

28

Definition 29 (Reimplication Stack). µ ⊆ F is called reimplication stack. It stores

all clauses that have to be processed by reimplication.

Definition 30 (Conflict Stack). κ ⊆ F is called conflict stack. It stores all conflicts

that are found in BCP.

The functionality of BCP (Alg. 20) is split into three algorithms.

1. PropagateWatch (Alg. 21) finds unit clauses, missed implications and con-

flicts in the watch list of a falsified literal.

2. Reimply (Alg. 22) handles missed implications iteratively by elevating literals

(Alg. 23) and fixing the watch lists of elevated literals.

3. ProcessConflicts (Alg. 24) ensures that BCP terminates with the lowest

possible conflict and fixes the watched literals of the conflict clauses.

Notice that BCP can not terminate early when finding a conflict, meaning the while

loop (Alg. 20, Line 3) continues until the propagation queue π is empty. Additionally,

literals are repropagated every time a missed implication or conflict is found (Alg. 21,

Lines 23 and 36). The CDCL loop Solve stays the same as in Section 3.2 (Alg. 6).

4.3 Implementation in CaDiCaL

IntelSAT needs to perform BCP until a fixed point is reached, even if a conflict is

found. Following our intuition of elevating literals, the conflict level can not change if

all literals on lower levels have been processed. Therefore, if BCP would prioritize

the lowest level literal first, it could stop as soon as a conflict on the level of the

29

Algorithm 19 Assigning literals in IntelSAT, replacing Alg. 13
1: function Assign(reason clause C, literal ℓ)
2: if C = ⊥ then
3: level← level + 1
4: γ(level)← |τ | ▷ add a new decision level to the stack
5: δ(ℓ)← level
6: end if
7: if C ̸= ⊥ then
8: δ(ℓ)← δ(C \ {ℓ})
9: end if

10: σ(ℓ)← 1
11: ρ(ℓ)← C
12: n← γ(δ(ℓ) + 1) ▷ insert ℓ into τ such that it is sorted by level
13: for all m ≥ n do τ(m+ 1)← τ(m)
14: for all decisions ℓd do γ(δ(ℓd))← τ−1(ℓd) ▷ fix γ
15: τ(n)← ℓ ▷ efficient implementation with doubly linked list
16: π(|pi|)← ℓ ▷ put ℓ on the propagation queue
17: end function

Algorithm 20 Boolean constraint propagation in IntelSAT, replacing Alg. 7
1: function BCP() → F ∪ {⊥}
2: Reimply()
3: while there is a literal lprop ∈ π do
4: π ← π \ {ℓprop}
5: PropagateWatch(ℓprop)
6: end while
7: if κ ̸= ∅ then
8: return any C ∈ κ
9: end if

10: return ⊥
11: end function

30

Algorithm 21 Inner loop of Boolean constraint propagation with reimplication in
IntelSAT, compare with Alg. 32 and Alg. 41
1: function PropagateWatch(ℓprop)
2: for C ∈ ω(−lprop) do
3: ⟨ℓ1, ℓ2⟩ ← ω−1(C) ▷ get the two watched literals for C

4: ℓother ←

{
ℓ2, if − ℓprop = ℓ1

ℓ1, otherwise

5: if σ(ℓother) = 1 and δ(ℓother) ≤ δ(ℓprop) then ▷ watch invariant
6: continue
7: end if
8: if C is unit on ℓother then
9: Assign(C, ℓother)

10: ℓ← literal in C \ {ℓother} with δ(ℓ) = δ(C)
11: ω(−ℓprop)← ω(−ℓprop) \ {C}
12: ω(ℓ)← ω(ℓ) ∪ {C} ▷ swap watched literal
13: continue
14: end if
15: if C is unisatisfied on ℓother then
16: ℓ← literal in C \ {ℓother} with δ(ℓ) = δ(C \ {ℓother})
17: ω(−ℓprop)← ω(−ℓprop) \ {C}
18: ω(ℓ)← ω(ℓ) ∪ {C} ▷ swap watched literal
19: if δ(C \ {ℓother}) < δ(ℓother) then ▷ missed implication
20: µ← µ ∪ C
21: π ← π ∪ ℓprop
22: Reimply()
23: ProcessConflicts()
24: return
25: end if
26: continue
27: end if
28: if C is not falsified then
29: ℓ← literal in C \ {ℓother} with σ(ℓ) ̸= −1
30: ω(−ℓprop)← ω(−ℓprop) \ {C}
31: ω(ℓ)← ω(ℓ) ∪ {C} ▷ swap watched literal
32: continue
33: end if
34: κ← κ ∪ C ▷ conflict
35: if δ(C) < level or |{ℓ ∈ C | δ(ℓ) = level}| = 1 then
36: π ← π ∪ ℓprop
37: ProcessConflicts()
38: return
39: end if
40: end for
41: end function

31

Algorithm 22 Reimplication in IntelSAT

1: function Reimply()
2: while there exists C ∈ µ do
3: µ← µ \ {C}
4: ℓ← the satisfied literal in C ▷ all the clauses in µ are unisatisfied
5: if δ(C \ {ℓ}) ≥ δ(ℓ) then
6: continue ▷ no missed implication
7: end if
8: Reassign(C, ℓ) ▷ elevate ℓ
9: if ℓ ∈ π then

10: continue ▷ ℓ will be propagated and fixed that way
11: end if
12: for C ′ ∈ ω(−ℓ) do ▷ fix watch list
13: if C ′ ∈ µ or C ′ ∈ κ then
14: continue ▷ C ′ will be fixed anyway
15: end if
16: ⟨ℓ1, ℓ2⟩ ← ω−1(C ′) ▷ get the two watched literals for C ′

17: ℓ′ ←

{
ℓ2, if − ℓ = ℓ1

ℓ1, otherwise

18: if σ(ℓ′) = 1 and δ(ℓ′) ≤ δ(ℓ) then ▷ watches already correct
19: continue
20: end if ▷ C is either satisfied or has multiple unassigned literals
21: ℓ′1 ← ℓ′1 ∈ C ′ with σ(ℓ′1) ̸= −1

22: ℓ′2 ← ℓ′2 ∈ C ′ \ {ℓ′1} with

{
σ(ℓ′2) ̸= −1, if possible
δ(ℓ′2) = δ(C ′ \ {ℓ′1}), otherwise

23: ω(−ℓ)← ω(−ℓ) \ {C ′}
24: ω(ℓ′)← ω(ℓ′) \ {C ′}
25: ω(ℓ′1)← ω(ℓ′1) ∪ {C ′}
26: ω(ℓ′2)← ω(ℓ′2) ∪ {C ′}
27: if C ′ is unisat and δ(ℓ′2) < δ(ℓ′1) then ▷ missed implication
28: µ← µ ∪ {C ′}
29: end if
30: end for
31: end while
32: end function

32

Algorithm 23 Elevating literals in IntelSAT, compare with Alg. 19
1: function Reassign(reason clause C, literal ℓ)
2: δ(ℓ)← δ(C \ {ℓ}) ▷ C cannot be ⊥
3: ρ(ℓ)← C ▷ value of ℓ already set
4: n′ ← τ−1(ℓ) ▷ ℓ already on the trail
5: n← γ(δ(ℓ) + 1) ▷ new position is always smaller
6: for all n ≤ m < n′ do τ(m+ 1)← τ(m)
7: for all decisions ℓd do γ(δ(ℓd))← τ−1(ℓd) ▷ fix γ
8: τ(n)← ℓ ▷ move ℓ to new position
9: end function

Algorithm 24 Conflict handling in IntelSAT

1: function ProcessConflicts()
2: for C ∈ κ do
3: ℓ1, ℓ2 ← ω−1(C) ▷ replace watches
4: ℓ′1 ← literal in C with δ(ℓ′1) = δ(C)
5: ℓ′2 ← literal in C \ {ℓ′1} with δ(ℓ′2) = δ(C \ {ℓ′1})
6: ω(ℓ1)← ω(ℓ1) \ {C}
7: ω(ℓ2)← ω(ℓ2) \ {C}
8: ω(ℓ′1)← ω(ℓ′1) ∪ {C}
9: ω(ℓ′2)← ω(ℓ′2) ∪ {C}

10: end for
11: n← min{δ(C) | C ∈ κ} ▷ get the lowest conflict level
12: Backtrack(n)
13: if there exists C ∈ κ conflicting with |{ℓ ∈ C | δ(ℓ) = n}| = 1 then
14: Backtrack(level − 1)
15: end if
16: for C ∈ κ do
17: if C is unit on ℓ then
18: Assign(C, ℓ)
19: end if
20: if C is not falsified then
21: κ← κ \ {C}
22: end if
23: end for
24: end function

33

propagated literal is reached. This also guarantees that all conflicts with lower level

have been found already.

We use this observation to reduce unnecessary propagations in our implementation in

CaDiCaL. We further adapt the trail structure to allow both sorting the literals by

level as in IntelSAT and also using it for BCP.

Definition 31 (Multitrail). There is a trail τi for each decision level 0 ≤ i ≤ level.

We call the combination of these trails the multitrail. Each trail can have holes, i.e.,

τi(n) = ⊥ but τi(m) ̸= ⊥ for some m > n. These holes are created by elevating

literals (Alg. 25, Lines 4 and 5) and stay until the solver backtracks to an earlier

level. To deal with holes, the definition of the size of a single trail is adapted slightly:

|τi| := maxn{τ−1
i ̸= ⊥}+ 1. Each trail τi also gets a separate value propagatedi.

Backtrack (Alg. 26) is adapted to the multitrail, unassigning trails level by level

(Line 2), ignoring holes (Lines 6-8) and resetting the propagated value (Line 13).

Holes are also ignored during conflict analysis (Alg. 28, Line 7). The size of the trail

no longer directly measures the number of assignments. They are counted explicitly

with a new value assigned instead (Alg. 27, Line 13 and Alg. 26, Line 12). This

replaces the termination check in the CDCL loop Solve (Alg. 30, Line 17).

BCP iterates over each level and processes the new literals on that level. For efficiency

reasons, we split the procedure into BCP with reimplication which handles all levels

below the solver level (Alg. 31) and BCP without reimplication for the highest level

(Alg. 29). When a conflict is found early, the latter can be skipped entirely (Alg. 30,

Lines 6-9). As the name suggests, no missed implications can occur when propagating

the highest level. This means we can use the already existing, highly optimized

propagation routine of CaDiCaL for BCP without reimplication and simply ignore

holes (Alg. 29, Lines 5-7).

34

Algorithm 25 Elevating literals in CaDiCaL, compare with Alg. 27
1: function Reassign(reason clause C, literal ℓ)
2: δ(ℓ)← δ(C \ {ℓ}) ▷ C cannot be ⊥
3: ρ(ℓ)← C ▷ value of ℓ already set
4: n← τ−1

δ(ℓ)(l) ▷ creates a hole
5: τδ(ℓ)(n)← ⊥
6: n← |τδ(ℓ)|
7: τδ(ℓ)(n)← ℓ
8: end function

Algorithm 26 Backtracking in CaDiCaL, replacing Alg. 14
1: function Backtrack(decision level dl)
2: while level > dl do
3: n← |τlevel| − 1
4: while n > 0 do
5: ℓ← τlevel(n) ▷ unassign top most literal on trail
6: if ℓ = ⊥ then
7: continue ▷ hole due to an elevated literal
8: end if
9: τlevel(n)← ⊥

10: n← n− 1
11: σ(ℓ)← 0 ▷ no need to change ρ and δ, since ℓ is unassigned
12: assigned← assigned− 1
13: end while
14: propagatedlevel ← 0
15: level← level − 1
16: end while
17: end function

35

Algorithm 27 Assigning literals in CaDiCaL, replacing Alg. 13
1: function Assign(reason clause C, literal ℓ)
2: if C = ⊥ then
3: level← level + 1 ▷ no stack
4: δ(ℓ)← level
5: end if
6: if C ̸= ⊥ then
7: δ(ℓ)← δ(C \ {ℓ})
8: end if
9: σ(ℓ)← 1

10: ρ(ℓ)← C
11: n← |τδ(ℓ)|
12: τδ(ℓ)(n)← ℓ
13: assigned← assigned+ 1
14: end function

Algorithm 28 Conflict analysis in CaDiCaL, replacing Alg. 15
1: function Analyze(conflict clause C)
2: Backtrack(δ(C)) ▷ backtrack to the conflict level
3: C ′ ← C
4: n← |τlevel| − 1
5: while |{ℓ ∈ C ′ | δ(ℓ) = level}| > 1 do ▷ repeat until only one literal

on the current level remains
6: ℓ← τlevel(n)
7: if δ(ℓ) ̸= ⊥ and −ℓ ∈ C ′ then ▷ skip holes
8: C ′ ← ρ(ℓ)⊗ℓ C

′

9: end if
10: n← n− 1
11: end while
12: ℓ← the literal in C ′ with δ(ℓ) = level
13: Backtrack(δ(ℓ)− 1) ▷ chronological backtracking
14: if C ′ ̸= C then
15: F ← F ∪ C ′ ▷ C was a true conflict
16: if |C ′| > 1 then
17: ℓ′ ← any literal in C ′ with δ(ℓ′) = δ(C \ ℓ)
18: ω(ℓ)← ω(ℓ) ∪ C ′

19: ω(ℓ′)← ω(ℓ′) ∪ C ′ ▷ set watches
20: end if
21: end if
22: Assign(C ′, ℓ) ▷ C ′ is now unit on ℓ
23: end function

36

Algorithm 29 Boolean constraint propagation without reimplication in CaDiCaL,
compare with Alg. 7
1: function BCP() → F ∪ {⊥}
2: while τlevel(propagatedlevel) ̸= ⊥ do
3: ℓprop ← τlevel(propagatedlevel)
4: propagatedlevel ← propagatedlevel + 1
5: if ℓprop = ⊥ then
6: continue ▷ hole
7: end if
8: for C ∈ ω(−ℓprop) do
9: ⟨ℓ1, ℓ2⟩ ← ω−1(C) ▷ get the two watched literals for C

10: ℓother ←

{
ℓ2, if − ℓprop = ℓ1

ℓ1, otherwise

11: if σ(ℓother) = 1 then ▷ no update required
12: continue
13: end if
14: if C is unit on ℓother then
15: Assign(C, ℓother)
16: continue
17: end if
18: if C is not falsified then
19: ℓ← literal in C \ {ℓother} with σ(ℓ) ̸= −1
20: ω(−ℓprop)← ω(−ℓprop) \ {C}
21: ω(ℓ)← ω(ℓ) ∪ {C} ▷ swap watched literal
22: continue
23: end if
24: return C ▷ conflict
25: end for
26: end while
27: return ⊥
28: end function

37

Algorithm 30 CDCL loop in CaDiCaL, replacing Alg. 6
1: function Solve(CNF F) → {UNSAT , (SAT ,M |= F)}
2: if ∅ ∈ F then ▷ formula trivially unsatisfiable
3: return UNSAT
4: end if
5: while true do
6: C ← ReimplyBCP() ▷ BCP with Reimplication on lower levels
7: if C = ⊥ then
8: C ← BCP() ▷ normal BCP on current level
9: end if

10: if C ̸= ⊥ then
11: if δ(C) = 0 then ▷ global conflict
12: return UNSAT
13: end if
14: Analyze(C)
15: continue
16: end if
17: if assigned = |V| then ▷ σ is a model
18: return (SAT , σ)
19: end if
20: Decide() ▷ make a decision
21: end while
22: end function

38

Missed implications are not handled by a reimplication routine but are elevated

immediately (Alg. 32, Line 20). Similarly to IntelSAT, conflicts are pushed on the

conflict stack (Alg. 32, Line 30) and the watches are fixed by a ProcessConflict

procedure (Alg. 33). However, fixing the watches is not done upon finding a conflict

but on the next invocation of BCP (Alg. 31, Line 2). When a conflict on the level of

the currently processed literal is found or a the level of the processed literal reaches

the level of a previously found conflict, BCP terminates (Alg. 32, Lines 31-33 and

Alg. 29, Lines 5-7 and 18-20).

4.4 Implementation in Gimsatul

The trail is an essential part of the solver. It is used in many places that we

do not describe in this thesis, like pre- and inprocessing. In order to reduce the

implementational overhead, we wanted to keep the trail structure as it was, i.e., as

in chronological backtracking. However, we still want to propagate level by level to

avoid unnecessary propagations. The solution is using a priority queue, which adapts

the propagation queue of IntelSAT (Def. 28), and always returns the literal with

the lowest level first. The trail position is used as a tie breaker, however as mentioned

before, this is an arbitrary choice and just mimics the behaviour of using the trail for

propagation (Alg. 40, Lines 2-5).

The other change from CaDiCaL and IntelSAT is that we no longer keep track

of all conflicts, and instead focus on the conflict with the lowest level. This allows

to replace the conflict stack κ (Def. 30) with a single value conflict ∈ F ∪ {⊥} and

removes the necessity for a ProcessConflicts routine. However we still need to fix

the watches of the conflicts that would have been on the conflict stack. We introduce

a second propagation queue π′ which is not used for propagation, but instead saves

the watched literals of all found conflicts (Alg. 41, Lines 30-36). After conflict analysis

39

Algorithm 31 Boolean constraint propagation with reimplication in CaDiCaL,
compare with Alg. 7
1: function ReimplyBCP() → F ∪ {⊥}
2: ProcessConflicts()
3: i← 0
4: while i < level do
5: if there is C ∈ κ with δ(C) ≤ i then
6: return C
7: end if
8: while τi(propagatedi) ̸= ⊥ do
9: ℓprop ← τi(propagatedi)

10: propagatedi ← propagatedi + 1
11: if ℓprop = ⊥ then
12: continue ▷ hole
13: end if
14: PropagateWatch(ℓprop)
15: end while
16: i← i+ 1
17: end while
18: if κ ̸= ∅ then
19: return any C ∈ κ
20: end if
21: return ⊥
22: end function

40

Algorithm 32 Inner loop of Boolean constraint propagation with reimplication in
CaDiCaL, compare with Alg. 21 and Alg. 41
1: function PropagateWatch(ℓprop)
2: for C ∈ ω(−ℓprop) do
3: ⟨ℓ1, ℓ2⟩ ← ω−1(C) ▷ get the two watched literals for C

4: ℓother ←

{
ℓ2, if − ℓprop = ℓ1

ℓ1, otherwise

5: if σ(ℓother) = 1 and δ(ℓother) ≤ δ(ℓprop) then ▷ watch invariant
6: continue
7: end if
8: if C is unit on ℓother then
9: Assign(C, ℓother)

10: ℓ← literal in C \ {ℓother} with δ(ℓ) = δ(C)
11: ω(−ℓprop)← ω(−ℓprop) \ {C}
12: ω(ℓ)← ω(ℓ) ∪ {C} ▷ swap watched literal
13: continue
14: end if
15: if C is unisatisfied on literal ℓother then
16: ℓ← literal in C \ {ℓother} with δ(ℓ) = δ(C \ {ℓother})
17: ω(−ℓprop)← ω(−ℓprop) \ {C}
18: ω(ℓ)← ω(ℓ) ∪ {C} ▷ swap watched literal
19: if δ(C \ {ℓother}) < δ(ℓother) then ▷ missed implication
20: Reassign(C, ℓ)
21: end if
22: continue
23: end if
24: if C is not falsified then
25: ℓ← literal in C \ {ℓother} with σ(ℓ) ̸= −1
26: ω(−ℓprop)← ω(−ℓprop) \ {C}
27: ω(ℓ)← ω(ℓ) ∪ {C} ▷ swap watched literal
28: continue
29: end if
30: κ← κ ∪ {C} ▷ conflict
31: if δ(C) = δ(ℓprop) then
32: return ▷ conflict on current propagated level
33: end if
34: end for
35: end function

41

and backtracking, the literals in π′ which are still assigned are pushed back onto π,

fixing the watches implicitly through repropagation. (Alg. 35, Lines 23-29).

Elevating literals still creates holes (Alg. 34, Lines 4 and 5), which are skipped in

conflict analysis (Alg. 37, Line 7) and backtracking (Alg. 35, Lines 11-13). We also

keep the value assigned as termination check for the CDCL loop (Alg. 36, Line 17,

Alg. 35, Line 20) and Alg. 39, Line 18).

Like in CaDiCaL, Boolean constraint propagation terminates early when the propa-

gated level reaches the conflict level (Alg. 40, Lines 6-8). It is also split into BCP with

reimplication (Alg. 40) which uses the priority queue and BCP without reimplication

(Alg. 38) which uses the trail and the propagated value. Because of the priority queue

and trail structure the solver can no longer switch between these two upon reaching

the top most level, and instead only uses the latter when there is no new assignment

on a lower level (Alg. 39). Because of this, there can be no holes in BCP without

reimplication, so we can reuse the already existing routine of Gimsatul without

modifications. When assigning literals the solver has to differentiate between using

the propagation queue or not based on which propagation routine it is currently

running (Alg. 36, Lines 14-16). Since literals can only be elevated through BCP with

reimplication we can save this additional check (Alg. 34, Line 8).

Last but not least, reimplication can be applied when importing a clause (Alg. 42).

42

Algorithm 33 Conflict handling in CaDiCaL

1: function ProcessConflicts()
2: for C ∈ κ do
3: if C is unisatisfied on ℓ and δ(C \ {ℓ}) < δ(ℓ) then
4: Reassign(C, ℓ)
5: end if
6: if C is unit on ℓ then
7: Assign(C, ℓ)
8: end if
9: ℓ1, ℓ2 ← ω−1(C) ▷ replace watches

10: ℓ′1 ← literal in C with σ(ℓ′1) ̸= −1

11: ℓ′2 ← literal in C \ {ℓ′1} with

{
σ(ℓ′2) ̸= −1, if possible
δ(ℓ′2) = δ(C \ {ℓ′1}), otherwise

12: ω(ℓ1)← ω(ℓ1) \ {C}
13: ω(ℓ2)← ω(ℓ2) \ {C}
14: ω(ℓ′1)← ω(ℓ′1) ∪ {C}
15: ω(ℓ′2)← ω(ℓ′2) ∪ {C}
16: end for
17: κ← ∅
18: end function

Algorithm 34 Elevating literals in Gimsatul, compare with Alg. 36
1: function Reassign(reason clause C, literal ℓ)
2: δ(ℓ)← δ(C \ {ℓ}) ▷ C cannot be ⊥
3: ρ(ℓ)← C ▷ value of ℓ already set
4: n← τ−1(l) ▷ creates a hole
5: τ(n)← ⊥
6: n← |τ |
7: τ(n)← ℓ
8: π ← π ∪ {ℓ} ▷ always use π
9: end function

43

Algorithm 35 Backtracking in Gimsatul, replacing Alg. 14
1: function Backtrack(decision level dl)
2: if dl ≥ level then ▷ nothing to do
3: return
4: end if
5: n, n′ ← γ(dl)
6: m← |τ |
7: while n < m do ▷ no longer unassign from the top
8: ℓ← τ(n)
9: τ(n)← ⊥

10: n← n+ 1
11: if ℓ = ⊥ then
12: continue ▷ hole due to an elevated literal
13: end if
14: if δ(ℓ) ≤ dl then
15: τ(n′) = ℓ
16: n′ ← n′ + 1
17: continue
18: end if
19: σ(ℓ)← 0 ▷ unassign ℓ
20: assigned← assigned− 1
21: end while
22: propagated← |τ | ▷ moved assignments are not repropagated
23: level← dl ▷ γ changes implicitly
24: for ℓ ∈ π′ do
25: if σ(ℓ) = −1 then
26: π ← π ∪ {ℓ} ▷ repropagate literals in π′

27: end if
28: end for
29: π′ ← ∅
30: conflict← ⊥ ▷ reset conflict
31: end function

44

Algorithm 36 Assigning literals in Gimsatul, replacing Alg. 13
1: function Assign(reason clause C, literal ℓ)
2: if C = ⊥ then
3: level← level + 1
4: γ(level)← |τ | ▷ add a new decision level to the stack
5: δ(ℓ)← level
6: end if
7: if C ̸= ⊥ then
8: δ(ℓ)← δ(C \ {ℓ})
9: end if

10: σ(ℓ)← 1
11: ρ(ℓ)← C
12: n← |τ |
13: τ(n)← ℓ
14: if π ̸= ∅ or δ(ℓ) ̸= level then
15: π ← π ∪ {ℓ}
16: end if
17: assigned← assigned+ 1
18: end function

45

Algorithm 37 Conflict analysis in Gimsatul, replacing Alg. 15
1: function Analyze(conflict clause C)
2: Backtrack(δ(C)) ▷ backtrack to the conflict level
3: C ′ ← C
4: n← |τ | − 1
5: while |{ℓ ∈ C ′ | δ(ℓ) = level}| > 1 do ▷ repeat until only one literal

on the current level remains
6: ℓ← τ(n)
7: if δ(ℓ) ̸= ⊥ and −ℓ ∈ C ′ then ▷ skip holes
8: C ′ ← ρ(ℓ)⊗ℓ C

′

9: end if
10: n← n− 1
11: end while
12: ℓ← the literal in C ′ with δ(ℓ) = level
13: Backtrack(δ(ℓ)− 1) ▷ chronological backtracking
14: if C ′ ̸= C then
15: F ← F ∪ C ′ ▷ C was a true conflict
16: if |C ′| > 1 then
17: ℓ′ ← any literal in C ′ with δ(ℓ′) = δ(C \ ℓ)
18: ω(ℓ)← ω(ℓ) ∪ C ′

19: ω(ℓ′)← ω(ℓ′) ∪ C ′ ▷ set watches
20: end if
21: end if
22: Assign(C ′, ℓ) ▷ C ′ is now unit on ℓ
23: end function

46

Algorithm 38 Boolean constraint propagation without reimplication in Gimsatul,
compare with Alg. 7
1: function BCP() → F ∪ {⊥}
2: while τ(propagated) ̸= ⊥ do
3: ℓprop ← τ(propagated)
4: propagated← propagated+ 1
5: for C ∈ ω(−ℓprop) do
6: ⟨ℓ1, ℓ2⟩ ← ω−1(C) ▷ get the two watched literals for C

7: ℓother ←

{
ℓ2, if − ℓprop = ℓ1

ℓ1, otherwise

8: if σ(ℓother) = 1 then ▷ no update required
9: continue

10: end if
11: if C is unit on ℓother then
12: Assign(C, ℓother)
13: continue
14: end if
15: if C is not falsified then
16: ℓ← literal in C \ {ℓother} with σ(ℓ) ̸= −1
17: ω(−ℓprop)← ω(−ℓprop) \ {C}
18: ω(ℓ)← ω(ℓ) ∪ {C} ▷ swap watched literal
19: continue
20: end if
21: return C ▷ conflict
22: end for
23: end while
24: return ⊥
25: end function

47

Algorithm 39 CDCL loop in Gimsatul, replacing Alg. 10
1: function Solve(CNF F) → {UNSAT , (SAT ,M |= F)}
2: if ∅ ∈ F then ▷ formula trivially unsatisfiable
3: return UNSAT
4: end if
5: while true do
6: if π ̸= ⊥ then
7: C ← ReimplyBCP() ▷ returns a conflict or ⊥
8: else
9: C ← BCP() ▷ returns a conflict or ⊥

10: end if
11: if C ̸= ⊥ then
12: if δ(C) = 0 then ▷ global conflict
13: return UNSAT
14: end if
15: AnalyzeAndExport(C)
16: continue
17: end if
18: if assigned = |V| then ▷ σ is a model
19: return (SAT , σ)
20: end if
21: C ← Import() ▷ returns ⊤, ∅ or ⊥
22: if C = ∅ then ▷ global conflict
23: return UNSAT
24: end if
25: if C = ⊤ then ▷ new propagation
26: continue
27: end if
28: Decide() ▷ otherwise new decision
29: end while
30: end function

48

Algorithm 40 Boolean constraint propagation with reimplication in Gimsatul,
compare with Alg. 7
1: function ReimplyBCP() → F ∪ {⊥}
2: while π ̸= ∅ do ▷ priority queue
3: ℓprop ← ℓ ∈ π with δ(ℓ) = min{δ(ℓ′) | ℓ ∈ π} and
4: τ−1(ℓ) < τ−1(ℓ′) for all ℓ′ ∈ π with δ(ℓ′) = δ(ℓ)
5: π ← π \ {ℓprop}
6: if conflict ̸= ⊥ and δ(conflict) ≤ δ(ℓ) then
7: π ← ∅
8: return conflict
9: end if

10: PropagateWatch(ℓprop)
11: end while
12: if conflict ̸= ⊥ then ▷ if we find a conflict when π is already empty
13: return conflict
14: end if
15: propagated = |τ | ▷ set propagated for BCP without reimplication
16: return ⊥
17: end function

49

Algorithm 41 Inner loop of Boolean constraint propagation with reimplication in
Gimsatul, compare with Alg. 21 and Alg. 32
1: function PropagateWatch(ℓprop)
2: for C ∈ ω(−ℓprop) do
3: ⟨ℓ1, ℓ2⟩ ← ω−1(C) ▷ get the two watched literals for C

4: ℓother ←

{
ℓ2, if − ℓprop = ℓ1

ℓ1, otherwise

5: if σ(ℓother) = 1 and δ(ℓother) ≤ δ(ℓprop) then ▷ watch invariant
6: continue
7: end if
8: if C is unit on ℓother then
9: Assign(C, ℓother)

10: ℓ← literal in C \ {ℓother} with δ(ℓ) = δ(C)
11: ω(−ℓprop)← ω(−ℓprop) \ {C}
12: ω(ℓ)← ω(ℓ) ∪ {C} ▷ swap watched literal
13: continue
14: end if
15: if C is unisatisfied on literal ℓother then
16: ℓ← literal in C \ {ℓother} with δ(ℓ) = δ(C \ {ℓother})
17: ω(−ℓprop)← ω(−ℓprop) \ {C}
18: ω(ℓ)← ω(ℓ) ∪ {C} ▷ swap watched literal
19: if δ(C \ {ℓother}) < δ(ℓother) then ▷ missed implication
20: Reassign(C, ℓ)
21: end if
22: continue
23: end if
24: if C is not falsified then
25: ℓ← literal in C \ {ℓother} with σ(ℓ) ̸= −1
26: ω(−ℓprop)← ω(−ℓprop) \ {C}
27: ω(ℓ)← ω(ℓ) ∪ {C} ▷ swap watched literal
28: continue
29: end if
30: if conflict = ⊥ or δ(C) < δ(conflict) then
31: conflict = C
32: end if
33: π′ ← π′ ∪ {ℓ} ▷ propagate ℓ later to fix watches
34: if δ(C) = δ(ℓprop) then
35: return ▷ conflict on currently propagated level
36: end if
37: end for
38: end function

50

Algorithm 42 Importing clauses with reimplication in Gimsatul, replacing Alg. 16
1: function Import() → {⊥, ∅,⊤}
2: C ← ImportClause() ▷ maybe get a clause from another thread
3: if C = ⊥ then ▷ no new clause
4: return ⊥
5: end if
6: if C contains satisfied literal ℓ with δ(ℓ) = 0 then ▷ skip import
7: return ⊥
8: end if
9: if C is conflicting then

10: if δ(C) = 0 then
11: return ∅
12: end if
13: if |{ℓ ∈ C | δ(ℓ) = δ(C)}| = 1 then
14: Backtrack(δ(C)− 1) ▷ chronological backtracking
15: end if
16: end if
17: F ← F ∪ {C} ▷ really import the clause
18: if |C| > 1 then ▷ find watches

19: ℓ← literal in C with

{
σ(ℓ) ̸= −1, if possible
δ(ℓ) = δ(C), otherwise

20: ℓ′ ← literal in C \ {ℓ} with

{
σ(ℓ′) ̸= −1, if possible
δ(ℓ′) = δ(C \ {ℓ}), otherwise

21: ω(ℓ)← ω(ℓ) ∪ C ▷ set watches
22: ω(ℓ′)← ω(ℓ′) ∪ C
23: if C is conflicting then ▷ no backtrack
24: propagated = τ−1(ℓ) ▷ handle conflict implicitly in BCP
25: return ⊤
26: end if
27: if C is unisat and δ(ℓ) > δ(ℓ′) then ▷ missed implication
28: Reassign(C, ℓ)
29: return ⊤
30: end if
31: end if
32: if |C| = 1 and C is satisfied then
33: Reassign(C, ℓ)
34: return ⊤
35: end if
36: if C is unit on ℓ then
37: Assign(C, ℓ)
38: return ⊤
39: end if
40: return ⊥
41: end function

51

5 Experiments

We have performed experiments to evaluate the impact of reimplication. Thus we

have measured run-times for the solvers with reimplication and compare this to their

default by disabling reimplication with an option. However, this was not possible for

IntelSAT, as the solver has been designed with reimplication and does not include

an option to switch it off. Initially we used IntelSAT version sat22 which matches

with the one used in the reimplication paper [8]. After identifying a bug in this

version1 we switched to the newest release of IntelSAT.

5.1 Setup

The experiments have been performed on the bwForCluster Helix with the following

technical specification for each compute node:

• Processors: 2 x AMD Milan EPYC 7513

• Processor Frequency: 2.6 GHz

• Number of Cores per Node: 64

• RAM: 236 GB
1the bug did not occur on the benchmark set of the SAT competition 2022 which were used for the

final experiments

53

All experiments were run with the benchmark set of the SAT competition of 2022 [25]

with a timeout of 5000 seconds and a memory limit of 7000 MB per core. For technical

reasons we had to rely on the internal timeout of IntelSAT but this had no impact

on the results.

The jobs were scheduled such that as few nodes as possible were used. Since 64 jobs

can run on the same node with only 236 GB, the memory was overcommited, i.e., if

all jobs would have used all of their memory, they would hit the hard limit of the

node. However, all memouts we observed were due to exceeding the 7000 MB limit.

For the parallel experiments the memory limit was scaled with the number of cores,

e.g., for two cores it was 14000 MB.

5.2 Results

To compare run-times we plot the solved instances on the y-axis and the time on

the x-axis. The result for each solver is sorted separatly. Intuitively, this translates

to a higher line for a faster solver. However, no statement can be made about

individual instances and two seemingly similar lines could have wildly different solver

behaviour.

Figure 1 shows a comparison of all three solvers with their default settings where

CaDiCaL and Gimsatul are run with and without reimplication. The old version

of IntelSAT is included for completeness. Figure 2 shows Gimsatul with 1, 2,

4, and 8 threads, each with and without reimplication. The results are somewhat

disappointing as it is not possible to say wether reimplication has a positive or

negative impact for this benchmark set.

54

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

30
0

cadical−cb−strict−reuse−no−reimplication
cadical−cb−strict−reuse
gimsatul−1−cb−strict
gimsatul−1−cb−strict−no−reimplication
intelsat−cb−strict
intelsat−sat22

Figure 1: Solved instances for all solvers with and without reimplication

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

30
0

gimsatul−8−cb−strict−no−reimplication
gimsatul−8−cb−strict
gimsatul−4−cb−strict
gimsatul−4−cb−strict−no−reimplication
gimsatul−2−cb−strict
gimsatul−2−cb−strict−no−reimplication
gimsatul−1−cb−strict
gimsatul−1−cb−strict−no−reimplication

Figure 2: Solved instances for Gimsatul with and without reimplication

55

5.3 Statistics

Because of the inconclusive run-time results, we decided to collect statistics in order

to get a better understanding of the impact of reimplication. For the statistics we

plot the instances on the x-axis instead of the y-axis. This preserves the intuition

that a higher line corresponds to bigger numbers. When the range of the numbers

is too big the y-axis is scaled logarithmically. Each line is sorted independently as

before, therefore no statement can be made about individual instances.

While running these experiments and collecting the statistics we realised that the

solvers have different heuristics for chronological backracking:

cb-strict This simple heuristic was proposed in the original chronological backtrack

paper of Nadel and Ryvchin [6]. When the backjump level is at least 100 levels below

the conflict level, chronological backtracking is applied instead. We call this heuristic

cb-strict and it is the default heuristic in Gimsatul.

cb-reuse We call the default heuristic of IntelSAT cb-reuse. When the backjump

level is at least 100 levels below the conflict level, i.e., when cb-strict would do

chronological backtracking, the solver searches for the best level between backjump

and conflict level. It is determined by variable scores which are also used in the

decision heuristic of the solver. The solver will then backtrack to the determined level.

We count all conflicts where the backjump level is smaller than the chosen backtrack

level as chronological backtracking even though strictly speaking the terminology

implies backtracking exactly one level.

cb-strict-reuse The default heuristic in CaDiCaL is similar to the one in IntelSAT

in that it also searches for a better backtrack level by using variable scores. However,

when the condition for cb-strict is met it does strict chronological backtracking, i.e.,

56

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

30
0

cadical−cb−strict−reuse
cadical−cb−reuse
gimsatul−1−cb−strict
cadical−cb−strict
intelsat−cb−reuse
intelsat−cb−strict

Figure 3: Solved instances for different chronological backtracking heuristics

backtracks exactly one level. Only when the distance to the backjump level is smaller

it applies the search for a better level. We call this heuristic cb-strict-reuse.

Additionally to their default, cb-strict was already implemented in all three solvers and

cb-reuse could be added to CaDiCaL with little implementational overhead. Figure 3

shows the results when running the different configurations with reimplication. The

heuristic does not seem to impact the efficiency of the solver too much. For the

statistics below we always compare all available configurations.

Figure 4 shows the total number of conflicts and chronological backtracks which reveals

the irregularity of cb-strict-reuse. While the number of chronological backtracks is

similar between the other heuristics, it is much closer to the total number of conflicts

for cb-strict-reuse. This is emphasised again by the ratio of chronological backtracks

to total number of backtracks (Fig. 5).

Other than the number of chronological backtracks the heuristic also impacts the

57

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 0 50 100 150 200 250 300 350 400

ch
ro

n
o
lo

g
ic

a
l
b

a
ck

tr
a
ck

s
a
n
d

 t
o
ta

l
co

n
fl
ic

ts

instances

cadical cb-strict-reuse
gimsatul cb-strict
intelsat cb-strict
intelsat cb-reuse
cadical cb-strict
cadical cb-reuse

Figure 4: Total number of chronological backtracks and conflicts for all solvers on a
logarithmic scale

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

ch
ro

n
o
lo

g
ic

a
l
b

a
ck

tr
a
ck

s
in

 p
e
rc

e
n
t

o
f

co
n
fl
ic

ts

instances

cadical cb-strict-reuse
gimsatul cb-strict

cadical cb-strict
cadical cb-reuse
intelsat cb-strict
intelsat cb-reuse

Figure 5: Chronological backtracks in percent of conflicts for all solvers

58

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300 350 400

le
v
e
ls

 s
a
v
e
d

 p
e
r

ch
ro

n
o
lo

g
ic

a
l
b

a
ck

tr
a
ck

instances

gimsatul cb-strict
cadical cb-strict
intelsat cb-strict
cadical cb-reuse
intelsat cb-reuse

cadical cb-strict-reuse

Figure 6: Average number of levels saved per chronological backtrack for all solvers
on a logarithmic scale

number of levels saved, i.e., the difference between backjump and backtrack level.

Figure 6 shows the ratio of levels saved per chronological backtrack. For cb-strict

this starts at 100 levels. With cb-reuse it is slightly lower due to the search for a

better level. There are benchmarks where chronological backtracking never happens

for cb-strict and cb-reuse. From the previous plot we already saw that cb-strict-reuse

triggers much more chronological backtracking. Therefore the number of levels saved

is diluted and starts at one which is the minimum to be counted as chronological

backtracking.

As a measure of efficiency we plot propagations per second (Fig. 7). This measure

counts the number of literals which are processed by Boolean constraint propagation.

Since BCP is the hotspot of the solver the number of propagations per second

correlates with solving speed, but is of course not the only factor. IntelSAT for

example shows a similar number of propagations per second and still solves much

less problems, possibly because it does not do pre- and inprocessing. The old version

59

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 1.6x107

 0 50 100 150 200 250 300 350 400

p
ro

p
a
g

a
ti

o
n
s

p
e
r

se
co

n
d

instances

gimsatul cb-strict no reimplication
gimsatul cb-strict

cadical cb-strict-reuse no reimplication
cadical cb-strict-reuse

intelsat cb-reuse
intelsat sat22

Figure 7: Average number of propagations per second for all solvers

of IntelSAT on the other hand likely was much less optimized for fast propagation.

We can observe a slight decrease of propagations per second with reimplication,

potentially a result of a slightly slower routine for BCP with reimplication.

For CaDiCaL and Gimsatul we can compare the number of propagations with

reimplication (or reimplication propagations) to the total number of propagations.

We do this with the absolute values (Fig. 8) and the ratio (Fig. 9). For IntelSAT

we plot the number of elevated literals instead of reimplication propagations which

approximates the additional work done in the reimplication routine. We can observe

that CaDiCaL cb-strict has much less reimplication propagations compared to

Gimsatul cb-strict which is a result of the different switching techniques in the two

solvers. On the other hand, using the cb-strict-reuse heuristic greatly increases the

number of reimplication propagations. This is not surprising as we expect this measure

to correlate with the number of chronological backtracks. However, Gimsatul still

caps out at a much higher percentage for reimplication propagations.

60

 1

 100

 10000

 1x106

 1x108

 1x1010

 0 50 100 150 200 250 300 350 400

w
it

h
 r

e
im

p
lic

a
ti

o
n
 a

n
d

 t
o
ta

l
p

ro
p

a
g

a
ti

o
n
s

instances

cadical cb-strict-reuse
gimsatul cb-strict
intelsat cb-strict
cadical cb-strict
cadical cb-reuse
intelsat cb-reuse

Figure 8: Total number of all propagations and reimplication propagations for all
solvers on a logarithmic scale

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350 400

w
it

h
 r

e
im

p
lic

a
ti

o
n
 i
n
 p

e
rc

e
n
t

o
f

to
ta

l

instances

cadical cb-strict-reuse
gimsatul

cadical cb-strict
intelsat cb-strict
cadical cb-reuse
intelsat cb-reuse

Figure 9: Reimplication propagations in percent of all propagations for all solvers
on a logarithmic scale

61

 1

 100

 10000

 1x106

 1x108

 0 50 100 150 200 250 300 350 400

e
le

v
a
ti

o
n
s

instances

cadical cb-strict-reuse
intelsat cb-strict

gimsatul cb-strict
intelsat cb-reuse
cadical cb-strict
cadical cb-reuse

Figure 10: Total number of elevations for all solvers on a logarithmic scale

A similar trend can be observed in the total number of elevations (Fig. 10), except

that cadical cb-strict-reuse is much closer to the other solvers. Apart from cb-strict-

reuse, IntelSAT has the next highest number of elevations. This might result from

the main difference of the implementation. IntelSAT always performs BCP and

reimplication until a fixed point is reached on the lowest conflict level it can find.

Gimsatul and CaDiCaL on the other hand can abort propagation as soon as the

propagation level reaches the conflict level which avoids propagating all the literals

on the conflict level and all higher levels, if the conflict is found early.

Usually, each elevated literal will trigger a reimplication propagation such that the

ratio of these two will always be below one (Fig. 11). We can interpret this as

the efficiency of switching propagation routines, which is lower for Gimsatul and

even lower for cb-strict-reuse implying that the number of reimplication propagations

grows more with chronological backtracks than the number of elevations. This is

confirmed by Figure 12. The trend flips again when looking at the elevations per level

saved by chronological backtracking (Fig. 13). By producing way more chronological

62

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

e
le

v
a
ti

o
n
s

p
e
r

re
im

p
lic

a
ti

o
n
 p

ro
p

a
g

a
ti

o
n

instances

cadical cb-strict
cadical cb-reuse

gimsatul cb-strict
cadical cb-strict-reuse

Figure 11: Average number of elevations per reimplication propagation for all solvers

backtracks but saving way less levels, cb-strict-reuse inevitably gets more elevations

per level saved than the other solvers.

5.4 Statistics for Parallel Clause Sharing

All the solvers are inherently unstable, i.e., when faced with two similar problems they

can produce wildy different results, or conversely, slightly changing a heuristic detail

can drastically change the run-time for the same instance. However, when running

the same version of the solver with the same problem instance, the result is repeatable.

This changes with multithreaded Gimsatul as importing and exporting clauses is

timing dependent and up chance. Therefore, the parallel results and statistics show

more fluctuations are much less repeatable.

We have collected statistics for Gimsatul using 2, 4 and 8 threads. For each of these

there are two ways of counting, sum and single. The former sums over all threads,

63

 0.1

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300 350 400

e
le

v
a
ti

o
n
s

p
e
r

ch
ro

n
o
lo

g
ic

a
l
b

a
ck

tr
a
ck

instances

intelsat cb-strict
intelsat cb-reuse

gimsatul cb-strict
cadical cb-strict
cadical cb-reuse

cadical cb-strict-reuse

Figure 12: Average number of elevations per chronological backtrack for all solvers
on a logarithmic scale

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350 400

e
le

v
a
ti

o
n
s

p
e
r

le
v
e
l
sa

v
e
d

instances

cadical cb-strict-reuse
intelsat cb-strict
intelsat cb-reuse

gimsatul cb-strict
cadical cb-strict
cadical cb-reuse

Figure 13: Average number of elevations per level saved with chronological back-
tracking for all solvers on a logarithmic scale

64

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

30
0

gimsatul−8−cb−import
gimsatul−8−cb−strict
gimsatul−4−cb−strict
gimsatul−4−cb−import
gimsatul−2−cb−strict
gimsatul−2−cb−import
gimsatul−1−cb−strict
gimsatul−1−cb−import

Figure 14: Solved instances for Gimsatul with and without chronological back-
tracking

collecting the global solver statistics. The latter looks at an individual thread to see

how it is impacted by having other threads run in parallel.

cb-import Reimplication can now happen when importing clauses. We can single

out the impact of this by switching off the chronological backtrack heuristic. This

means the solver will always backtrack to the backjump level when it finds a conflict

but it still elevates literals from missed implications that are imported. We call this

setting cb-import. As the solver can only import clauses when running in parallel, we

omit this option for Gimsatul with a single thread.

Again, run-time results for Gimsatul cb-stric and cb-import are inconclusive (Fig. 14)

so we focus on statistics instead.

When looking at the total number of conflicts and chronological backtracks (Fig. 15)

we can observe a pattern which appears again and again. Summing over all threads

65

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 0 50 100 150 200 250 300 350 400

ch
ro

n
o
lo

g
ic

a
l
b

a
ck

tr
a
ck

s
a
n
d

 t
o
ta

l
co

n
fl
ic

ts

instances

gimsatul 8 cb-strict sum
gimsatul 4 cb-strict sum
gimsatul 2 cb-strict sum

gimsatul cb-strict
gimsatul 2 cb-strict single
gimsatul 4 cb-strict single
gimsatul 8 cb-strict single

Figure 15: Total number of conflicts and chronological backtracks for Gimsatul
on a logarithmic scale

increases the total, so the lines are sorted with 8 on top, then 4, 2 and finally single

threaded. When we focus on a single thread instead, this pattern is inverted, we

get single thread on top, then 2, 4 and lowest is with 8 threads. This is because

the additional threads add some overhead to the solver which has to make sure they

are synchronised. We omit this figure for cb-import since it cannot produce any

chronological backtracks.

The above mentioned pattern vanishes when we look at ratios. When we sum two

measures over multiple threads and then divide, this is essentially like the average of

these threads. So it is not surprising that the lines in Figure 16 and Figure 17 match,

which show the percentage of chronological backtracks per conflict and ratio of levels

saved per chronological backtrack respectively.

It gets interesting again when we look at a ratio where one of the measures is

independent of the number of threads like propagations per second (Fig. 18 and 19).

Interestingly, adding threads does not seem to increase the number of propagations

66

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

ch
ro

n
o
lo

g
ic

a
l
b

a
ck

tr
a
ck

s
in

 p
e
rc

e
n
t

o
f

co
n
fl
ic

ts

instances

gimsatul cb-strict
gimsatul 2 cb-strict sum
gimsatul 4 cb-strict sum
gimsatul 8 cb-strict sum

gimsatul 2 cb-strict single
gimsatul 4 cb-strict single
gimsatul 8 cb-strict single

Figure 16: Chronological backtracks in percent of conflicts for Gimsatul

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300 350 400

le
v
e
ls

 s
a
v
e
d

 p
e
r

ch
ro

n
o
lo

g
ic

a
l
b

a
ck

tr
a
ck

instances

gimsatul 8 cb-strict sum
gimsatul 8 cb-strict single

gimsatul 4 cb-strict sum
gimsatul 4 cb-strict single

gimsatul 2 cb-strict sum
gimsatul 2 cb-strict single

gimsatul cb-strict

Figure 17: Average number of levels saved per chronological backtrack for Gimsatul
on a logarithmic scale

67

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 1.6x107

 0 50 100 150 200 250 300 350 400

p
ro

p
a
g

a
ti

o
n
s

p
e
r

se
co

n
d

instances

gimsatul cb-strict
gimsatul 8 cb-strict sum
gimsatul 4 cb-strict sum
gimsatul 2 cb-strict sum

gimsatul 2 cb-strict single
gimsatul 4 cb-strict single
gimsatul 8 cb-strict single

Figure 18: Average number of propagations per second for Gimsatul

per second. Again this implies that this is not the only measure for efficiency of the

solver and that clause sharing and exploring different parts of the search space with

different solver threads can really increase effectiveness.

For the next few plots we see an interesting new pattern emerge. When looking at

cb-import, the lines when focusing at a single thread are not sorted in reverse order

like in the pattern mentioned above, but instead always favour more theads. This is

because the statistic we measure can only be introduced by chronological backtracking

or parallel clause sharing. If we switch of the former we see the impact of the latter,

which only correlates with the number of threads (Fig. 20, 21, 22 and 23). When

looking carefully at the plots for cb-strict we can see the same pattern forming at

the beginning of the line, for the benchmarks where no chronological backtracking

happens anyways. When we get to the benchmarks where chronological backtracking

starts to happen, i.e., the beginning fo the purple line, we see this pattern flipping

to the original one, where the lines are sorted in reverse order, indicating that the

impact of chronological backtracking within a single thread is usually much bigger

68

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 1.6x107

 0 50 100 150 200 250 300 350 400

p
ro

p
a
g

a
ti

o
n
s

p
e
r

se
co

n
d

instances

gimsatul cb-import
gimsatul 8 cb-import sum
gimsatul 4 cb-import sum
gimsatul 2 cb-import sum

gimsatul 2 cb-import single
gimsatul 4 cb-import single
gimsatul 8 cb-import single

Figure 19: Average number of propagations per second for Gimsatul without
chronological backtracking

than that of importing clauses.

This also changes the pattern which is observed in the ratio of reimplication propa-

gations to all propagations (Fig. 24). For cb-strict, all the lines are on top of each

other because building the ratio cancels the pattern. For cb-import however this

is different. The number of all propagations uses the first pattern, the number of

propagations with reimplication the second. Building the ratio therefore always

prefers more threads first, independently of whether we focus on a single thread or

all together.

The efficiency of elevations per reimplication propagation goes up with more threads

(Fig. 25). It is not immedieatly obvious why, but a reasonable explanation would be

that reimplication propagation is triggered after a chronological backtrack which does

not necessarily lead to an elevation. With clause import, reimplication propagation

can be triggered with an elevation without conflict. The same can be observed

for elevations per chronological backtrack (Fig. 26) and elevations per level saved

69

 1

 100

 10000

 1x106

 1x108

 1x1010

 0 50 100 150 200 250 300 350 400

w
it

h
 r

e
im

p
lic

a
ti

o
n
 a

n
d

 t
o
ta

l
p

ro
p

a
g

a
ti

o
n
s

instances

gimsatul 8 cb-strict sum
gimsatul 4 cb-strict sum
gimsatul 2 cb-strict sum

gimsatul cb-strict
gimsatul 2 cb-strict single
gimsatul 4 cb-strict single
gimsatul 8 cb-strict single

Figure 20: Total number of all propagations and reimplication propagations for
Gimsatul on a logarithmic scale

 1

 100

 10000

 1x106

 1x108

 1x1010

 0 50 100 150 200 250 300 350 400

w
it

h
 r

e
im

p
lic

a
ti

o
n
 a

n
d

 t
o
ta

l
p

ro
p

a
g

a
ti

o
n
s

instances

gimsatul 8 cb-import sum
gimsatul 4 cb-import sum
gimsatul 2 cb-import sum

gimsatul 8 cb-import single
gimsatul 4 cb-import single
gimsatul 2 cb-import single

Figure 21: Total number of all propagations and reimplication propagations for
Gimsatul without chronological backtracking on a logarithmic scale

70

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 0 50 100 150 200 250 300 350 400

e
le

v
a
ti

o
n
s

instances

gimsatul 8 cb-strict sum
gimsatul 4 cb-strict sum
gimsatul 2 cb-strict sum

gimsatul cb-strict
gimsatul 2 cb-strict single
gimsatul 4 cb-strict single
gimsatul 8 cb-strict single

Figure 22: Total number of elevations for Gimsatul on a logarithmic scale

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 0 50 100 150 200 250 300 350 400

e
le

v
a
ti

o
n
s

instances

gimsatul 8 cb-import sum
gimsatul 4 cb-import sum
gimsatul 2 cb-import sum

gimsatul 8 cb-import single
gimsatul 4 cb-import single
gimsatul 2 cb-import single

Figure 23: Total number of elevations for Gimsatul without chronological back-
tracking on a logarithmic scale

71

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350 400

w
it

h
 r

e
im

p
lic

a
ti

o
n
 i
n
 p

e
rc

e
n
t

o
f

to
ta

l

instances

gimsatul 8 cb-strict sum
gimsatul 8 cb-strict single

gimsatul 4 cb-strict sum
gimsatul 4 cb-strict single

gimsatul 2 cb-strict sum
gimsatul 2 cb-strict single

gimsatul cb-strict
gimsatul 8 cb-import sum

gimsatul 8 cb-import single
gimsatul 4 cb-import sum

gimsatul 4 cb-import single
gimsatul 2 cb-import sum

gimsatul 2 cb-import single

Figure 24: Reimplication propagations in percent of all propagations for Gimsatul
on a logarithmic scale

(Fig. 27). Again this is likely just because the number of elevations goes up with

more threads, while the number of conflicts stays similar due to the heuristics of the

solver (fig 28).

For cb-import we can see no clear pattern in the number of elevations per reimplication

propagation. (Fig. 29). This suggests that it is mostly up to chance wether an imported

clause triggers reimplication propagation through an elevation or simply with an

out-or-order assignment.

72

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

e
le

v
a
ti

o
n
s

p
e
r

re
im

p
lic

a
ti

o
n
 p

ro
p

a
g

a
ti

o
n

instances

gimsatul 8 cb-strict sum
gimsatul 8 cb-strict single

gimsatul 4 cb-strict sum
gimsatul 4 cb-strict single

gimsatul 2 cb-strict sum
gimsatul 2 cb-strict single

gimsatul cb-strict

Figure 25: Average number of elevations per reimplication propagation for
Gimsatul

 0.1

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300 350 400

e
le

v
a
ti

o
n
s

p
e
r

ch
ro

n
o
lo

g
ic

a
l
b

a
ck

tr
a
ck

instances

gimsatul 8 cb-strict sum
gimsatul 4 cb-strict sum
gimsatul 2 cb-strict sum

gimsatul 8 cb-strict single
gimsatul 4 cb-strict single
gimsatul 2 cb-strict single

gimsatul cb-strict

Figure 26: Average number of elevations per chronological backtrack for Gimsatul
on a logarithmic scale

73

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350 400

e
le

v
a
ti

o
n
s

p
e
r

le
v
e
l
sa

v
e
d

instances

gimsatul 8 cb-strict sum
gimsatul 8 cb-strict single

gimsatul 4 cb-strict sum
gimsatul 4 cb-strict single

gimsatul 2 cb-strict sum
gimsatul 2 cb-strict single

gimsatul cb-strict

Figure 27: Average number of elevations per level saved with chronological back-
tracking for Gimsatul on a logarithmic scale

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200 250 300 350 400

co
n
fl
ic

ts
 p

e
r

p
ro

p
a
g

a
ti

o
n

instances

gimsatul 8 cb-strict sum
gimsatul 8 cb-strict single

gimsatul 4 cb-strict sum
gimsatul 4 cb-strict single

gimsatul 2 cb-strict sum
gimsatul 2 cb-strict single

gimsatul cb-strict

Figure 28: Average number of conflicts per propagation for Gimsatul

74

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

e
le

v
a
ti

o
n
s

p
e
r

re
im

p
lic

a
ti

o
n
 p

ro
p

a
g

a
ti

o
n

instances

gimsatul 8 cb-import sum
gimsatul 4 cb-import sum
gimsatul 2 cb-import sum

gimsatul 8 cb-import single
gimsatul 4 cb-import single
gimsatul 2 cb-import single

Figure 29: Average number of elevations per reimplication propagation for
Gimsatul without chronological backtracking

75

6 Conclusion

In this thesis we have compared three different implementations of reimplication

in the three SAT solvers IntelSAT, CaDiCaL and Gimsatul. We have added

reimplication to Gimsatul for this thesis and to CaDiCaL in previous project.

After revisiting standard CDCL algorithms, we have elaborated on how reimplication

builds upon chronological backtracking and how this idea can be applied to importing

clauses in parallel SAT solving. We have provided a new intuition on reimplication,

discussed the implementational overhead and have given different approaches to

solve the challenges of integrating reimplication into a modern SAT solver. This has

furthered our own understanding for the subtleties and challenges of implementing

such a complex an invasive technique. We have provided a thourough experimental

section with a focus on interpreting statistics extracted from the solvers. Our initial

goal of improving the parallel SAT solver Gimsatul with reimplication has only

partially succeeded as our run-time results are inconclusive at best.

Future Work It would be of interest to expand the experimental analysis to appli-

cations of incremental SAT solving and the user propagator, both of which can be

sources of missed implications and out-of-order assignments. Beyond that, further

optimisations should be considered to decide wether reimplication itself gives no

improvement over chronological backtracking or the observed results are the product

of the implementations.

77

7 Acknowledgments

• I would like to thank Armin and Mathias as great advisers and proofreaders

• The authors acknowledge the service of the bwForCluster Helix supported by

the state of Baden-Württemberg through bwHPC and the German Research

Foundation (DFG) through grant INST 35/1597-1 FUGG.

79

Bibliography

[1] A. Gupta, M. K. Ganai, and C. Wang, “SAT-based verification methods and

applications in hardware verification,” in Formal Methods for Hardware Verifi-

cation (M. Bernardo and A. Cimatti, eds.), (Berlin, Heidelberg), pp. 108–143,

Springer Berlin Heidelberg, 2006.

[2] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S. Pandav,

A. Slobodová, C. Taylor, V. Frolov, E. Reeber, and A. Naik, “Replacing testing

with formal verification in IntelCoreTM i7 processor execution engine validation,”

in Computer Aided Verification (A. Bouajjani and O. Maler, eds.), (Berlin,

Heidelberg), pp. 414–429, Springer Berlin Heidelberg, 2009.

[3] N. Rungta, “A billion SMT queries a day (invited paper),” in Computer Aided

Verification (S. Shoham and Y. Vizel, eds.), (Cham), pp. 3–18, Springer Interna-

tional Publishing, 2022.

[4] J. Marques-Silva and K. Sakallah, “GRASP: a search algorithm for propositional

satisfiability,” IEEE Transactions on Computers, vol. 48, no. 5, pp. 506–521,

1999.

[5] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: engineering

an efficient SAT solver,” in Proceedings of the 38th Design Automation Conference

(IEEE Cat. No.01CH37232), pp. 530–535, 2001.

81

[6] A. Nadel and V. Ryvchin, “Chronological backtracking,” in Theory and Applica-

tions of Satisfiability Testing – SAT 2018 – 21st International Conference, SAT

2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,

July 9-12, 2018, Proceedings (O. Beyersdorff and C. M. Wintersteiger, eds.),

vol. 10929 of Lecture Notes in Computer Science, pp. 111–121, Springer, 2018.

[7] S. Möhle and A. Biere, “Backing backtracking,” in Theory and Applications of

Satisfiability Testing – SAT 2019 – 22nd International Conference, SAT 2019,

Lisbon, Portugal, July 9-12, 2019, Proceedings (M. Janota and I. Lynce, eds.),

vol. 11628 of Lecture Notes in Computer Science, pp. 250–266, Springer, 2019.

[8] A. Nadel, “Introducing Intel(R) SAT Solver,” in 25th International Conference

on Theory and Applications of Satisfiability Testing (SAT 2022) (K. S. Meel and

O. Strichman, eds.), vol. 236 of Leibniz International Proceedings in Informatics

(LIPIcs), (Dagstuhl, Germany), pp. 8:1–8:23, Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, 2022.

[9] M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem-

proving,” Commun. ACM, vol. 5, p. 394–397, jul 1962.

[10] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory and Applica-

tions of Satisfiability Testing (E. Giunchiglia and A. Tacchella, eds.), (Berlin,

Heidelberg), pp. 502–518, Springer Berlin Heidelberg, 2004.

[11] N. Een, A. Mishchenko, and N. Amla, “A single-instance incremental SAT

formulation of proof- and counterexample-based abstraction,” 2010.

[12] T. Paxian, S. Reimer, and B. Becker, “Dynamic polynomial watchdog encoding

for solving weighted MaxSAT,” in Theory and Applications of Satisfiability

Testing - SAT 2018 - 21st International Conference, SAT 2018, Held as Part

of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018,

82

Proceedings (O. Beyersdorff and C. M. Wintersteiger, eds.), vol. 10929 of Lecture

Notes in Computer Science, pp. 37–53, Springer, 2018.

[13] K. Fazekas, A. Niemetz, M. Preiner, M. Kirchweger, S. Szeider, and A. Biere,

“IPASIR-UP: User propagators for CDCL,” in 26th International Conference

on Theory and Applications of Satisfiability Testing, SAT 2023, Alghero, Italy

(M. Mahajan and F. Slivovsky, eds.), vol. 271 of LIPIcs, pp. 8:1–8:13, Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[14] R. Hickey and F. Bacchus, “Trail saving on backtrack,” in Theory and Applications

of Satisfiability Testing – SAT 2020 (L. Pulina and M. Seidl, eds.), (Cham),

pp. 46–61, Springer International Publishing, 2020.

[15] R. Coutelier, “Chronological vs. non-chronological backtracking in satisfiability

modulo theories (Unpublished master’s thesis),” Université de Liège, Liège,

Belgique, 2023.

[16] A. Biere, M. Heule, H. van Maaren, and T. Walsh, eds., Handbook of Satisfiability,

vol. 185 of Frontiers in Artificial Intelligence and Applications, IOS Press, 2009.

[17] S. Hölldobler, N. Manthey, and A. Saptawijaya, “Improving resource-unaware

SAT solvers,” in Logic for Programming, Artificial Intelligence, and Reasoning

(C. G. Fermüller and A. Voronkov, eds.), (Berlin, Heidelberg), pp. 519–534,

Springer Berlin Heidelberg, 2010.

[18] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:

Engineering an efficient SAT solver.,” in DAC, pp. 530–535, ACM, 2001.

[19] L. Ryan, “Efficient algorithms for clause-learning SAT solvers,” Master’s thesis,

Simon Fraser University, 2004.

[20] G. Chu, A. Harwood, and P. J. Stuckey, “Cache conscious data structures for

Boolean satisfiability solvers,” JSAT, vol. 6, no. 1-3, pp. 99–120, 2009.

83

[21] L. Guo, Y. Hamadi, S. Jabbour, and L. Sais, “Diversification and intensification

in parallel SAT solving,” in Principles and Practice of Constraint Programming

– CP 2010 (D. Cohen, ed.), (Berlin, Heidelberg), pp. 252–265, Springer Berlin

Heidelberg, 2010.

[22] M. Fleury and A. Biere, “Scalable proof producing multi-threaded SAT

solving with Gimsatul through sharing instead of copying clauses,” CoRR,

vol. abs/2207.13577, 2022.

[23] A. Biere, M. Fleury, and F. Pollitt, “CaDiCaL_vivinst, IsaSAT, Gimsatul,

Kissat, and TabularaSAT entering the SAT competition 2023,” in Proc. of SAT

Competition 2023 – Solver and Benchmark Descriptions (T. Balyo, N. Froleyks,

M. Heule, M. Iser, M. Järvisalo, and M. Suda, eds.), vol. B-2023-1 of Department

of Computer Science Report Series B, pp. 14–15, University of Helsinki, 2023.

[24] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat, Paracooba,

Plingeling and Treengeling entering the SAT Competition 2020,” in Proc. of SAT

Competition 2020 – Solver and Benchmark Descriptions (T. Balyo, N. Froleyks,

M. Heule, M. Iser, M. Järvisalo, and M. Suda, eds.), vol. B-2020-1 of Department

of Computer Science Report Series B, pp. 51–53, University of Helsinki, 2020.

[25] T. Balyo, M. Heule, M. Iser, M. Järvisalo, and M. Suda, eds., Proceedings of

SAT Competition 2022: Solver and Benchmark Descriptions. Department of

Computer Science Series of Publications B, Finland: Department of Computer

Science, University of Helsinki, 2022.

84

	1 Introduction
	2 Related Work
	2.1 Chronological Backtracking
	2.2 Incremental SAT Solving
	2.3 User Propagator
	2.4 Trail Saving
	2.5 SAT Modulo Theories

	3 Background
	3.1 SAT solving
	3.2 Conflict Driven Clause Learning
	3.3 Boolean Constraint Propagation with Watch Lists
	3.4 Parallel SAT Solving
	3.5 Chronological Backtracking

	4 Approach
	4.1 Reimplication
	4.2 Implementation in IntelSAT
	4.3 Implementation in CaDiCaL
	4.4 Implementation in Gimsatul

	5 Experiments
	5.1 Setup
	5.2 Results
	5.3 Statistics
	5.4 Statistics for Parallel Clause Sharing

	6 Conclusion
	7 Acknowledgments
	Bibliography

