
Verifying Floating-Point Commutativity with GRS
Robin Trüby

University Freiburg
Freiburg, Germany
robin.trueby@web.de

Mathias Fleury
University Freiburg
Freiburg, Germany

fleury@cs.uni-freiburg.de

Armin Biere
University Freiburg
Freiburg, Germany

biere@cs.uni-freiburg.de

I. GRS Description

GRS are a technique to operate on floating operations
efficiently following the IEEE 754 norm [1]. It is used inside
CPUs for efficiency. It is possible to prove that only 3
additional digits, called guard (G), round (R), and sticky
(S). This is sufficient to keep the results correct. This
is more efficient for double than converting the numbers
to 80-bit floating points and then rounding back. In his
Bachelor project, the first author created a webpage [2] in
German to illustrate the use of GRS bits.

GRS must be paired with a rounding technique for ties.
We use round to even, which is better to keep precision
than always rounding down or always rounding up.

The benchmark we are interested correspond to proving
that a+b=b+a. We know that such encoding for integer
addition is very easy to solve for SAT solvers, while
becoming hard for multipliers. To simplify the encoding,
we first generated word-level SMT benchmarks. We have
submitted some of the (smaller) benchmarks to the SMT
Competition directly.

To validate the correctness of our encoding [3], we
compared the results of our encoding to the floating point
theory of SMT solvers and found no difference.

The idea of addition is that our two numbers a and b
are binary encoding from:

a =(−1)sa(1 +ma)2
na

b =(−1)sb(1 +mb)2
nb

Then we align the exponents

a+ b =
(
(−1)sa(1 +ma)2

na−max(na,nb)+

= (−1)sb(1 +mb)2
nb−max(na,nb)

)
2max(na,nb)

Finally, we have to implement the operations. For this,
we used a word-level representation in our SMT encoding.
Finally, we have handle various special cases, including
realigning numbers, changing the exponents, handling
denormal numbers, and handling overflows (like NaN or
infinity). Finally we can produce the final binary result.

Due to the encoding, we know that all problems are
UNSAT. Also we have not found a simple way to generate
satisfiable hard benchmarks with GRS.

II. Benchmark Generation
To generate the benchmarks we have written a custom

C program (available online [4]) that writes the SMT file.
Then we use Bitwuzla [5] to convert the SMT files to
DIMACS files without any specific options.

During experimentation, we found out that encoding as
(if a then x=s else x=t) makes the problem very easy for
SMT solver and we generate benchmarks using x = (if a
then s else t).

The naming convention for our benchmarks is grs-
<mantissa-size>-<exponent-size>.cnf.

References
[1] IEEE Committee, “IEEE standard for floating-point

arithmetic,” IEEE Computer Society, New York, NY,
USA, Standard IEEE Std 754-2008, Aug. 2008. [Online].
Available: https://web.archive.org/web/20160806053349/http:
//www.csee.umbc.edu/~tsimo1/CMSC455/IEEE-754-2008.pdf

[2] R. Trüby. (2023) Floating-point arithmetic. Bachelor Project
at University Freiburg, in German. [Online]. Available: https:
//cca.informatik.uni-freiburg.de/teaching/grs-bits/home.html

[3] ——, “Generating word-level floating-point benchmarks,” 2023,
bachelor Thesis at University Freiburg, Submitted.

[4] ——. (2023) Bachelorarbeit. Accessed April 2023. [Online].
Available: https://github.com/Robin060500/Bachelorarbeit

[5] A. Niemetz and M. Preiner, “Bitwuzla at the SMT-COMP
2020,” CoRR, vol. abs/2006.01621, 2020. [Online]. Available:
https://arxiv.org/abs/2006.01621

mailto:robin.trueby@web.de
http://orcid.org/0000-0002-1705-3083
mailto:fleury@cs.uni-freiburg.de
http://orcid.org/0000-0001-7170-9242
mailto:biere@cs.uni-freiburg.de
https://web.archive.org/web/20160806053349/http://www.csee.umbc.edu/~tsimo1/CMSC455/IEEE-754-2008.pdf
https://web.archive.org/web/20160806053349/http://www.csee.umbc.edu/~tsimo1/CMSC455/IEEE-754-2008.pdf
https://cca.informatik.uni-freiburg.de/teaching/grs-bits/home.html
https://cca.informatik.uni-freiburg.de/teaching/grs-bits/home.html
https://github.com/Robin060500/Bachelorarbeit
https://arxiv.org/abs/2006.01621

	GRS Description
	Benchmark Generation
	References

