
Formal Methods in Computer-Aided Design 2022

Stratified Certification for k-Induction
Emily Yu∗

zhengqi.yu@jku.at
Nils Froleyks∗

nils.froleyks@jku.at
Armin Biere†

biere@cs.uni-freiburg.de
Keijo Heljanko‡§

keijo.heljanko@helsinki.fi

∗Johannes Kepler University, Linz, Austria
†Albert–Ludwigs–University, Freiburg, Germany

‡Helsinki Institute for Information Technology and
§University of Helsinki, Helsinki, Finland

Abstract—Our recently proposed certification framework for
bit-level k-induction-based model checking has been shown to
be quite effective in increasing the trust of verification results
even though it partially involved quantifier reasoning. In this
paper we show how to simplify the approach by assuming reset
functions to be stratified. This way it can be lifted to word-level
and in principle to other theories where quantifier reasoning is
difficult. Our new method requires six simple SAT checks and
one polynomial-time check, allowing certification to remain in
co-NP while the previous approach required five SAT checks
and one QBF check. Experimental results show a substantial
performance gain for our new approach. Finally we present and
evaluate our new tool CERTIFAIGER-WL which is able to certify
k-induction-based word-level model checking.

I. INTRODUCTION

Over the past several years, there has been growing interest
in system verification using word-level reasoning. Satisfiability
Modulo Theories (SMT) solvers for the theory of fixed-
size bit-vectors are widely used for word-level reasoning [1],
[2]. For example, word-level model checking has been an
important part of the hardware model checking competitions
since 2019. Given the theoretical and practical importance of
word-level verification, a generic certification framework for it
is necessary. As quantifiers in combination with bit-vectors are
challenging for SMT solvers and various works have focused
on eliminating quantifiers in SMT [2]–[4], a main goal of this
paper is to generate certificates without quantification.

Temporal induction (also known as k-induction) [5] is a
well-known model checking technique for verifying software
and hardware systems. An attractive feature of k-induction
is that it is natural to integrate it with modern SAT/SMT
solvers, making it popular in both bit-level model checking
and beyond [6]–[8], including word-level model checking.

Certification helps gaining confidence in model checking
results, which is important for both safety- and business-
critical applications. There have been several contributions
focusing on generating proofs for SAT-based model checking
[9]–[15]. For example [16] and [14] proposed an approach to
certify LTL properties and a few preprocessing techniques by
generating deductive proofs. In this paper, we focus on finding
an inductive invariant for k-induction. Unlike other SAT/SMT-
based techniques such as IC3 [17] and interpolation [18],
[19], k-induction does not automatically generate an inductive

Funded by FWF project W1255-N23, the LIT AI Lab funded by the State
of Upper Austria, and Academy of Finland project 336092.

invariant that can be used as a certificate [20]. In previous
research [21], certification of k-induction can be achieved via
five SAT checks together with a one-alternation QBF check,
redirecting the certification problem to verifying an inductive
invariant in an extended model that simulates the original one.

At the heart of the present contribution is the idea of
reducing the certification method of k-induction to pure SAT
checks, i.e., eliminating the quantifiers. This enables us to
complete the certification procedure at a lower complexity, and
to directly apply the framework to word-level certification. We
introduce the notion of stratified simulation which allows us
to reason about the simulation relation between two systems.

This stratified simulation relation can be verified by three
SAT and a polynomial-time check. The latter checks whether
the reset function is indeed stratified. In addition, we present a
witness circuit construction which simulates the original under
the stratified simulation relation thus creating a simpler and
more elegant certification construction for k-induction.

While the previous work only focused on bit-level model
checking, we also lift our method to word-level by imple-
menting a complete toolsuite CERTIFAIGER-WL, where the
experiments show the practicality and effectiveness of our
certification method for word-level models.

II. BACKGROUND

This paper extends previous work in certification for k-
induction-based bit-level model checking [21]. In this section,
we present essential concepts and notations.

For the sake of simplicity we work with functions rep-
resented as interpreted terms and formulas over fixed but
arbitrary theories which include an equality predicate. We
further assume a finite sorted set of variables L where each
variable l ∈ L is associated with a finite domain of possible
values. We also include Boolean variables as variables with a
domain of {⊤,⊥}, for which we keep standard notations.

For two sets of variables I and L, we also write I, L
to denote their union. Given two functions f(V ), g(V ′)
where V ⊆ V ′ (represented as interpreted terms over our
fixed but arbitrary theories) we call them equivalent, written
f(V ) ≡ g(V ′), if for every assignment to variables in V
and V ′ that matches on the shared set of variables V , the
functions f(V ), g(V ′) have the same values. Additionally, we
use “≃ ” for syntactic equivalence [22], “→ ” for syntactic

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 11 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0002-4993-773X
https://orcid.org/0000-0003-3925-3438
https://orcid.org/0000-0001-7170-9242
https://orcid.org/0000-0002-4547-2701
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_11
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_11
https://creativecommons.org/licenses/by/4.0/


k

C

witness circuit generator C′

simulation
checker

inductive
invariant checker

φtransφreset φprop φconsistφinit φconsec

strat.
check

Fig. 1: An outline of the certification approach. Given some
value of k and a model C, C ′ is the resulting witness circuit.
The coloured area is specific to our approach for k-induction,
and the rest corresponds to the general certification flow.

implication, and “⇒ ” for semantic implication. To define
semantical concepts or abbreviations we stick to equality “= ”.
We use vars(f) to denote the set of variables occurring in the
syntactic representation of a function f .

In word-level model checking operations are applied to
fixed-size bit-vectors. We introduce the notion of word-level
circuits where we model inputs and latches as finite-domain
variables.

Definition 1 (Circuit). A circuit is a tuple C = (I, L,R, F, P )
such that:

• I is a finite set of input variables.
• L is a finite set of latch variables.
• R = {rl(L) | l ∈ L} is a set of reset functions.
• F = {fl(I, L) | l ∈ L} is a set of transition functions.
• P (I, L) is a function that evaluates to a Boolean output,

encoding the (good states) property.

By Def. 1 a circuit represents a hardware system in a fully
symbolic form. In order to talk about the reset functions of a
subset of latches L′′ ⊆ L, we also write

R(L′′) =
∧

l∈L′′

(l ≃ rl(L)).

The following four definitions are adapted from our previous
work [21] for completeness of exposition.

Definition 2 (Unrolling). For an unrolling depth m ∈ N,
the unrolling of a circuit C = (I, L,R, F, P ) of length m
is defined as Um =

∧
i∈[0,m)

(Li+1 ≃ F (Ii, Li)).

Definition 3 (Inductive invariant). Given a circuit C with a
property P , ϕ(I, L) is an inductive invariant in C if and only
if the following conditions hold:

1) R(L) ⇒ ϕ(I, L), “initiation”
2) ϕ(I, L) ⇒ P (I, L), and “consistency”
3) U1 ∧ ϕ(I0, L0) ⇒ ϕ(I1, L1). “consecution”

As a generalisation of the notion of an inductive invariant,
k-induction checks k steps of unrolling instead of 1. In the
following, to verify that a property is an inductive invariant,
we consider it as the special case of k-induction with k = 1
and ϕ(I, L) = P (I, L).

Definition 4 (k-induction). Given a circuit C with a property
P , P is called k-inductive in C if and only if the following
two conditions hold:

1) Uk−1 ∧R(L0) ⇒
∧

i∈[0,k)

P (Ii, Li), and “BMC”

2) Uk ∧
∧

i∈[0,k)

P (Ii, Li) ⇒ P (Ik, Lk). “consecution”

Definition 5 (Combinational extension).
A circuit C ′ = (I ′, L′, R′, F ′, P ′) combinationally extends a
circuit C = (I, L,R, F, P ) if I = I ′ and L ⊆ L′.

III. CERTIFICATION

In this section we introduce and formalise our certification
approach which reduces the certification problem to six SAT
checks and one polynomial stratification check.

The certification approach is outlined in Fig. 1. Intuitively,
a witness circuit is generated from a given value of k (pro-
vided by the model checker) and a model (either bit-level or
word-level). The witness circuit simulates the original circuit
while allowing more behaviours (we formally define it as the
stratified simulation relation). In practice, the witness circuit
would be required to be provided by model checkers as the
certificate in hardware model checking competitions.

We also perform a polynomial-time stratification check on
the witness circuit. The check requires that the definition of the
reset function is stratified, i.e., no cyclic dependencies between
the reset definitions of the variables exist. This is the case for
all hardware model checking competition benchmarks. Even
though cyclic definitions have been the subject of study in
several papers [23]–[25], they are usually avoided due to the
complexity of their analysis and subtle effects on semantics.

The approach in [21] can handle cyclic resets but at the
cost of QBF quantification, and thus [21] not being able to
be efficiently adapted to the context of word-level verification.
Furthermore, the witness circuit includes an inductive invariant
which serves as a proof certificate, which is verified by another
three SAT checks as defined in Def. 3.

We begin by defining stratified reset functions.

Definition 6. (Dependency graph.) Given a set of latches L
and a set of reset functions R = {rl | l ∈ L}, the dependency
graph GR has latch variables L as nodes and contains a
directed edge (a, b) from a to b iff a ∈ vars(rb) and rb ̸= b.

Latches with undefined reset value are common in applica-
tions. We simply set rb = b for some uninitialised latch b in
such a case (as in AIGER and BTOR) to avoid being required
to reason about ternary logic or partial functions. Thus the
syntactic condition “rb ̸= b” in the last definition simply avoids
spurious self-loops in the dependency graph for latches with
undefined reset values.

Definition 7. (Stratified resets.) Given a set of latches L, and
a set of reset functions R = {rl | l ∈ L}. R is said to be
stratified iff GR is acyclic.

60



TABLE I: Summary of certification results for the bit-level TIP suite.

φinit φconsist φconsec φtrans φprop φreset

Benchmarks t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2

c.periodic 7.78 0.06 0.06 0.06 56.82 56.29 0.15 0.14 0.05 0.05 84.04 0.00
n.guidance1 0.19 0.01 0.01 0.01 3.73 3.79 0.12 0.12 0.01 0.01 1.21 0.00
n.guidance7 4.09 0.02 0.02 0.02 18.40 18.17 0.12 0.12 0.02 0.02 25.22 0.00
n.tcasp2 0.17 0.01 0.01 0.01 2.64 2.68 0.23 0.23 0.01 0.02 1.79 0.00
n.tcasp3 0.11 0.01 0.01 0.01 1.82 1.70 0.23 0.26 0.02 0.02 1.01 0.00
v.prodcell12 2.35 0.03 0.03 0.03 59.05 59.22 0.12 0.12 0.03 0.03 8.48 0.00
v.prodcell13 0.22 0.01 0.01 0.01 2.99 2.99 0.12 0.12 0.01 0.01 0.20 0.00
v.prodcell14 0.64 0.02 0.02 0.02 13.69 13.69 0.12 0.12 0.02 0.02 1.45 0.00
v.prodcell15 2.22 0.02 0.03 0.03 32.66 32.28 0.12 0.12 0.02 0.02 2.26 0.00
v.prodcell16 0.01 0.01 0.01 0.01 1.19 1.20 0.12 0.12 0.01 0.01 0.06 0.00
v.prodcell17 2.34 0.03 0.03 0.03 48.51 48.17 0.12 0.12 0.03 0.03 6.86 0.00
v.prodcell18 0.67 0.01 0.01 0.01 8.67 8.78 0.12 0.12 0.02 0.02 0.79 0.00
v.prodcell19 1.66 0.02 0.02 0.03 31.98 31.78 0.12 0.12 0.03 0.03 3.73 0.00
v.prodcell24 3.32 0.04 0.04 0.04 112.12 115.18 0.12 0.12 0.04 0.04 17.64 0.00

Columns report the benchmark names, and the time (in seconds) used for each SAT check by CERTIFAIGER (t1) and CERTIFAIGER++ (t2) respectively.
Interestingly, the SAT solving time for the new reset check is close to zero, which checks the equality of the reset functions between the shared set of

latches and the latches in the original circuit. This is because all latches in the benchmark set are initialized to ⊥, thus making the SAT checks rather trivial.

Definition 8. (Stratified circuit.) A circuit C = (I, L,R, F, P )
is said to be stratified iff R is stratified.

The stratification check can be done in polynomial time
using Def. 7 and it is enforced syntactically in the two
hardware description formats AIGER and BTOR2.

Definition 9. (Stratified simulation.) Given two stratified cir-
cuits C and C ′, where C ′ combinationally extends C. There
is a stratified simulation between C ′ and C iff,

1) rl(L) ≡ r′l(L
′) for l ∈ L, “reset”

2) fl(I, L) ≡ f ′
l (I, L

′) for l ∈ L, and “transition”
3) P ′(I, L′) ⇒ P (I, L). “property”

In essence, the crucial change here compared to the combi-
national simulation definition in [21] is the reset condition,
whose simplification was possible under the stratification
assumption. The above three conditions are encoded into
SAT/SMT formulas (φreset, φtrans, φprop in Fig. 1) which
are then checked by a solver for validity. In the rest of the
paper, we simply refer to the stratified simulation relation as
simulation relation. Proofs of the presented theoretical results
can be found in an extended version of this paper [26].

Theorem 1. Given two circuits C and C ′, where C ′ simulates
C. If C ′ is safe, then C is also safe.

Next, we introduce the witness circuit construction. This is
similar to the construction in [21] but differs in several details,
e.g., the reset function definition is stratified and significantly
simplified compared to [21].

Definition 10. (Witness circuit.) Given a circuit C =
(I, L,R, F, P ) and an integer k ∈ N+, its witness circuit
C ′ = (I ′, L′, R′, F ′, P ′) is defined as follows:

1) I ′ = I (also referred to as Xk−1),
2) L′ = Lk−1 ∪ · · · ∪ L0 ∪Xk−2 ∪ · · · ∪X0 ∪B where,

• Lk−1 = L, the other variables sets are copies of I
and L respectively with the same variable domains.

• B = {bk−1, · · · , b0} are Booleans.

3) R′ :

• for l ∈ Lk−1, r′l = rl(L
k−1).

• for l ∈ L0 ∪ · · · ∪ Lk−2 ∪X0 ∪ · · · ∪Xk−2, r′l = l.
• r′bk−1 = ⊤.
• for i ∈ [0, k − 1), r′bi = ⊥.

4) F ′ :

• for l ∈ Lk−1, f ′
l = fl(I

′, Lk−1).
• f ′

bk−1 = bk−1.
• for i ∈ [0, k − 1), li ∈ (Li ∪Xi ∪ {bi}), f ′

li = li+1.

5) P ′ =
∧

i∈[0,4]

pi(I
′, L′) where

• p0(I
′, L′) =

∧
i∈[0,k−1)

(bi → bi+1).

• p1(I
′, L′) =

∧
i∈[0,k−1)

(bi → (Li+1 ≃ F (Xi, Li))).

• p2(I
′, L′) =

∧
i∈[0,k)

(bi → P (Xi, Li)).

• p3(I
′, L′) =

∧
i∈[1,k)

((¬bi−1 ∧ bi) → R(Li)).

• p4(I
′, L′) = bk−1.

Here we extend a given circuit to a witness circuit, which
has k copies of the original latches and inputs, and additional k
latches of B that we refer to as the initialisation bits. We refer
to the {k− 1}th as the most recent, and the 0th as the oldest.
Intuitively the most recent copy unrolls in the same way as
the original circuit, with the older copies copying the previous
values of the younger copies. When all initialisation bits are
⊤, we say the machine has reached a “full initialisation” state.

Lemma 1. Given a circuit C with reset function R and its
witness circuit C ′ with reset function R′. If R is stratified,
then R′ is also stratified.

Theorem 2. Given a circuit C and its witness circuit C ′. C ′

simulates C.

We now present the main theorem of this paper.

61



Fig. 2: Bit-level: the experimental results of the HWMCC 2010. The benchmark names are shown on the x-axis. The
time ratio on the y-axis is calculated by computing certification time divided by model checking time (ran on the model
checker McAiger [27]). The black dots in the graph are the results obtained from CERTIFAIGER++ and the grey dots are
from CERTIFAIGER. The straight line and the dashed line are the calculated means for CERTIFAIGER++ and CERTIFAIGER
respectively. As we can see from the plot, especially for the instances with certification time greater than 500 seconds, the
new implementation significantly improved the certification performance.

Theorem 3. Given a circuit C = (I, L,R, F, P ) and its
witness circuit C ′ = (I ′, L′, R′, F ′, P ′). P is k-inductive in
C iff P ′ is 1-inductive in C ′.

IV. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

We implemented the proposed certification approach into
two complete toolkits [28]: CERTIFAIGER++ for bit-level,
and CERTIFAIGER-WL for word-level. We evaluate the per-
formance of our tools against several benchmark sets from
previous literature and the model checking competitions.

A. Bit-level

Our toolkit CERTIFAIGER++ extends the certification toolkit
CERTIFAIGER [21]. Note that the AIGER format only allows
stratified resets by default. All experiments were performed on
a workstation with an Intel® CoreTM i9-9900 CPU 3.60GHz
computer with 32GB RAM running Manjaro with Linux
kernel 5.4.72-1.

To determine the speedups of the new implementation
proposed in this paper, we performed experiments on the same
sets of the benchmarks used in [21]. The results are reported
in Table I. There are significant overall gains in the initiation
checks (φinit) as well as the reset checks (φreset). For the
initiation check which checks the invariant holds in all initial

states, the performance improvement is largely due to the
simplification of the reset functions in the new witness circuit
construction.

The results in Fig. 2 demonstrate that CERTIFAIGER++ in
general is much faster than CERTIFAIGER during the overall
certification process. Compared to CERTIFAIGER, CERTI-
FAIGER++ achieved overall speedups of 2.46 times. We ob-
serve performance gains in most benchmarks, as the previous
performance bottleneck for certain benchmarks is the QBF
solving time for the reset check. For other instances, the
bottleneck is the SAT solving time for the consecution check,
which is also improved due to a simpler reset construction (as
part of the inductive invariant).

B. Word-level

We further lifted the method to certifying word-level model
checking by implementing an experimental toolkit called
CERTIFAIGER-WL. CERTIFAIGER-WL follows the same archi-
tecture design as CERTIFAIGER++ and uses Boolector [29] as
the underlying SMT solver. All models and SMT encodings
are in BTOR2 [29] format, which is the standard word-level
model checking format used in hardware model checking
competitions.

62



TABLE II: Summary of certification results word-level benchmarks from the HWMCC20

Benchmarks k #model #witness ModelCh. Certifi. Consec. Ratio
paper v3 256 35 12801 10.25 1.14 0.90 0.11
VexRiscv-regch0-15-p0 17 2149 43077 10.31 4.04 3.29 0.39
zipcpu-pfcache-p02 37 1818 105874 13.95 4.40 2.73 0.32
zipcpu-pfcache-p24 37 1818 105874 14.35 4.49 2.83 0.31
zipcpu-busdelay-p43 101 950 145466 15.29 6.14 3.86 0.40
dspfilters fastfir second-p42 15 6732 115388 16.11 14.80 12.96 0.92
zipcpu-pfcache-p01 41 1818 117434 18.33 6.34 4.47 0.35
dspfilters fastfir second-p10 11 6732 84348 24.56 9.76 8.44 0.40
zipcpu-busdelay-p15 101 950 145466 58.17 8.18 5.89 0.14
qspiflash dualflexpress divfive-p120 97 3100 394412 63.58 22.07 14.58 0.35
zipcpu-pfcache-p22 93 1818 267714 166.07 23.66 19.06 0.14
VexRiscv-regch0-20-p0 22 2149 55862 240.50 16.76 15.76 0.07
dspfilters fastfir second-p14 15 6732 115388 354.01 21.27 19.44 0.06
dspfilters fastfir second-p11 21 6732 161948 627.69 46.88 44.30 0.07
dspfilters fastfir second-p45 17 6732 130908 1094.11 30.14 28.06 0.03
VexRiscv-regch0-30-p1 32 2150 81464 1444.47 83.38 81.95 0.06
dspfilters fastfir second-p43 19 6732 146428 2813.61 58.02 55.69 0.02

To select the benchmarks presented, we first ran AVR with a timeout of 5000 seconds. We display the results here that are of particular interest with a
running time of more than ten seconds (there are 7 instances with k = 1 which were certified and solved under 0.2s). Columns report the benchmark names,

the value of k, the size of the model (measured in number of instructions) and the generated witness, the model checking time, and certification time (in
seconds). Additionally we list the time Boolector took to solve the consecution check, as well as the ratio of model checking vs. certification time. We only

list the consecution check (Consec.) here as it takes up the majority of the certification time.

Fig. 3: Word-level: model checking vs. certification time for the Counter example (with 500 bits) with increasing values
of k. For the experiments, we fixed the modulo bound at 32 and scaled the inductive depth up to 1000. The certification
time is significantly smaller than the model checking time. As the value of k increases, on average the certification time is
proportionally lower.

We ran benchmarks of the Counter example [21] on
AVR [30] to get the values of k. Fig. 3 shows the experimental
results obtained with CERTIFAIGER-WL under the same setting
as Section IV-A. Interestingly, the certification time is much
lower than the model checking time as can be seen in the
diagram, meaning certification is at a low cost.

In Table II we report the experimental results obtained
on a superset of the hardware model checking competition
2020 [31] benchmarks. We observe that the certification time is
much lower than model checking time. Including certification
would increase the runtime of AVR on the model checking
benchmarks by less than 6%.

V. CONCLUSION AND FUTURE WORK

We have presented a new certification framework which
allows certification for k-induction to be done by six SAT
checks and a polynomial-time check. We further lifted our
approach to word-level, and implemented our method in both
contexts. Experimental results demonstrate the effectiveness
and computational efficiency of our toolkits. The removal of
the QBF quantifiers has reduced the theoretical complexity of
the problem compared to [21] and also reduced the overall
runtime overhead of the certification. Additionally, in future
work we plan to obtain formally verified certificate checkers
by using theorem proving. Finally, how to certify liveness
properties is another important avenue of further research.

63



REFERENCES

[1] A. Niemetz, M. Preiner, and A. Biere, “Precise and complete
propagation based local search for satisfiability modulo theories,” in
Computer Aided Verification - 28th International Conference, CAV
2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I,
ser. Lecture Notes in Computer Science, S. Chaudhuri and A. Farzan,
Eds., vol. 9779. Springer, 2016, pp. 199–217. [Online]. Available:
https://doi.org/10.1007/978-3-319-41528-4 11

[2] ——, “Propagation based local search for bit-precise reasoning,”
Formal Methods Syst. Des., vol. 51, no. 3, pp. 608–636, 2017. [Online].
Available: https://doi.org/10.1007/s10703-017-0295-6

[3] A. Niemetz, M. Preiner, A. Reynolds, Y. Zohar, C. W. Barrett, and
C. Tinelli, “Towards satisfiability modulo parametric bit-vectors,” J.
Autom. Reason., vol. 65, no. 7, pp. 1001–1025, 2021.

[4] A. Niemetz, M. Preiner, A. Reynolds, C. W. Barrett, and C. Tinelli,
“Solving quantified bit-vectors using invertibility conditions,” in
Computer Aided Verification - 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part II, ser. Lecture
Notes in Computer Science, H. Chockler and G. Weissenbacher,
Eds., vol. 10982. Springer, 2018, pp. 236–255. [Online]. Available:
https://doi.org/10.1007/978-3-319-96142-2 16

[5] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties
using induction and a SAT-solver,” in FMCAD, ser. Lecture Notes in
Computer Science, vol. 1954. Springer, 2000, pp. 108–125.

[6] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli, “The Kind 2
model checker,” in CAV (2), ser. Lecture Notes in Computer Science,
vol. 9780. Springer, 2016, pp. 510–517.

[7] L. M. de Moura, S. Owre, H. Rueß, J. M. Rushby, N. Shankar,
M. Sorea, and A. Tiwari, “SAL 2,” in Computer Aided Verification,
16th International Conference, CAV 2004, Boston, MA, USA, July
13-17, 2004, Proceedings, ser. Lecture Notes in Computer Science,
R. Alur and D. A. Peled, Eds., vol. 3114. Springer, 2004, pp. 496–500.
[Online]. Available: https://doi.org/10.1007/978-3-540-27813-9 45

[8] D. Jovanovic and B. Dutertre, “Property-directed k-induction,” in FM-
CAD. IEEE, 2016, pp. 85–92.

[9] S. Conchon, A. Mebsout, and F. Zaı̈di, “Certificates for parameterized
model checking,” in FM 2015: Formal Methods - 20th International
Symposium, Oslo, Norway, June 24-26, 2015, Proceedings, ser. Lecture
Notes in Computer Science, N. Bjørner and F. S. de Boer, Eds., vol.
9109. Springer, 2015, pp. 126–142.

[10] A. Gurfinkel and A. Ivrii, “K-induction without unrolling,” in FMCAD.
IEEE, 2017, pp. 148–155.

[11] T. Kuismin and K. Heljanko, “Increasing confidence in liveness model
checking results with proofs,” in Haifa Verification Conference, ser.
Lecture Notes in Computer Science, vol. 8244. Springer, 2013, pp.
32–43.

[12] K. S. Namjoshi, “Certifying model checkers,” in CAV, ser. Lecture Notes
in Computer Science, vol. 2102. Springer, 2001, pp. 2–13.

[13] L. G. Wagner, A. Mebsout, C. Tinelli, D. D. Cofer, and K. Slind,
“Qualification of a model checker for avionics software verification,”
in NASA Formal Methods - 9th International Symposium, NFM 2017,
Moffett Field, CA, USA, May 16-18, 2017, Proceedings, ser. Lecture
Notes in Computer Science, C. W. Barrett, M. Davies, and T. Kahsai,
Eds., vol. 10227, 2017, pp. 404–419.

[14] A. Griggio, M. Roveri, and S. Tonetta, “Certifying proofs for LTL model
checking,” in FMCAD. IEEE, 2018, pp. 1–9.

[15] Z. Yu, A. Biere, and K. Heljanko, “Certifying hardware model checking
results,” in ICFEM, ser. Lecture Notes in Computer Science, vol. 11852.
Springer, 2019, pp. 498–502.

[16] A. Griggio, M. Roveri, and S. Tonetta, “Certifying proofs for SAT-based
model checking,” Formal Methods Syst. Des., vol. 57, no. 2, pp. 178–
210, 2021.

[17] A. R. Bradley, “SAT-based model checking without unrolling,” in
VMCAI, ser. Lecture Notes in Computer Science, vol. 6538. Springer,
2011, pp. 70–87.

[18] K. L. McMillan, “Interpolation and SAT-based model checking,”
in Computer Aided Verification, 15th International Conference, CAV
2003, Boulder, CO, USA, July 8-12, 2003, Proceedings, ser. Lecture
Notes in Computer Science, W. A. H. Jr. and F. Somenzi,
Eds., vol. 2725. Springer, 2003, pp. 1–13. [Online]. Available:
https://doi.org/10.1007/978-3-540-45069-6 1

[19] ——, “An interpolating theorem prover,” Theor. Comput. Sci.,
vol. 345, no. 1, pp. 101–121, 2005. [Online]. Available: https:
//doi.org/10.1016/j.tcs.2005.07.003

[20] Z. Manna and A. Pnueli, Temporal verification of reactive systems -
safety. Springer, 1995.

[21] E. Yu, A. Biere, and K. Heljanko, “Progress in certifying hardware
model checking results,” in CAV (2), ser. Lecture Notes in Computer
Science, vol. 12760. Springer, 2021, pp. 363–386.

[22] A. Degtyarev and A. Voronkov, “Equality reasoning in sequent-based
calculi,” in Handbook of Automated Reasoning (in 2 volumes), J. A.
Robinson and A. Voronkov, Eds. Elsevier and MIT Press, 2001, pp.
611–706.

[23] S. Malik, “Analysis of cyclic combinational circuits,” IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., vol. 13, no. 7, pp. 950–956,
1994. [Online]. Available: https://doi.org/10.1109/43.293952

[24] J. R. Jiang, A. Mishchenko, and R. K. Brayton, “On breakable
cyclic definitions,” in 2004 International Conference on Computer-
Aided Design, ICCAD 2004, San Jose, CA, USA, November 7-11,
2004. IEEE Computer Society / ACM, 2004, pp. 411–418. [Online].
Available: https://doi.org/10.1109/ICCAD.2004.1382610

[25] M. D. Riedel, Cyclic combinational circuits. California Institute of
Technology, 2004.

[26] E. Yu, N. Froleyks, A. Biere, and K. Heljanko, “Stratified certification
for k-induction,” 2022. [Online]. Available: https://arxiv.org/abs/2208.
01443

[27] A. Biere and R. Brummayer, “Consistency checking of all different
constraints over bit-vectors within a SAT solver,” in FMCAD. IEEE,
2008, pp. 1–4.

[28] Certifaiger++ and Certifaiger-wl, “Certifaiger++ and Certifaiger-wl,”
2022, http://fmv.jku.at/certifaiger.

[29] A. Niemetz, M. Preiner, C. Wolf, and A. Biere, “Btor2 , btormc and
boolector 3.0,” in Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, ser.
Lecture Notes in Computer Science, H. Chockler and G. Weissenbacher,
Eds., vol. 10981. Springer, 2018, pp. 587–595. [Online]. Available:
https://doi.org/10.1007/978-3-319-96145-3 32

[30] A. Goel and K. A. Sakallah, “AVR: abstractly verifying reachability,”
in Tools and Algorithms for the Construction and Analysis of Systems
- 26th International Conference, TACAS 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part
I, ser. Lecture Notes in Computer Science, A. Biere and D. Parker,
Eds., vol. 12078. Springer, 2020, pp. 413–422. [Online]. Available:
https://doi.org/10.1007/978-3-030-45190-5 23

[31] M. Preiner, A. Biere, and N. Froleyks, “Hardware model checking
competition 2020,” 2020,
http://fmv.jku.at/hwmcc20/.

64

https://doi.org/10.1007/978-3-319-41528-4_11
https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-540-27813-9_45
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1016/j.tcs.2005.07.003
https://doi.org/10.1016/j.tcs.2005.07.003
https://doi.org/10.1109/43.293952
https://doi.org/10.1109/ICCAD.2004.1382610
https://arxiv.org/abs/2208.01443
https://arxiv.org/abs/2208.01443
http://fmv.jku.at/certifaiger
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-030-45190-5_23
http://fmv.jku.at/hwmcc20/

	Introduction
	Background
	Certification
	Implementation and Experimental Evaluation
	Bit-level
	Word-level

	Conclusion and future work
	References

