Hardware Model Checking Certificates

Emily Yu

Nils Froleyks

Johannes Kepler University Linz, Austria

Armin Biere

Mathias Fleury

University of Freiburg, Germany

I. CERTIFYING MODEL CHECKING RESULTS

The proposed benchmark set is obtained from our recent
work on certifying k-induction-based model checking [1I]. The
model checking technique k-induction [2] is widely used for
verification. A safety property is said to be k-inductive iff it
satisfies the following two cases: it holds for k£ —1 consecutive
steps originating from the initial states; if it holds for £ — 1
steps of unrolling, it also holds at the next state after one
transition.

The key idea of certifying a model checking result in
a generic form is to generate an inductive invariant as a
proof certificate which implies the safety property in the
given model. The certification framework proposed in [1]]
reduces the certification problem to five SAT checks and a one-
alternation QBF, allowing certification at a low complexity. In
a nutshell, the approach extends the given model to a larger
circuit (namely k-witness circuit) with an inductive invariant.
Two SAT checks and one QBF check are used to verify the so-
called combinational simulation relation between the original
circuit and the k-witness circuit. Furthermore, another three
SAT checks are generated for checking the inductive invariant
in the k-witness circuit.

The size of the k-witness circuit is in principle linear in the
size of the original circuit and the value of k. One of the most
essential features is that it includes &k copies of the original
machine, and allows multiple ways of initialisation. The new
property in the k-witness circuit (the inductive invariant) is
composed of five sub-properties.

To verify ¢(I,L) (a formula over the inputs and latches)
is indeed an inductive invariant in the k-witness circuit, the
following formulas are generated:

o Initiation check (R(L) = ¢(I, L)): the inductive invari-

ant must hold at all initial states.

o Consistency check (¢(I,L) = P(I,L)): the inductive

invariant must hold at all good states.

e Consecution check (U; A ¢(Iy, Lg) = ¢(I1,L1)): the

inductive invariant is preserved during one transition.

II. GENERATED INSTANCES

The certification approach is implemented into a toolkit
Certifaiger [1], which takes as inputs a model in AIGER for-
mat [3]] and a value of k£ which is usually provided by a model
checker (here we used McAiger [4]). The toolkit originally
uses Kissat [3]] as the underlying SAT solver, however, in this
paper we modified it to use MiniSAT instead.

All benchmarks are obtained by running against a subset of
HWMCC’2010 [6] benchmarks which McAiger successfully
terminated with. We found 7 SAT formulas for which MiniSAT
experienced a timeout of 15 minutes. (However, they were
originally solved by Kissat and are unsatisfiable.) Among
those, one is an initiation check, and the rest are consecution
checks. We then add these 7 formulas to our benchmark set.

As the nature of k-induction, if a property is m-inductive
in a model for some arbitrary m it is also m-inductive in
the same model for any n such that n > m. Therefore we
obtained another 3 benchmarks from the same set by scaling
the inductive depths to 500.

As for the satisfiable instances, we added the 4 instances
with the same inductive depth 80 to the benchmark set,
which originally were timed out on Kissat mentioned in the
paper [1] from the pj20 family. We used McAiger to inspect
the inductive depths, which confirms that the values of k are
greater than 80, making the consecution check fail thus the
formulas satisfiable. With the same logic, we obtained further
6 benchmarks by scaling the inductive depths. The names of
the benchmarks are composed by following the convention:
original benchmark name + “_k” + inductive depth. There
are two exceptions starting with the name “bobsmdct_init”,
where “bobsmdct” is the model name and “_init” is for
explicitly stating initiation checks.

REFERENCES

[1] E. Yu, A. Biere, and K. Heljanko, “Progress in certifying hardware model
checking results,” in CAV (2), ser. Lecture Notes in Computer Science,
vol. 12760. Springer, 2021, pp. 363-386.

M. Sheeran, S. Singh, and G. Stalmarck, “Checking safety properties
using induction and a SAT-solver,” in FMCAD, ser. Lecture Notes in
Computer Science, vol. 1954. Springer, 2000, pp. 108-125.

A. Biere, K. Heljanko, and S. Wieringa, “AIGER 1.9 and beyond,”
Institute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep. 11/2, 2011.

A. Biere and R. Brummayer, “Consistency checking of all different
constraints over bit-vectors within a SAT solver,” in FMCAD. 1EEE,
2008, pp. 1-4.

A. Biere, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat, Paracooba
entering the SAT Competition 2021,” in Proc. of SAT Competition 2021
— Solver and Benchmark Descriptions, ser. Department of Computer
Science Report Series B, T. Balyo, N. Froleyks, M. Heule, M. Iser,
M. Jarvisalo, and M. Suda, Eds., vol. B-2021-1. University of Helsinki,
2021, pp. 10-13.

A. Biere and K. Claessen, “Hardware model checking competition 2010,”
2010, http://tmv.jku.at/hwmcc10/,

(2]

(3]

[4

—_

[5

—_

[6

[t}


http://fmv.jku.at/hwmcc10/

