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All-Solution Satisfiability (AllSAT) and its extension, All-Solution Satisfiability Modulo Theories 
(AllSMT), have become more relevant in recent years, mainly in formal verification and artificial 
intelligence applications. The goal of these problems is the enumeration of all satisfying 
assignments of a formula (for SAT and SMT problems, respectively), making them useful for 
test generation, model checking, and probabilistic inference. Nevertheless, traditional AllSAT 
algorithms face significant computational challenges due to the exponential growth of the 
search space and inefficiencies caused by blocking clauses, which cause memory blowups and 
degrade unit propagation performance in the long term. This paper presents two novel solvers: 
TabularAllSAT, a projected AllSAT solver, and TabularAllSMT, a projected AllSMT solver. 
Both solvers combine Conflict-Driven Clause Learning (CDCL) with chronological backtracking to 
improve efficiency while ensuring disjoint enumeration. To retrieve compact partial assignments 
we propose a novel aggressive implicant shrinking algorithm, compatible with chronological 
backtracking, to minimize the number of partial assignments, reducing overall search complexity. 
Furthermore, we extend the solver framework to handle projected enumeration and SMT formulas 
effectively and efficiently, adapting the baseline framework to integrate theory reasoning and the 
distinction between important and non-important variables. An extensive experimental evaluation 
demonstrates the superiority of our approach compared to state-of-the-art solvers, particularly in 
scenarios requiring projection and SMT-based reasoning.

1. Introduction

Given a propositional formula 𝐹 over a set of Boolean variables 𝑉 , the All-Solution Satisfiability (AllSAT) problem consists of 
identifying all possible satisfying assignments for 𝐹 . AllSAT has seen significant use across various fields, particularly in hardware 
and software verification. For example, it has been applied in the automatic generation of program test suites [1], as well as in both 
bounded and unbounded model checking [2]. Additionally, AllSAT has been employed in data mining, specifically in solving the 
frequent itemset mining problem [3].

AllSAT can be extended to richer logical frameworks in the form of AllSMT (All Satisfiability Modulo Theories) [4,5]. Whereas 
AllSAT focuses on Boolean variables and propositional formulas, AllSMT expands to formulas 𝐹 with variables from more complex 
domains, interpreted over one or multiple specific first-order logic theories  (e.g., linear integer arithmetic (), linear real 
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arithmetic () or bit-vectors ()). The goal in AllSMT is to enumerate all satisfying assignments 𝜂 for 𝐹 under the constraints of 
the theory  . Recently, AllSMT has gained interest in artificial intelligence and has been used for tasks such as probabilistic inference 
in hybrid domains via Weighted Model Integration (WMI) [6,7]. Moreover, model counting over first-order theories (#SMT) [8], 
static analysis for quantifying information flow [9], and the extraction of theory lemmas to generate canonical decision diagrams 
modulo theories [10] rely on enumeration strategies from AllSMT.

In both AllSAT and AllSMT, the concept of projection plays an essential role. It involves restricting the enumeration to a specific 
subset 𝑉𝑟 of the variables in 𝑉 , thereby simplifying the search of satisfying models by ignoring the truth value of variables outside of 
𝑉𝑟. Projection is particularly beneficial for the enumeration of non-CNF formulas. When formulas are transformed into CNF—often via 
the Tseitin transformation—projection is essential to exclude the newly introduced auxiliary variables. Projection has been applied in 
numerous domains other than enumeration, including predicate abstraction [4], image computation [11,12], quantifier elimination 
[13], and model checking [14].

Computational challenges in enumeration Enumerating all solutions of a given formula 𝐹 is a significantly more computationally 
intensive task than solving a single SAT instance. When dealing with complex problems, several aspects must be carefully considered 
to make enumeration viable.

One major challenge is the growth of the search space when dealing with complex instances. For a formula 𝐹 with 𝑛 variables, there 
are 2𝑛 possible total assignments. Explicitly enumerating all of these solutions would require exponential space, which is impractical 
for large values of 𝑛. To mitigate this issue, partial models can be utilized to provide more concise representations of the solution 
set. A partial model is an assignment that leaves some variables unspecified, implying that the truth value of these variables does not 
influence the satisfiability of the formula in that particular assignment. Consequently, a partial assignment with 𝑚 specified variables 
represents 2𝑛−𝑚 total assignments, effectively reducing the solution space to explore.

Another critical aspect to consider in enumeration is the handling of repeated models. In some contexts, allowing the repetition of 
the same model in the enumeration might be acceptable or even desirable, such as in predicate abstraction applications. However, in 
other scenarios like Weighted Model Integration and #SMT, repeating the same model can lead to incorrect results or inefficiencies. 
In this paper, we focus on disjoint enumeration, where repetitions of the same assignment are strictly prohibited.

Related work SAT-based enumeration algorithms can be categorized into two main types: blocking solvers and non-blocking 
solvers.

Blocking AllSAT solvers [15,2,16] are built on top of Conflict-Driven Clause Learning (CDCL) and non-chronological backtracking 
(NCB). These solvers work by adding blocking clauses to the formula each time a model is found. A blocking clause is designed 
to exclude the current satisfying assignment, ensuring that the solver does not find and return the same assignment in subsequent 
searches. This process is repeated until all possible satisfying assignments have been enumerated, effectively scanning the entire search 
space. Even though blocking solvers are relatively straightforward to implement and can be modified to retrieve partial assignments, 
they face significant efficiency challenges as the number of models increases. Specifically, an exponential number of blocking clauses 
might be required to cover the search space entirely. As more blocking clauses are added, unit propagation—the process of deducing 
variable assignments from the existing clauses—becomes increasingly difficult, leading to degraded performance.

Non-blocking AllSAT solvers [12,17] address the inefficiencies associated with blocking clauses by avoiding their use altogether. 
Instead, these solvers employ chronological backtracking (CB) [18]. In chronological backtracking, when a conflict arises during the 
search process, the solver backtracks to the most recently assigned variable, rather than jumping back non-chronologically as in CDCL. 
This method avoids covering the same model multiple times without the performance degradation caused by an excessive number of 
blocking clauses. However, non-blocking solvers have their limitations. Publicly available implementations of non-blocking solvers 
generate total assignments, as obtaining short partial assignments with chronological backtracking remains a complex and largely 
unexplored challenge. This is due to the strong dependency on decision order, which limits the effectiveness of standard minimization 
techniques. Additionally, non-blocking solvers can struggle to efficiently escape regions of the search space that contain no solutions, 
which can lead to inefficiencies in certain scenarios.

[19] introduces a formal calculus for disjunctive model counting that seeks to combine the strengths of both chronological back-

tracking and CDCL. This approach offers a promising direction, but the original work did not include an implementation or empirical 
results to demonstrate its effectiveness. Moreover, the calculus does not address how to effectively handle projected enumeration, 
and extending these methods to problems that include first-order logic theories.

Another SAT-based approach for enumeration that is particularly useful for non-CNF formulas is based on the idea of entailment 
[20]. Typically, when given a partial assignment 𝜇, SAT solvers check whether 𝜇 satisfies 𝐹 by substituting all the assigned variables 
in 𝐹 with their corresponding truth values and recursively propagating these values through the formula. If this process results in 
⊤, then 𝜇 is said to satisfy 𝐹 , a concept known as “evaluation to true.” Entailment, on the other hand, operates differently. A partial 
assignment 𝜇 entails 𝐹 if every total assignment 𝜂 that extends 𝜇 also satisfies 𝐹 . In other words, after substituting the variables in 
𝐹 with the values from 𝜇 and propagating, the residual formula must be valid. Whereas determining whether a partial assignment 
entails a formula is computationally more expensive than simply checking if the formula evaluates to true given 𝜇, it has been shown 
to be effective in generating compact partial models for enumeration [21]. A few formal calculi have been developed to implement 
enumeration algorithms that leverage dual reasoning during enumeration [22,23].

A second SAT-based approach for enumeration is known as dual encoding. This technique relies on a dual representation of the 
formula that enables efficient detection of partial models while pruning the search space. Unlike traditional approaches, dual encoding 
avoids explicit satisfiability checks and clause watching mechanisms, reducing overhead in identifying when a partial assignment 
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satisfies the formula. The main achievement is that, instead of shrinking total assignments, as is typically done in other AllSAT solvers, 
it directly extracts partial solutions. However, experimental results indicate that Dualiza is not yet competitive with state-of-the-art 
AllSAT solvers.

An alternative to SAT-based methods involves compiling a formula into a decomposable, deterministic negation normal form 
(d-DNNF). This structure allows for efficient retrieval of partial assignments that satisfy 𝐹 . To extract a single satisfying assignment, 
one can traverse the d-DNNF from the root, selecting exactly one child at each OR node but follow all children from AND nodes. 
The properties of d-DNNF ensure that each assignment is mutually exclusive from the others. Building on this concept, a recently 
proposed tool leverages a depth-first traversal of the d-DNNF representation of a Boolean formula to enumerate models, ensuring that 
memory usage remains bounded by the size of 𝐹 [24]. It is important to note, however, that this approach is inherently designed for 
AllSAT and does not consider projection or first-order logic theories. Recently a new calculus to convert CNF formulas to d-DNNF 
using chronological backtracking has been presented [25].

The literature on AllSMT is very limited, and AllSMT algorithms are highly based on AllSAT techniques and tools. For instance, 
MathSAT5 [26] implements an AllSMT functionality based on the procedure by [4], relying on learning blocking clause to search 
all possible satisfying assignments.

Our contribution Based on the formal calculus in [19], in this paper we present TabularAllSAT and TabularAllSMT, respectively 
a projected AllSAT solver and a projected AllSMT solver that combine CDCL and chronological backtracking to avoid the introduction 
of blocking clauses. In particular, our main contributions can be summarized as follows:

(𝑎) We discuss the AllSAT procedure to perform disjoint partial enumeration of propositional formulas by combining the best of 
current All- SAT state-of-the-art literature: (𝑖) CDCL, to escape search branches where no satisfiable assignments can be found; 
(𝑖𝑖) chronological backtracking, to ensure no blocking clauses are introduced; (𝑖𝑖𝑖) efficient implicant shrinking, to reduce in size 
partial assignments, by exploiting the 2-literal watching scheme.

(𝑏) We propose two implicant shrinking algorithms, intending to reduce the number of partial assignments retrieved by the AllSAT 
procedure while making sure the calculus in [19] is not violated.

(𝑐) We extend our procedure to deal with projected enumeration, showing how chronological backtracking and CDCL have been 
adapted to enumerate only a subset of important variables.

(𝑑) We extend our procedure to deal with the enumeration of SMT formulas, showing how chronological backtracking and CDCL 
have been adapted to integrate theory reasoning.

(𝑒) We perform an extensive experimental evaluation, showing the superiority of our proposed techniques against the state-of-the-art 
algorithms.

Disclaimer A preliminary and much shorter version of this paper was presented at the AAAI24 conference [27], presenting only the 
baseline algorithm to perform disjoint enumeration without introducing blocking clauses (𝑎) and the first of the two chronological 
implicant shrinking algorithm discussed in this work (𝑏). We refer to this baseline algorithm in the manuscript as TabularAll-

SAT𝐴𝐴𝐴𝐼24.

This paper leverages the algorithm from [27] by proposing a novel implicant shrinking that allows the retrieval of shorter par-

tial assignments without affecting computational times and is not heavily affected by variable ordering as the baseline algorithms 
(𝑏). Moreover, we extended the algorithm to deal with projected enumeration (𝑐) and SMT enumeration (𝑑). Finally we provided 
an extensive and detailed experimental evaluation, to compare the implicant shrinking algorithms and the novel TabularAllSAT 
algorithm against the state-of-the-art solvers (𝑒).

Structure of the paper The rest of the paper is organized as follows. In §2 we introduce the background, focusing on the notation 
adopted, the CDCL algorithm, and chronological backtracking. In §3 we briefly summarize the algorithm to perform AllSAT integrating 
CDCL and chronological backtracking with no need for blocking clauses, representing a summary of [27] and the baseline of extensions 
discussed in this work. In §4 we discuss the novel implicant shrinking algorithm, to make it more effective. In §6 and §7 we extend 
the baseline algorithm to address respectively projected SAT enumeration[19] and SMT enumeration, showing the main difference 
and design choices that were required to make it compliant with the calculus in [19]. At the end of sections §4, §6 and §7 an 
extensive experimental evaluation is presented, comparing our tool’s latest version against the few publicly available state-of-the-art 
competitors.

2. Background

2.1. Notation

We assume 𝐹 is a propositional formula defined on the set of Boolean variables 𝑉 = {𝑣1, ..., 𝑣𝑛}, with cardinality |𝑉 |. A literal 
𝓁 is a variable 𝑣 or its negation ¬𝑣. The function 𝑣𝑎𝑟(𝓁) maps a literal to the associated variable. When dealing with projected 
enumeration, the set of variables 𝑉 is split into two disjoint sets: the set of relevant variables 𝑉𝑟 and the set of irrelevant variables 𝑉𝑖 . 
𝐿(𝑉 ) denotes the set of literals on V. We implicitly remove double negations: if 𝓁 is ¬𝑣, by ¬𝓁 we mean 𝑣 rather than ¬¬𝑣. A clause 
is the disjunction of literals 

⋁
𝓁∈𝑐 𝓁. A cube is the conjunction of literals 

⋀
𝓁∈𝑐 𝓁.
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A function 𝑀 ∶ 𝑉 ↦ {⊤,⟂} mapping variables in 𝐹 to their truth value is known as assignment. An assignment can be represented 
by either a set of literals {𝓁1, ...,𝓁𝑛} or a cube conjoining all literals in the assignment 𝓁1 ∧ ... ∧ 𝓁𝑛. We distinguish between total 
assignments 𝜂 or partial assignments 𝜇 depending on whether all variables are mapped to a truth value or not, respectively.

A trail is an ordered sequence of literals 𝐼 = 𝓁1, ...,𝓁𝑛 with no duplicate variables. The empty trail is represented by 𝜀. Two trails 
can be conjoined one after the other 𝐼 = 𝐾𝐿, assuming 𝐾 and 𝐿 have no variables in common. We use superscripts to mark literals 
in a trail 𝐼 : 𝓁𝑑 indicates a literal assigned during the decision phase, whereas 𝓁∗ refers to literals whose truth value is negated due 
to chronological backtracking after finding a model (we will refer to this action as flipping). Trails can be seen as ordered total (resp. 
partial) assignments; for the sake of simplicity, we will refer to them as total (resp. partial) trails.

Definition 1. The decision level function 𝛿 ∶ 𝑉 ↦ ℕ ∪ {∞} returns the decision level of variable 𝑉 , where ∞ means unassigned. We 
extend this concept to literals (𝛿(𝓁) = 𝛿(𝑣𝑎𝑟(𝓁))) and clauses (𝛿(𝐶) = {𝑚𝑎𝑥(𝛿(𝓁))|𝓁 ∈ 𝐶}).

Definition 2. The decision literal function 𝜎 ∶ ℕ↦ 𝐿(𝑉 ) ∪ {𝜀} returns the decision literal of a specified level. If we have not decided 
on a literal at the specified level yet, we return 𝜀.

Definition 3. The reason function 𝜌(𝓁) returns the reason that forced literal 𝓁 to be assigned a truth value:

• DECISION, if the literal is assigned by the decision selection procedure;

• UNIT, if the literal is unit propagated at decision level 0, thus it is an initial literal;

• PROPAGATED(𝑐), if the literal is unit propagated at a decision level higher than 0 due to clause 𝑐;

In addition to these standard values discussed in the literature, in this paper, we discuss a new value, BACKTRUE, which is used 
in the case a literal is unit propagated after a model has been found. More details on it are discussed in §3.2.

2.2. AllSAT, AllSMT and projection

AllSAT is the task of enumerating all the truth assignments propositionally satisfying a propositional formula. The task can be 
found in the literature in two versions: disjoint AllSAT, in which the assignments are required to be pairwise mutually inconsistent, 
and non-disjoint AllSAT, in which they are not. For instance, given the formula 𝐹 = 𝐴∨𝐵, a non-disjoint AllSAT solver could generate 
the partial assignments 𝜇1 = 𝐴 and 𝜇2 = 𝐵. Since the total model 𝜂1 = 𝐴 ∧ 𝐵 is a superset of both assignments, the enumeration 
is not disjoint. In contrast, a disjoint AllSAT solver ensures that each assignment is mutually inconsistent with the others. For the 
same formula, it could generate 𝜇1 = 𝐴 and 𝜇2 = ¬𝐴 ∧ 𝐵 (or alternatively, 𝜇1 = 𝐵 and 𝜇2 = ¬𝐵 ∧ 𝐴), preventing overlap between 
assignments and maintaining disjointness. In this paper, we will focus on disjoint enumeration. A generalization to the SMT( ) case 
is AllSMT( ), defined as the task of enumerating all the  -satisfiable truth assignments propositionally satisfying a SMT( ) formula.

Projection is a process related to SAT and AllSAT solving that involves ignoring irrelevant variables 𝑉𝑖 from a Boolean formula 
while preserving the satisfiability of the formula with respect to the remaining relevant variables 𝑉𝑟 . The goal of projection is to 
reduce the dimensionality of a Boolean expression by “projecting” it onto a subset of its variables, effectively discarding those that 
are not relevant to the problem at hand. In particular, given a formula 𝐹 under the set of variables 𝑉𝑟 ∪ 𝑉𝑖 s.t. 𝑉𝑟 ∩ 𝑉𝑖 = ∅, the 
enumeration of 𝐹 projected onto the relevant variables 𝑉𝑟 consists of:

𝑃𝑟𝑜𝑗𝐴𝑙𝑙𝑆𝐴𝑇 (𝐹 (𝑉𝑟,𝑉𝑖)) = 𝐴𝑙𝑙𝑆𝐴𝑇 (∃𝑉𝑖.𝐹 (𝑉𝑟,𝑉𝑖)) (1)

For example, the enumeration of a non-CNF formula 𝐹 can be carried out by first converting it into CNF and then enumerating 
its satisfying assignments by means of Projected AllSAT. Specifically, given a non-CNF formula 𝐹 (𝐀), we can apply either the Tseitin 
[28] or Plaisted-Greenbaum [29] transformation to obtain 𝐹𝐶𝑁𝐹 (𝐀 ∪ 𝐁), where 𝐁 represents the Boolean variables introduced by 
the transformation. Enumeration is then performed over the partial assignments to 𝐀 that can be extended to total truth assignments 
satisfying 𝐹𝐶𝑁𝐹 over 𝐀 ∪ 𝐁. Here, the original set of variables 𝐀 corresponds to 𝑉𝑟, whereas the additional variables 𝐁, introduced 
during the CNF transformation, correspond to 𝑉𝑖. We refer the reader to [30] for an analysis of CNF-ization for enumeration.

2.3. The 2-watched literal scheme

The 2-watched literal scheme [31] is an indexing technique that efficiently checks if the currently-assigned literals do not cause a 
conflict. For every clause, two literals are tracked. If at least one of the two literals is set to ⊤, then the clause is satisfied. If one of the 
two literals is set to ⟂, then we scan the clause searching for a new literal 𝓁′ that can be paired with the remaining one, being sure 
𝓁′ is not mapped to ⟂. If we reach the end of the clause and both watches for that clause are set to false, then we know the current 
assignment falsifies the formula. Additionally, if after updating the watches only one remaining literal in the clause is unassigned, 
that literal must be set to ⊤ to satisfy the clause, triggering unit propagation. The 2-watched literal scheme is implemented through 
watch lists.

Definition 4. The watch list function 𝜔(𝓁) returns the set of clauses {𝑐1, ..., 𝑐𝑛} currently watched by literal 𝓁.
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2.4. CDCL and non-chronological backtracking

Conflict Driven Clause Learning (CDCL) is the most popular SAT-solving technique [32]. It is an extension of the older Davis-

Putnam-Logemann-Loveland (DPLL) algorithm [33], improving the latter by dynamically learning new clauses during the search 
process and using them to drive backtracking.

Every time the current trail falsifies a formula 𝐹 , the SAT solver generates a conflict clause 𝑐 starting from the falsified clause, 
by repeatedly resolving against the clauses which caused unit propagation of falsified literals. This clause is then learned by the 
solver and added to 𝐹 . After an analysis based on 𝑐, we backtrack to flip the value of one literal, potentially jumping more than 
one decision level (thus we talk about non-chronological backtracking, or NCB). CDCL and non-chronological backtracking allow for 
escaping regions of the search space where no satisfying assignments are admitted, which benefits both SAT and AllSAT solving. The 
idea behind conflict clauses has been extended in AllSAT to learn clauses from partial satisfying assignments (known in the literature 
as good learning or blocking clauses [34,35]) to ensure no total assignment is covered twice.

2.5. Chronological backtracking

Chronological backtracking (CB) is the core of the original DPLL algorithm. Considered inefficient for SAT solving once NCB was 
presented in [31], it was recently revamped for both SAT and AllSAT in [18,36]. The intuition is that non-chronological backtracking 
after conflict analysis can lead to redundant work, due to some assignments that could be repeated later on during the search. 
Instead, independently of the generated conflict clause 𝑐 we chronologically backtrack and flip the last decision literal in the trail. 
Consequently, we explore the search space systematically and efficiently, ensuring no assignment is covered twice during execution. 
Chronological backtracking combined with CDCL is effective in SAT solving when dealing with satisfiable instances. In AllSAT solving, 
it guarantees blocking clauses are no more needed to ensure termination.

2.6. Benefits and drawbacks of CDCL and CB for enumeration

Enumeration is generally more challenging compared to SAT solving. In SAT solving, the search terminates as soon as a solution 
is found, whereas enumeration requires exploring the entire search space to identify all possible solutions. This makes the task of 
enumeration strictly more difficult than finding a single satisfying assignment.

Considering SAT-based enumeration algorithms, there is no clear supremacy between blocking and non-blocking AllSAT solvers. 
In particular, we can highlight the following strengths and weaknesses:

• Systematic Search: chronological backtracking systematically scans the entire search space, ensuring that all regions are visited 
without repetition, particularly regions with no solution. CDCL, on the other hand, may not guarantee that some areas are not 
visited more than once, revisiting areas with no solution multiple times, unless blocking clauses are added.

• Blocking clauses: due to the systematic nature of chronological backtracking, there is no need for additional blocking clauses 
to prevent redundant exploration of the search space. In contrast, CDCL relies on blocking clauses to avoid revisiting previously 
explored areas. This may require adding an up-to exponential number of blocking clauses, causing memory blowups and a 
degradation of unit propagation performances.

• Conflict Analysis: in areas of the search space with no solution, CDCL can leverage conflict analysis to escape and redirect the 
search to other regions quickly. Chronological backtracking, on the other hand, may become trapped in such regions until the 
entire sub-search space is fully explored.

• Time efficiency: due to its ability to escape regions of the search space with no solution, CDCL-based approaches can generally 
enumerate solutions faster than algorithms based on chronological backtracking.

• Shrinking Techniques and Partial Assignments: whereas there is extensive discussion in the literature regarding shrinking 
techniques associated with CDCL for enumeration and the generation of partial assignments, so far these topics have not been 
addressed in the context of chronological backtracking.

3. Enumerating disjoint partial models without blocking clauses

We summarize the approach allowing for enumerating disjoint partial models with no need for blocking clauses discussed in 
[27], that integrates: Conflict-Driven Clause-Learning (CDCL), to escape search branches where no satisfiable assignments can be 
found; Chronological Backtracking (CB), to ensure no blocking clauses are introduced; and methods for shrinking models (Implicant 
Shrinking), to reduce in size partial assignments.

Several algorithms are proposed in this section, and we use a colored notation to mark significant differences with respect to 
baseline AllSAT solving and extensions to the original algorithm presented in [27]. In particular:

• For Algorithms 1-3, we color in red (For interpretation of the references to color please refer to the web version of this article.) 
all lines that differ from the baseline CDCL AllSAT solving algorithm.

• For all algorithms, we color in green additional conditions and procedures that must be executed to perform projected enumer-

ation.

• For all algorithms, we color in blue additional conditions and procedures that must be executed to perform SMT-based enumer-

ation.
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Algorithm 1 Chrono-CDCL(𝐹 ,𝑉 ).

1: 𝑇 ← 𝜀

2: 𝑑𝑙 ← 0
3: while true do 
4: 𝑇 , 𝑐 ← UnitPropagation() 
5: if 𝑐 ≠ 𝜀 then 
6: AnalyzeConflict(𝑇 , 𝑐, 𝑑𝑙) 
7: else if |𝑇 |= |𝑉 | then 
8: 𝑐𝑇 ← Check-Theory-Consistency(𝑇 ) 
9: if 𝑐𝑇 ≠ 𝜀 then 

10: AnalyzeConflict(𝑇 , 𝑐𝑇 , 𝑑𝑙)

11: continue

12: end if

13: AnalyzeAssignment(𝑇 ,𝑑𝑙)

14: else 
15: Decide(𝑇 ) 
16: 𝑑𝑙 ← 𝑑𝑙 + 1
17: end if

18: end while

Algorithm 2 AnalyzeConflict(𝑇 , 𝑐, 𝑑𝑙).

1: if 𝛿(𝑐) < 𝑑𝑙 then 
2: 𝑇 ← Backtrack(𝛿(𝑐))
3: end if

4: if 𝑑𝑙 = 0 then 
5: terminate with all models found

6: end if

7: ⟨𝑢𝑖𝑝, 𝑐′⟩← LastUIP-Analysis() 
8: 𝑇 ← Backtrack(𝑑𝑙 − 1)

9: 𝑇 .𝑝𝑢𝑠ℎ(¬𝑢𝑖𝑝)
10: 𝑙𝑖𝑚𝑖𝑡 ← 𝑑𝑙 − 1
11: 𝜌(¬𝑢𝑖𝑝)← Propagated(𝑐′) 

3.1. Disjoint AllSAT by integrating CDCL and CB

The work in [19] exclusively describes the calculus and a formal proof of correctness for a model counting framework on top of 
CDCL and CB, with neither any algorithm nor any reference in modern state-of-the-art solvers. To this extent, we start by presenting 
an AllSAT procedure for the search algorithm combining the two techniques, which are reported in this section. In particular, we 
highlight the major differences to a classical AllSAT solver implemented on top of CDCL and NCB.

Algorithm 1 presents the main search loop of the AllSAT algorithm. (In Alg. 1 the reader is supposed to ignore temporarily the 
blue lines from 8 to 12, which refer to the SMT version of the algorithm and which will be illustrated in §6.)

The goal is to find a total trail T that satisfies 𝐹 . At each decision level, it iteratively decides one of the unassigned variables in 𝐹
and assigns a truth value (Algorithm 1, lines 15-16); it then performs unit propagation (Algorithm 1, line 4) until either a conflict is 
reached (Algorithm 1, lines 5-6), or no other variable can be unit propagated leading to a satisfying total assignment (Algorithm 1, 
lines 7-13) or Decide has to be called again (Algorithm 1, lines 15-16).

Notice that the main loop is identical to an AllSAT solver based on non-chronological CDCL; the only differences are embedded 
in the procedure to get the conflict and the partial assignments. (We remark that from now on we color in red the lines that differ 
from the baseline CDCL AllSAT solver.)

Suppose UnitPropagation finds a conflict, returning one clause 𝑐 in 𝐹 which is falsified by the current trail T, so that we invoke 
AnalyzeConflict. Algorithm 2 shows the procedure to either generate the conflict clause or stop the search for new assignments if 
all models have been found.

We first compute the maximum assignment level of all literals in the conflicting clause 𝑐 and backtrack to that decision level 
(Algorithm 2, lines 1-2) if strictly smaller than 𝑑𝑙. This additional step, not contemplated by AllSAT solvers that use NCB, is necessary 
to support out-of-order assignments, the core insight in chronological backtracking when integrated into CDCL as described in [18].

Apart from this first step, Algorithm 2 behaves similarly to a standard conflict analysis algorithm. If the solver reaches decision 
level 0 at this point, it means there are no more variables to flip and the whole search space has been visited, and we can terminate the 
algorithm (Algorithm 2, lines 4-5). Otherwise, we perform conflict analysis up to the last Unique Implication Point (last UIP, i.e. the 
decision variable at the current decision level), retrieving the conflict clause 𝑐′ (Algorithm 2, line 7), as proposed in [19]. Finally, we 
perform backtracking (notice how we force chronological backtracking independently from the decision level of the conflict clause), 
push the flipped UIP into the trail, and set 𝑐′ as its assignment reason for the flipping (Algorithm 2, lines 8-11). (The reader should 
temporarily skip line 10: the role of variable 𝑙𝑖𝑚𝑖𝑡 is explained in §4.2).

Suppose instead that every variable is assigned a truth value without generating conflicts (Algorithm 1, line 7); then the current 
total trail T satisfies 𝐹 , and we invoke AnalyzeAssignment, which possibly shrinks the assignment 𝑇 and updates the decision level 
𝑑𝑙, stores 𝑇 , and then continues the search.
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Algorithm 3 AnalyzeAssignment(𝑇 ,𝑑𝑙).

1: 𝑑𝑙′ ← Implicant-Shrinking(𝑇 )

2: if 𝑑𝑙′ < 𝑑𝑙 then 
3: 𝑇 ← Backtrack(𝑑𝑙′)

4: end if

5: store model 𝑇

6: if 𝑑𝑙′ = 0 then 
7: terminate with all models found 
8: else 
9: 𝓁𝑓𝑙𝑖𝑝 ← ¬(𝜎(𝑑𝑙′))

10: 𝑇 ← Backtrack(𝑑𝑙′ − 1)

11: 𝑇 .𝑝𝑢𝑠ℎ(𝓁𝑓𝑙𝑖𝑝)
12: 𝑙𝑖𝑚𝑖𝑡← 𝑑𝑙′ − 1
13: 𝜌(𝓁𝑓𝑙𝑖𝑝) = Backtrue 
14: end if

AnalyzeAssignment is illustrated in Algorithm 3. First, Implicant-Shrinking checks if, for some decision level 𝑑𝑙′, we can 
backtrack up to 𝑑𝑙′ < 𝑑𝑙 and obtain a partial trail still satisfying the formula (Algorithm 3, lines 1-3). (We discuss the details of chrono-

logical implicant shrinking in the next subsection.) We can produce the current assignment from the current trail T (Algorithm 3, 
line 5). Then we check if all variables in T are assigned at decision level 0. If this is the case, then this means that we found the last 
assignment to cover 𝐹 , so that we can end the search (Algorithm 3, lines 6-7). Otherwise, we perform chronological backtracking, 
flipping the truth value of the currently highest decision variables and searching for a new total trail T satisfying 𝐹 (Algorithm 3, 
lines 9-13).

We remark that in [19] it is implicitly assumed that one can determine if a partial trail satisfies the formula right after being gen-

erated, whereas modern SAT solvers cannot check this fact efficiently, and detect satisfaction only when trails are total. To cope with 
this issue, in our approach we first temporarily generate a total trail satisfying the formula, then the partial trail is computed a poste-

riori from the total one by implicant shrinking, mimicking the construction of the partial trail in [19]. The mutual exclusivity among 
different assignments is guaranteed, since the shrinking of the assignments is performed so that the generated partial assignments 
fall under the conditions of §3 in [19]).

Notice that the calculus discussed in [19] assumes the last UIP is the termination criteria for the conflict analysis. We provide the 
following counter-example to show that the first UIP does not guarantee mutual exclusivity between returned assignments.

Example 1. Let 𝐹 be the propositional formula:

𝐹 =

𝑐1
⏞ ⏞⏞⏞ ⏞⏞⏞
(𝑥1 ∨ ¬𝑥2)∧

𝑐2
⏞ ⏞⏞⏞ ⏞⏞⏞
(𝑥1 ∨ ¬𝑥3)∧

𝑐3
⏞ ⏞⏞⏞⏞⏞ ⏞⏞⏞⏞⏞
(¬𝑥1 ∨ ¬𝑥2)

For the sake of simplicity, we assume Chrono-CDCL to return total truth assignments. If the initial variable ordering is 𝑥3 , 𝑥2, 𝑥1 (all 
set to false) then the first two total and the third partial trails generated by Algorithm 1 are:

𝑇1 = ¬𝑥𝑑
3¬𝑥𝑑

2¬𝑥𝑑
1 ; 𝑇2 = ¬𝑥𝑑

3¬𝑥𝑑
2𝑥∗

1; 𝑇3 = ¬𝑥𝑑
3𝑥∗

2

Notice how 𝑇3 leads to a falsifying assignment: 𝑥2 forces 𝑥1 due to 𝑐1 and ¬𝑥1 due to 𝑐3 at the same time. A conflict arises and we 
adopt the first UIP algorithm to stop conflict analysis. We identify 𝑥2 as the first unique implication point (UIP) and construct the 
conflict clause ¬𝑥2. Since this is a unit clause, we force its negation ¬𝑥2 as an initial unit. We can now set 𝑥3 and 𝑥1 to ⟂ and obtain 
a satisfying assignment. The resulting total trail 𝑇 = ¬𝑥3¬𝑥2¬𝑥1 is covered twice during the search process. ⋄

We also emphasize that the incorporation of restarts in the search algorithm (or any method that implicitly exploits restarts, such 
as rephasing) is not feasible, as reported in [19].

3.2. Implicit solution reasons

Incorporating chronological backtracking into the AllSAT algorithm makes blocking clauses unnecessary. Upon discovering a 
model, we backtrack chronologically to the most recently assigned decision variable 𝓁 and flip its truth value, as if there were a 
reason clause 𝑐 - containing the negated decision literals of T - that forces the flip. These reason clauses 𝑐 are typically irrelevant to 
SAT solving and are not stored in the system. On the other hand, when CDCL is combined with chronological backtracking, these 
clauses are required for conflict analysis.

Example 2. Let 𝐹 be the same formula from Example 1. We assume the first trail generated by Algorithm 1 is 𝑇1 = ¬𝑥𝑑
3¬𝑥𝑑

2¬𝑥𝑑
1 . 

Algorithm 4 can reduce 𝑥1 since ¬𝑥2 suffices to satisfy both 𝑐1 and 𝑐3. (More details about the minimization procedure are discussed 
in the next section, and they are not relevant for this example). Consequently, we obtain the assignment 𝜇1 = ¬𝑥3 ∧ ¬𝑥2, then flip 
¬𝑥2 to 𝑥2. The new trail 𝐼2 = ¬𝑥𝑑

3𝑥∗
2 forces 𝑥1 to be true due to 𝑐1; then 𝑐3 would not be satisfiable anymore and cause the generation 

of a conflict. The last UIP is 𝑥3 , so that the reason clause 𝑐′ forcing 𝑥2 to be flipped must be handled by the solver to compute the 
conflict clause. ⋄
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To cope with this fact, a straightforward approach would be storing these clauses in memory with no update to the literal watching 
indexing; this approach would allow for 𝑐 to be called exclusively by the CDCL procedure without affecting variable propagation. If 𝐹
admits a large number of models, however, storing these clauses would negatively affect performance, so either we had to frequently 
call flushing procedures to remove inactive backtrack reason clauses, or we could risk going out of memory to store them.

To overcome the issue, we introduce the notion of virtual backtrack reason clauses. When a literal 𝓁 is flipped after a satisfying 
assignment is found, its reason clause contains the negation of decision literals assigned at a level lower than 𝛿(𝓁) and 𝓁 itself. 
Consequently, we introduce an additional value, Backtrue, to the possible answers of the reason function 𝜌. This value is used to tag 
literals flipped after a (possibly partial) assignment is found. When the conflict analysis algorithm encounters a literal 𝓁 having 𝜌(𝓁) =
Backtrue, the resolvent can be easily reconstructed by collecting all the decision literals with a lower level than 𝓁 and negating 
them. This way we do not need to explicitly store these clauses for conflict analysis, allowing us to save time and memory for clause 
flushing.

It is important to note that an implicant shrinking algorithm cannot remove literals marked with a Backtrue flag, as these 
are essential for ensuring that subsequent assignments remain mutually exclusive from previous ones. Specifically, for each literal 
with a Backtrue reason, there exists an implicit blocking clause 𝐶𝑏 that includes 𝓁 and the negation of all decision literals up to 
𝓁. While these blocking clauses are not explicitly generated, the implicant shrinking algorithm must ensure that no literal flagged 
with Backtrue is dropped. Failing to preserve these literals would break the implicit blocking clauses, thereby compromising the 
disjointness of the assignments. With a similar reasoning, the first literal unit-propagated after conflict analysis cannot be removed 
from a trail, since it guarantees that the search space is sistematically scanned without repetitions. These remarks are fundamental 
when dealing with assignment shrinking and are further discussed in §4.2.

3.3. Decision variable ordering

As shown in [19], different orders during Decide can lead to a different number of partial trails retrieved if chronological back-

tracking is enabled. After an empirical evaluation, we set Decide to select the priority score of a variable depending on the following 
ordered set of rules.

First, we rely on the Variable State Aware Decaying Sum (VSADS) heuristic [37] and set the priority of a variable according to two 
weighted factors: (𝑖) the count of variable occurrences in the formula, as in the Dynamic Largest Combined Sum (DLCS) heuristics; 
and (𝑖𝑖) an “activity score”, which increases when the variable appears in conflict clauses and decreases otherwise, as in the Variable 
State Independent Decaying Sum (VSIDS) heuristic. If two variables have the same score, we set a higher priority to variables whose 
watch list is not empty. If there is still a tie, we rely on the lexicographic order of the names of the variables.

4. Chronological implicant shrinking

Effectively shrinking a total trail T when chronological backtracking is enabled is not trivial.

In principle, we could add a flag for each clause 𝑐 stating if 𝑐 is currently satisfied by the partial assignment or not, and check the 
status of all flags iteratively adding literals to the trail. Despite being easy to integrate into an AllSAT solver and avoiding assigning 
all variables a truth value, this approach is unfeasible in practice: every time a new literal 𝓁 is added/removed from the trail, we 
should check and eventually update the value of the flags of clauses containing it. In the long term, this would negatively affect 
performance, particularly when the formula has a large number of models.

Also, relying on implicant shrinking algorithms from the literature for NCB-based AllSAT solvers does not work for chronological 
backtracking. Prime-implicant shrinking algorithms do not guarantee the mutual exclusivity between different assignments, so that 
they are not useful in the context of disjoint AllSAT. Other assignment-shrinking algorithms, as in [38], work under the assumption 
that a blocking clause is introduced. For instance, suppose we perform disjoint AllSAT on the formula 𝐹 = 𝑥1 ∨ 𝑥2 and the ordered 
trail is 𝑇1 = 𝑥𝑑

1𝑥𝑑
2 . A general assignment shrinking algorithm could retrieve the partial assignment 𝜇 = 𝑥2 satisfying 𝐹 , but obtaining 

it by using chronological backtracking is not possible (it would require us to remove 𝑥1 from the trail despite being assigned at a 
lower decision level than 𝑥2) unless blocking clauses are introduced.

In this context, we need an implicant shrinking algorithm such that: (𝑖) it is compatible with chronological backtracking, i.e. we 
remove variables assigned at level 𝑑𝑙 or higher as if they have never been assigned; (𝑖𝑖) it tries to cut the highest amount of literals 
while still ensuring mutual exclusivity.

4.1. Chronological implicant shrinking based on 2-watched literals

Considering all the aforementioned issues, [27] proposed a chronological implicant shrinking algorithm that used state-of-the-art 
SAT solver data structures (thus without requiring dual encoding), which is reported in Algorithm 4.

The idea is to pick literals from the current trail starting from the latest assigned literals (Algorithm 4, lines 3-4) and determine 
the lowest decision level 𝑏 to backtrack and shrink the implicant. First, we check if 𝓁 was not assigned by Decide (Algorithm 4, line 
5). If this is the case, we set 𝑏 to be at least as high as the decision level of 𝓁 (𝛿(𝓁)), ensuring that it will not be dropped by implicant 
shrinking (Algorithm 4, line 6), since 𝓁 has a role in performing disjoint AllSAT.

If this is not the case, we compare its decision level 𝛿(𝓁) to 𝑏 (Algorithm 4, line 7). If 𝛿(𝓁) > 𝑏, then we actively check if it is 
necessary for T to satisfy 𝐹 (Algorithm 4, line 8) and set 𝑏 accordingly. If Check-Literal tries to remove 𝓁 from the trail, we check 
for each clause 𝑐 watched by 𝓁 if the other 2-watched literal 𝓁2 is in 𝑇 to determine if 𝓁 is necessary for the satisfiability of 𝐹 , as if 
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Algorithm 4 Implicant-Shrinking(𝑇 ).

1: 𝑏 ← 0
2: 𝑇 ′ ← 𝑇

3: while 𝑇 ′ ≠ 𝜀 do 
4: 𝓁← 𝑇 ′.𝑝𝑜𝑝()
5: if 𝜌(𝓁) ≠ DECISION then 
6: 𝑏 ← 𝑚𝑎𝑥(𝑏, 𝛿(𝓁))
7: else if 𝛿(𝓁) > 𝑏 then 
8: 𝑏 ← Check-Literal(𝓁, 𝑏, 𝑇 ′)
9: else if 𝛿(𝓁) = 0 or (𝛿(𝓁) = 𝑏 and 𝜌(𝓁) = Decision) then 

10: break 
11: end if

12: end while

13: return 𝑏

Algorithm 5 Implicant-Shrinking-Aggressive(𝑇 ).

1: 𝑇 ′, 𝑆,𝑊 ,𝑁 ← 𝑇 ,{},{},{}
2: 𝑊 ,𝑁 ← Initialize(𝑊 ,𝑁)

3: 𝑆 ← Get-Important-Literals(𝑊 ,𝑁,𝑆)

4: 𝑇 ,𝑑𝑙 ← Lift-Literals(𝑆,𝑇 , 𝑑𝑙)

5: return 𝑑𝑙

the clause 𝑐 is projected into the binary clause 𝓁 ∨ 𝓁2. If 𝓁2 is not in 𝑇 , then we force the AllSAT solver to maintain 𝓁, setting the 
backtracking level to at least 𝛿(𝓁); otherwise we move on to the next clause watched by it.

If 𝓁 is either an initial literal (i.e. assigned at decision level 0) or both 𝜌(𝓁) = Decision and 𝛿(𝓁) = 𝑏 hold, all literals in the trail 
assigned before 𝓁 would have a decision level lower or equal than 𝑏. This means that we can exit the loop early (Algorithm 4, lines 
9-10), since scanning further the trail would be unnecessary. Finally, if none of the above conditions holds, we can assume that 𝑏 is 
already greater than 𝛿(𝓁), and we can move on to the next literal in the trail.

This variant of implicant shrinking is conservative when it comes to dropping literals from the trail. We do not consider the 
possibility of another literal 𝓁′, currently not watching 𝑐, being in the current trail 𝑇 , and having a lower decision level than the two 
literals watching 𝑐.

Example 3. Let 𝐹 be the formula

𝐹 = (𝑥1 ∨ 𝑥2) ∧ (𝑥3 ∨ 𝑥4)

According to the variable ordering heuristic presented in §3.3, all variables have the same VSADS score and all of them watch at least 
one clause. Consequently, the variable ordering will be 𝑥1, 𝑥2, 𝑥3, 𝑥4. Assume that every decision variable is set to a positive polarity, 
obtaining the assignment

𝜂 = 𝑥𝑑
1𝑥𝑑

2𝑥𝑑
3𝑥𝑑

4

Whereas 𝑥4 would be removed from the assignment by the shrinking procedure (𝑥3 ensures that all clauses where 𝑥4 appear are 
satisfied), 𝑥3 could not be removed, and the procedure would stop with the partial assignment

𝜇 = 𝑥𝑑
1𝑥𝑑

2𝑥𝑑
3 .

Notice that this assignment could be further reduced to 𝜇′ = 𝑥𝑑
1𝑥𝑑

3 , but due to the calculus in [19] and the order chosen by the solver, 
the implicant shrinking procedure is forced to stop the shrinking early on.

4.2. Simulating optimal decision variable ordering

The previous example highlights an important aspect: if the solver knew an optimal variable ordering preventing from assigning as 
many variables as possible, then it should postpone their assignment to the very end. Whereas this kind of prediction is not feasible, 
we can try to simulate it. Once a total assignment 𝜂 is obtained, we can separate the variables in 𝜂 into two disjoint sets; (𝑖) the 
variables that are necessary to satisfy all clauses; and (𝑖𝑖) the remaining unnecessary variables. If the search algorithm first assigns all 
necessary variables before the non-necessary ones, then the literals following the last necessary literal in the trail could be dropped 
without affecting satisfiability, as they were never critical to the assignment. Essentially, we can remove all non-necessary literals 
from a trail 𝑇 , regardless of their position or decision level, assuming their truth value assignments could be deferred to the end of 
the main search loop. It is important to note that the order of literals in a trail 𝑇 does not influence whether the assignment satisfies 
𝐹 ; any permutation of 𝑇 will still satisfy 𝐹 .

Starting from this idea, we present a novel chronological implicant shrinking algorithm, which focuses on performing a more 
effective shrinking, whose general schema is shown in Algorithm 5.
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Algorithm 6 Initialize(𝑊 ,𝑁).

1: for 𝑐 ∈ 𝐹 do 
2: for 𝓁 ∈ 𝑐 do 
3: if 𝓁 ∈ 𝑇 then 
4: 𝑊 [𝓁] = 𝑊 [𝓁] + 𝑐

5: 𝑁[𝑐] = 𝑁[𝑐] + 1
6: end if

7: end for

8: end for

9: return 𝑊 ,𝑁

Algorithm 7 Get-Important-Literals(𝑊 ,𝑁,𝑆).

1: while 𝑇 ′ ≠ 𝜀 do 
2: 𝓁← 𝑇 ′.𝑝𝑜𝑝()
3: if 𝛿(𝓁) ≤ 𝑙𝑖𝑚𝑖𝑡 or 𝓁 ∉ 𝑉𝑟 then 
4: continue 
5: end if

6: 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒

7: for 𝑐 ∈ 𝑊 [𝓁] do 
8: if 𝑁[𝑐] == 1 then 
9: 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 𝑡𝑟𝑢𝑒

10: end if

11: end for

12: if 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 then 
13: 𝑆.𝑝𝑢𝑠ℎ(𝓁)
14: else 
15: for 𝑐 ∈ 𝑊 [𝓁] do 
16: 𝑁[𝑐] = 𝑁[𝑐] − 1
17: end for

18: end if

19: end while

20: return 𝑆

Algorithm 8 Lift-Literals(𝑆,𝑇 , 𝑑𝑙).

1: 𝑇 ← Backtrack(𝑙𝑖𝑚𝑖𝑡) 
2: for 𝓁 ∈ 𝑆 do 
3: if 𝓁 ∈ 𝑇 then 
4: continue

5: end if

6: Assign(𝓁)

7: 𝑑𝑙 ← 𝑑𝑙 + 1
8: 𝑇 , 𝑐 ← UnitPropagation() 
9: end for

10: 𝑙𝑖𝑚𝑖𝑡 ← 𝑑𝑙

11: return 𝑇 ,𝑑𝑙

We begin by initializing several auxiliary data structures (Algorithm 6): a copy of the satisfying total trail 𝑇 ′ , an empty ordered 
list 𝑆 to store the literals from 𝑇 that form the shrunk partial assignment, a map 𝑊 ∶ 𝓁↦ 𝑐1, ..., 𝑐𝑛 that links each literal in 𝑇 to the 
set of clauses containing it, and a map 𝑁 ∶ 𝑐 ↦ℕ that tracks how many literals in each clause are present in 𝑇 .

We then proceed to determine the set of literals that cannot be lifted from the assignment, being necessary to satisfy 𝐹 (Algo-

rithm 7). (In Alg. 7 and 8 the reader is supposed to ignore the parts “or 𝑙 ∉ 𝑉𝑟” in green, which refer to the projected version of the 
algorithm and which will be illustrated in §5.) Starting from the most recently assigned literals (Algorithm 7, line 1), we evaluate 
each literal 𝓁 to determine whether there exists a clause that is exclusively watched by 𝓁, indicated by a counter 𝑁[𝑐] being equal 
to 1 (Algorithm 7, lines 7-8). If such a clause exists, 𝓁 cannot be dropped from the assignment and is added to 𝑆 (Algorithm 7, lines 
12-13). Conversely, if no clause necessitates 𝓁 for the shrunk assignment, 𝓁 is removed from 𝑇 , and the map 𝑁 is updated accordingly 
for each clause containing 𝓁 (Algorithm 7, lines 15-16).

The algorithm, as described so far, does not account for chronological backtracking and might remove literals whose truth as-

signment is fundamental to enforce the disjointness of all assignments (as we remarked at the end of §3.3). Specifically, this issue 
does arise when minimizing either BackTrue literal or literal propagated by conflict analysis. To ensure this does not happen, we 
introduce an auxiliary variable, 𝑙𝑖𝑚𝑖𝑡, which stores the lowest level up to which literals cannot be dropped (Algorithm 7, lines 3-4). 
The 𝑙𝑖𝑚𝑖𝑡 variable is updated during each conflict analysis (Algorithm 2, line 10) and at the end of each implicant shrinking procedure 
when a literal is flipped due to a BackTrue reason (Alg. 3, line 12).

Once 𝑆 contains a set of literals satisfying 𝐹 , we conclude the shrinking procedure by dropping the remaining literals to simulate 
the best-case decision ordering scenario (Algorithm 8), where these removed literals would have been assigned later on and then 
dropped. We first backtrack to the decision level stored in 𝑙𝑖𝑚𝑖𝑡 (Algorithm 8, line 1), to ensure the entire search space is scanned 
correctly. After that, we add the remaining literals in 𝑆 that are not yet part of the current trail by assigning them one by one 
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(Algorithm 8, lines 2-9). Each time a literal is assigned, we perform unit propagation (Algorithm 8, line 8) to ensure that any 
unassigned literals in 𝑆 that can have their truth value determined by unit propagation are correctly handled.

Example 4. Consider the formula

𝐹 =

𝑐1
⏞ ⏞⏞ ⏞⏞
(𝑥1 ∨ 𝑥2)∧

𝑐2
⏞ ⏞⏞ ⏞⏞
(𝑥3 ∨ 𝑥4),

and let

𝜂1 = 𝑥𝑑
1𝑥𝑑

2𝑥𝑑
3𝑥𝑑

4

be the first total assignment that satisfies 𝐹 , which we want to minimize. Since no conflict occurred before generating this assignment, 
limit is set to 0, meaning all literals are candidates for lifting. We initialize all auxiliary data structures, with 𝑁[𝑐1] and 𝑁[𝑐2] both 
starting at 2.

Starting with the most recent literal, 𝑥4 can be lifted, as no clause is satisfied solely by it. It is not added to 𝑆 , and 𝑁[𝑐2] is updated 
to 1. Next, 𝑥3 is processed, but it cannot be lifted: 𝑁[𝑐2] = 1, so 𝑥3 is the only literal satisfying 𝑐2, and it is added to 𝑆 . Similarly, 𝑥2
can be dropped, while 𝑥1 must remain in the partial assignment. The ideal partial assignment generated is

𝜇1 = 𝑥𝑑
1𝑥𝑑

3 .

To achieve this, we backtrack to level 0, clearing the trail, and explicitly reconstruct the partial trail 𝜇1 by reassigning the necessary 
truth values. This trail is stored by the solver, and due to chronological backtracking, 𝑥3 is flipped. At this point, limit is updated to 
1, as ¬𝑥3 is assigned at level 1.

After the decision and propagation procedures, the new total trail

𝜂2 = 𝑥𝑑
1¬𝑥∗

3𝑥4𝑥
𝑑
2

satisfies the formula. Here, limit is set to 1, meaning that to ensure only mutually exclusive partial assignments are generated, all 
literals assigned at levels up to limit cannot be lifted (in this case, 𝑥1 , ¬𝑥3, and 𝑥4). On the other hand, no clause containing 𝑥2
requires it to be satisfied, so it can be dropped. The second partial trail satisfying 𝐹 is then

𝜇2 = 𝑥𝑑
1¬𝑥∗

3𝑥4.

4.3. About disjointness

The algorithm described in this paper implements the formal calculus introduced in [19], which guarantees disjointness by con-

struction. We analyze the only difference wrt. [19] and show that it does not affect disjointness.

The calculus in [19] produces satisfiable partial trails on the fly, selecting only the necessary literals to detect satisfiability as early 
as possible. Unfortunately, as previously discussed, the selection process described in [19] is not feasible in practice. To cope with this 
fact, our algorithm first produces temporarily a total trail satisfying the formula, which is used only to drive the actual construction 
of the partial trail, which mimics the steps in [19]. To this extent, the process in [19] is not modified.

Specifically, the main steps are:

1. Find a total satisfying trail: instead of detecting a satisfiable partial trail on the fly, we first construct a total satisfying trail 
(Algorithm 1, line 7) which is used as the starting point of implicant shrinking (Algorithm 1, line 13).

2. Detect important literals: we use the chronological implicant shrinking procedure to determine which literals cannot be dropped 
to maintain satisfiability of the trail (Algorithm 7).

3. Backtrack to the starting point: once a total model is found, we backtrack to the decision level where the last flipped decision 
literal was assigned (Algorithm 8, line 1).

4. Reinsert the important literals: after backtracking, only the important literals identified in Step 1 are reinserted into the trail, 
leading to the discovery of a disjoint partial model (Algorithm 8, lines 2-8).

Notice that only Step 4 is the actual implementation of the calculus in [19], as it mimics its execution pattern. Steps 1, 2 and 3 
are a sort of “look ahead” additional operations that allow the solver to extract the necessary information to produce the partial trail 
(i.e., the important literals). Since these steps do not modify the core reasoning process, the fundamental properties of the calculus, 
including disjointness, remain unchanged.

To illustrate this, consider a scenario where a satisfying partial trail has been found (BackTrue rule in [19]). Let 𝓁 be the last 
flipped decision literal due to chronological backtracking at decision level 𝑥, and let limit be set to 𝑥 accordingly. After flipping 𝓁, 
further literal trail are performed, and one or more conflicts may arise, potentially modifying the flipped literal and the value of limit 
due to conflict analysis (BackFalse rule in [19]). Since our approach does not modify how conflicts are handled—CDCL conflict 
analysis and resolution remain unchanged—the theoretical invariants established in [19] remain intact.

If, after these steps, a total satisfying trail is found, our algorithm applies the implicant shrinking procedure to extract the important 
literals. Then it backtracks to 𝓁 at decision level limit. Consequently, all literals assigned beyond limit are effectively disregarded, and 
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the solver returns to the state at which the previous BackTrue (if no conflict occurred after its execution) or the last BackFalse rule 
(if at least one conflict arose) was triggered.

Once back at limit, the solver proceeds by assigning only the important literals using either solver decisions (Decide rule in [19]) 
or unit propagation (Unit rule in [19]). When the last of these literals is assigned, the BackTrue rule is triggered again, yielding 
a new satisfiable partial trail. From this perspective, the solver behaves exactly as if it had directly followed the execution pattern 
of [19], assuming an optimal ordering for detecting satisfiability on the fly.

This alignment demonstrates that our approach, despite introducing additional steps, ultimately conforms to the original formal 
calculus. Since our algorithm ensures that backtracking consistently returns to limit before assigning new literals, the search space 
exploration remains equivalent to that in [19]. Each enumerated trail differs from previous ones by at least one decision literal, 
preserving all theoretical invariants. Consequently, correctness, termination, and disjointness remain fully guaranteed by the formal 
framework in [19].

4.4. Chronological implicant shrinking and minimality

The new implicant shrinking algorithm does have the drawback of needing to build 𝑊 and 𝑁 for each satisfying total assign-

ment, which can impact performance. However, reducing the number and length of partial assignments is often the goal in many 
applications. Depending on the number of assignments covering a formula, the significant reduction in partial assignments and the 
consequent pruning of a large portion of the search space outweigh the minor inefficiency introduced by the implicant shrinking 
process.

We remark how the novel chronological implicant shrinking does not guarantee that the shrunk partial assignment is minimal. 
Minimality of a partial assignment means that given a partial assignment 𝜇 obtained by the search procedure, there is no other literal 
that can be removed by 𝜇 so that 𝜇 still satisfies 𝐹 and it is pairwise mutually exclusive against all the assignments retrieved before 
it.

Example 5. Consider the formula:

𝜑 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ ¬𝑥3) ∧ (𝑥1 ∨ ¬𝑥2 ∨ 𝑥3) ∧ (¬𝑥1 ∨ 𝑥2 ∨ 𝑥3)

We assume the search algorithm favors negative polarity the first time a variable is chosen. The first trail generated by the algorithm 
is 𝜇1 = ¬𝑥𝑑

1¬𝑥𝑑
2¬𝑥3, the first two variables being chosen by Decide and the last one being unit propagated because of the second 

clause. The first clause, however, is now falsified, and thus a conflict arises, forcing ¬𝑥2 to be flipped. To preserve mutual exclusivity 
between assignments, 𝑙𝑖𝑚𝑖𝑡 should be updated up to 1, avoiding dropping anything before 𝑥2. Now the current trail 𝜇2 = ¬𝑥𝑑

1𝑥∗
2 is 

forced to add 𝑥3 to satisfy the third clause. The total trail 𝜂1 = ¬𝑥𝑑
1𝑥∗

2𝑥3 satisfies the formula. The implicant shrinking algorithm 
is not able to drop any literal; notice, however, that ¬𝑥1 could be dropped by 𝜂1 without altering the satisfiability and the mutual 
exclusivity of the assignment against the currently empty set of assignments. For this reason, the algorithm is not guaranteed to find 
a minimal assignment.

4.5. Chronological implicant shrinking and non-disjoint enumeration

One could wonder if the implicant shrinking procedure could be modified for non-disjoint enumeration. In particular, we could 
argue that if we allow the algorithm to eliminate literals before the limit level, then we could get shorter assignments sharing some 
of the total assignments under it with other partial models. However, the following example shows that under this assumption the 
AllSAT search is not guaranteed to terminate.

Example 6. Consider the same formula of Example 5, but this time the algorithm favors positive polarity for the first choice, we 
assume literals whose assignment level is lower than 𝑙𝑖𝑚𝑖𝑡 can be dropped from the trail.

The search algorithm initially generates the first satisfying assignment, 𝜂1 = 𝑥𝑑
1𝑥𝑑

2𝑥𝑑
3 . Applying the shrinking process reduces this 

assignment to 𝜇1 = 𝑥𝑑
1𝑥𝑑

2 , as 𝑥3 can be removed without affecting the satisfaction of any clause exclusively depending on it.
Following chronological backtracking, we reach the trail 𝑥𝑑

1¬𝑥∗
2 , which leads to the second satisfying assignment, 𝜂2 = 𝑥𝑑

1¬𝑥∗
2𝑥3. 

In this case, 𝑥3 is necessary to satisfy the final clause, while 𝑥2 becomes redundant and can be dropped. The corresponding partial 
assignment is reduced to 𝜇2 = 𝑥𝑑

1𝑥𝑑
3 . Notably, due to the reordering of literals, 𝑥3 is now a decision literal, as it is no longer forced by 

𝑥1 and ¬𝑥2. Upon flipping 𝑥3, the algorithm encounters the trail 𝑥𝑑
1¬𝑥∗

3 , which extends to the satisfying trail 𝜂3 = 𝑥𝑑
1¬𝑥∗

3𝑥2. However, 
upon reduction, we again obtain 𝜇1.

At this point, the algorithm cycles between 𝜇1 and 𝜇2, without any escape mechanism. The absence of blocking clauses prevents 
𝑥1 from being flipped, resulting in a recurring pattern of these partial assignments.

5. AllSAT experimental evaluation

We have implemented the ideas discussed in this paper up until now in our tool TabularAllSAT, whose source code benchmarks 
are available on Zenodo [39]. An updated version of the source code is available at https://github.com/giuspek/tabularAllSAT. 

https://github.com/giuspek/tabularAllSAT
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Fig. 1. Scatter plot comparing CPU time and # of partial models with the two implicant shrinking algorithms. The 𝑥 and 𝑦 axes are log-scaled. 

Experiments are performed on an Intel Xeon Gold 6238R @ 2.20 GHz 28 Core machine with 128 GB of RAM, running Ubuntu Linux 
22.04. Timeout has been set to 1200 seconds. The experiments performed are the following:

• Ablation study to compare the chronological implicant shrinking algorithm in §4.1, against the novel one proposed in §4.2 (§5.1);

• AllSAT experimental evaluation (§6.1.2);

5.1. Comparing implicant shrinking algorithms

We start our experimental evaluation by comparing the two chronological implicant shrinking algorithms discussed respectively 
in §4.1 (from now on referred as TabularAllSATAAAI24), and §4.2 (from now on referred as TabularAllSAT). We consider the 
following benchmark, most of them being used in [27]:

• Rnd3sat contains 410 random 3-SAT problems with 𝑛 variables, 𝑛 ∈ [10,50]. In SAT instances, the ratio of clauses to variables 
needed to achieve maximum hardness is about 4.26, but in AllSAT, it should be set to approximately 1.5 [40]. For this reason, 
we chose not to use the instances uploaded to SATLIB and we created new random 3-SAT problems accordingly.

• We also tested our algorithms over SATLIB benchmarks, specifically CBS and BMS [41].

We compared the two implicant shrinking algorithms on two metrics: (𝑖) computational time, and (𝑖𝑖) number of partial assign-

ments retrieved. We checked the correctness of the enumeration by testing if the number of total assignments covered by the set of 
partial solutions was the same as the model count reported by the #SAT solver Ganak [42], being always correct for both algorithms. 
Fig. 1 presents a log-scaled scatter plot comparison of two implicant shrinking algorithms, focusing on execution time (left) and 
the number of partial models generated (right). As expected, the novel implicant shrinking algorithm occasionally incurs a higher 
overhead due to the additional effort required to shrink assignments, which can result in slightly slower performance compared to 
the original algorithm with the easiest problems (< 1 s). However, the novel algorithm significantly reduces the number of partial 
assignments generated, with the impact becoming more pronounced as the number of total assignments for a given instance increases. 
In these larger instances, the novel implicant shrinking algorithm also demonstrates better performance in terms of execution time. 
All the following subsections’ experiments rely on the novel implicant shrinking algorithm.

5.2. Comparison against state-of-the-art solvers

In these experiments, we considered BC, NCB, and BDD [38], respectively a blocking, a non-blocking, and a BDD-based disjoint 
AllSAT solver. BC also provides the option to obtain partial assignments (from now on BC_Partial). We also considered MathSAT5 
[26], since it provides an interface to compute partial enumeration of propositional problems by exploiting blocking clauses, and the 
very-recent enumeration approach D4 + ModelGraph from [24] that enumerates formulas after transforming them into an equivalent 
d-DNNF representation. Other AllSAT solvers, such as BASolver [43] and AllSATCC [44], are currently not publicly available, as 
reported also by other papers [45].

We evaluated the computational performance of TabularAllSAT against several state-of-the-art solvers using the same bench-

mark set we used in [27]. (See Fig. 3.) The primary objective of this evaluation was to demonstrate that the new chronological 
implicant shrinking algorithm in TabularAllSAT does not degrade performance in AllSAT problems compared to the previous ver-

sion. Fig. 2 presents scatter plots comparing TabularAllSAT with other state-of-the-art solvers. The results align with those reported 
in [27], showing that TabularAllSAT performs competitively or even much better than almost all solvers. The only exception is 
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Fig. 2. Scatter plots comparing TabularAllSAT CPU times against other AllSAT solvers. The 𝑥 and 𝑦 axes are log-scaled. 

Fig. 3. Number of instances solved by each solver within a timeout (1200 seconds) for the AllSAT benchmark. 

Fig. 4. Scatter plots comparing TabularAllSAT against D4+ModelGraph on AllSAT problems in [24]. The 𝑥 and 𝑦 axes are log-scaled. 

against the two AllSAT algorithms based on knowledge compilation, respectively BDD and D4 + ModelGraph. Both approaches per-

form better than TabularAllSAT when the problem instances contain few clauses (which is the case of rnd3sat problems); in this 
case, the knowledge compilation procedure is less resource-intensive.

For the sake of completeness, we opted for a more extensive evaluation of TabularAllSAT and D4 + ModelGraph by using the 
benchmarks proposed in [24]. (See Fig. 5.) In this case, with no surprise, TabularAllSAT is outperformed by the approach based on 
knowledge compilation, in alignment with results in [24]. We must remark, however, several points. First, the new datasets are based 
on model counting competition and used for knowledge compilation testing, thus they heavily rely on pre-processing techniques such 
as partitioning or AND-gate decomposition. In addition to that, and as also stated in [24], TabularAllSAT has a lower memory 
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Fig. 5. Number of harder instances solved by TabularAllSAT and D4+ModelGraph within a timeout (1200 seconds) for the AllSAT benchmark. 

footprint, never experiencing timeouts during execution, making our tool better suited for situations where memory resources are 
limited. Finally, it is worth noting that for most of the tested problems, the tools returned the same number of models (see the bisector 
line in Fig. 4b). In most instances, the model count is equivalent to the number of partial assignments retrieved. This indicates that 
the structure of these problems prevents implicant shrinking from eliminating even a single atom, thus limiting our algorithm’s ability 
to demonstrate its full potential.

6. From AllSAT to projected AllSAT

To extend Algorithm 1 for projected enumeration, we consider a formula 𝐹 with two mutually exclusive sets of variables: relevant 
variables 𝑉𝑟 and irrelevant variables 𝑉𝑖. Recall that for a formula 𝐹 (𝑉𝑟,𝑉𝑖), an assignment 𝜇𝑟 projected over 𝑉𝑟 satisfies 𝐹 if 𝜇𝑟 satisfies 
∃𝑉𝑖.𝐹 . The core search algorithm itself remains unchanged: when we generate a total assignment 𝜂 during our search loop, we can 
partition it into 𝜂𝑟 and 𝜂𝑖, corresponding to the relevant and irrelevant variables, respectively. Thus, 𝜂𝑟 represents the assignment that 
the algorithm should ultimately produce. As a result, the conflict analysis component of the algorithm does not require modifications. 
However, it is crucial to note that we are working within the framework of disjoint enumeration. Therefore, the chronological 
implicant shrinking procedure must be adapted to prevent repetitions while effectively pruning irrelevant variables from the total 
assignment.

A fundamental adjustment is needed in the variable ordering heuristic, where we prioritize relevant variables over irrelevant 
ones. This ensures that once the last relevant variable is assigned, any subsequent decision literal from irrelevant variables can be 
safely ignored. Recalling §3.3, if a non-relevant decision literal 𝓁 is assigned before the relevant ones, the blocking clause subsumed 
by chronological backtracking would include 𝓁, preventing its removal to guarantee disjointness. By prioritizing relevant variables 
during the decision phase, we ensure that every partial assignment satisfies 𝐹 without introducing non-relevant literals as decision 
literals.

We now discuss how the implicant shrinking algorithm is influenced by projection. All modifications needed for the projected 
enumeration extensions are highlighted in green. Specifically, when determining which literals to drop from 𝑇 , we can skip all literals 
corresponding to variables in 𝑉𝑖, as these irrelevant variables would be dropped regardless. Thus, in Algorithm 7, line 3 we ensure 
the procedure skips non-relevant literals and lifts them anyway. It is important to note that unit propagation in Algorithm 8, line 8
might force some non-relevant literals back into the trail. However, this does not affect the correctness of the procedure, since no 
non-relevant variable can be a decision variable this way. Moreover, only literals corresponding to relevant variables are included in 
the partial model when the model is printed. Algorithm 3, line 5 is updated accordingly, ensuring only variables in 𝑉𝑟 are considered.

6.1. Projected AllSAT experimental evaluation

All the additional ideas discussed in §6 to integrate projection in the algorithm have been added in TabularAllSAT. Experiments 
are performed on an Intel Xeon Gold 6238R @ 2.20 GHz 28 Core machine with 128 GB of RAM, running Ubuntu Linux 22.04. Timeout 
has been set to 1200 seconds.

6.1.1. Comparison of implicant shrinking algorithms

We started by comparing the two implicant shrinking algorithms from §4, to ensure that the new method does not introduce 
negative side effects in projected enumeration, and thus how the more aggressive pruning of total assignments is beneficial for 
projected enumeration. To evaluate TabularAllSAT on projected AllSAT enumeration, we focused on non-CNF instances that require 
preprocessing into CNF before conversion to the DIMACS format. This preprocessing step introduces additional CNF-specific variables 
irrelevant to the final enumeration task. Therefore, we selected benchmarks inspired by [30], specifically: (𝑖) 250 synthetic benchmark 
instances containing non-CNF formulas with double implications, each with 25 Boolean variables and a formula depth of 6, and (𝑖𝑖) 
a set of 100 instances from the 𝑖𝑠𝑐𝑎𝑠 benchmark suite. All of these problems were originally generated as non-CNF formulas. For the 
CNF transformation, we chose the approach proposed in [30], as it is more suitable for enumeration and the generation of compact 
partial assignments than the classic Plaisted-Greenbaum transformation.

The results, shown in Fig. 6, indicate that the new implicant shrinking approach positively impacts projected enumeration, yielding 
improvements in both execution time and the number of partial assignments generated.

6.1.2. Comparison against state-of-the-art solvers

We compared TabularAllSAT against (𝑖) MathSAT5, (𝑖𝑖) Dualiza, a model counter and AllSAT solver that utilizes dual reason-

ing [46], and (𝑖𝑖𝑖) the D4 + ModelGraph tool from [24]. We remark that, despite [24] not directly addressing projected enumeration, 
it is possible to use D4 to generate projected d-DNNF, on top of which ModelGraph can retrieve partial assignments. The results, 
depicted in Fig. 7, demonstrate that TabularAllSAT significantly outperforms both Dualiza and MathSAT5, generating partial 
assignments much faster. (See Fig. 8.)
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Fig. 6. Scatter plot comparing CPU time and number of partial assignments generated of TabularAllSAT against the implicant shrinking algorithm of TabularAll-

SAT𝐴𝐴𝐴𝐼24 on projected AllSAT problems. The 𝑥 and 𝑦 axes are log-scaled.

Fig. 7. Scatter plot comparing CPU time of TabularAllSAT against Dualiza, MathSAT5, and D4 + ModelGraph on projected AllSAT problems. The 𝑥 and 𝑦 axes 
are log-scaled.

Fig. 8. Table reporting the number of instances solved by each solver within the timeout time (1200 seconds) for projected AllSAT benchmark. 

We notice that the performance gap against D4 + ModelGraph is not as dramatic as with respect to the other two solvers, so for 
the sake of completeness, we tested both tools using more complex synthetic benchmarks, where MathSAT5 and Dualiza reached 
timeout for almost every file. We generated 2 additional benchmarks with 25 Boolean variables and formula depth 7 and 8, respec-

tively. We also provided a set of benchmarks with depth 6 and 30 variables, to check if adding more important variables does impact 
enumeration. The results, shown in Fig. 9, now clearly show the superiority of TabularAllSAT against the knowledge compilation 
approach, both considering computation times and number of partial assignments retrieved.

7. From AllSAT to AllSMT

To extend the algorithm to address first-order logic theories, the search algorithm should integrate a theory solver and call it to 
check if the current assignment that satisfies the Boolean abstraction of a formula 𝐹 is also theory consistent. These additional checks 
affect the definition of some of the algorithms of TabularAllSAT𝐴𝐴𝐴𝐼24, and all changes to the original TabularAllSAT𝐴𝐴𝐴𝐼24
algorithms are colored in blue.

First, in Algorithm 1 once a total trail has been generated, we must verify if there are theory inconsistencies. We perform a 𝑇 -

consistency check (Algorithm 1, line 8) and, if a 𝑇 -conflict is generated, then we must analyze the conflict and backjump accordingly 
(Algorithm 1, lines 9-11).

Second, once a literal has been decided and UnitPropagation is executed, there could be some other 𝑇 -atoms that are implied 
by the newly added literals in 𝑇 or there could be a 𝑇 -conflict. For this reason, UnitPropagation now is a two-step procedure: (i) 



Artificial Intelligence 345 (2025) 104346

17

G. Spallitta, R. Sebastiani and A. Biere 

Fig. 9. Scatter plot comparing CPU time and number of partial assignments of TabularAllSAT against D4 + ModelGraph on harder projected AllSAT problems. 
Notice that in this batch of experiments no timeout happens. The 𝑥 and 𝑦 axes are log-scaled.

Fig. 10. Scatter plot comparing CPU time for total enumeration (a), CPU time for partial enumeration (b), and the number of partial assignments for partial enumeration 
(c) generated by TabularAllSMT against MathSAT5 on AllSMT problems. The 𝑥 and 𝑦 axes are log-scaled.

propositional unit propagation, to satisfy the Boolean abstraction of 𝐹 , and (ii) 𝑇 -propagation, which also works as an early pruning 
algorithm in SMT solving. If either unit propagation call generates a conflict, AnalyzeConflict is executed. The 𝑇 -conflict analysis 
does not differ from the Boolean conflict analysis algorithm, so additional changes are not required in Algorithm 5. We must remark, 
however, that theory solvers can add new 𝑇 -atoms during execution, e.g., in , the branch-and-bound algorithm could generate 
new inequalities atoms. If this happens, then the trail maximum size increases, and all new 𝑇 -atoms are flagged as non-relevant 
variables.

7.1. AllSMT experimental evaluation

We implemented all the ideas discussed in the paper into TabularAllSMT, whose executable file and all benchmarks are available 
on Zenodo [47]. An updated version of the source code is available at https://github.com/giuspek/tabularAllSMT.git. Tabular-

AllSMT integrates MathSAT5 as the theory solver, which is under a proprietary license, thus TabularAllSMT code is not publicly 
available, but the executable file is provided. Experiments are performed on an Intel Xeon Gold 6238R @ 2.20 GHz 28 Core machine 
with 128 GB of RAM, running Ubuntu Linux 22.04. Timeout has been set to 1200 seconds.

For the final set of experiments, we used benchmarks inspired by [48], generating several synthetic benchmarks with varying 
numbers of Boolean variables (𝑏), real variables (𝑟), and formula depth (𝑑). We compared TabularAllSMT against MathSAT5, 
which is currently the only publicly available projected AllSMT solver.

We began by evaluating the effect of blocking clauses during total SMT enumeration. This experiment was designed to demonstrate 
how the introduction of blocking clauses as in MathSAT5 negatively impacts performance compared to our algorithm, particularly 
when dealing with first-order logic theories. We performed total enumeration on two smaller benchmark sets, and the results, pre-

sented in the scatter plot in Fig. 10a, clearly illustrate that several instances are successfully solved by TabularAllSMT, whereas 
MathSAT5 reaches the timeout limit. Since the theory reasoning is shared among the two tools, it is evident that the lack of blocking 
clauses is the primary factor contributing to these timeouts.

https://github.com/giuspek/tabularAllSMT.git
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TabularAllSMT MathSAT5 
b0_r5_d5 (100) 100 100 
b10_r4_d5 (100) 100 99 
b0_r5_d6 (100) 48 18 
b25_r0_d6 (100) 49 26 

Total (400) 287 243 

Fig. 11. Table reporting the number of instances solved by each solver within the timeout time (1200 seconds) for AllSMT benchmark. 

We continue by comparing results on disjoint partial enumeration, including the same benchmarks used for Fig. 10a plus two 
other datasets with higher depth. The results, shown in Fig. 10b and 10c, indicate that while MathSAT5 is slightly more effective 
at shrinking assignments into shorter partial models, TabularAllSMT outperforms it over the long term considering CPU times, 
especially as the complexity of instances increases. This difference is primarily due to the exponential number of blocking clauses 
that MathSAT5 adds, which eventually hampers its performance. Additionally, Fig. 11 presents the number of problems solved within 
the timeout limits, further emphasizing that TabularAllSMT successfully solves a significant number of problems that MathSAT5 
cannot handle. It is important to highlight that early pruning, implemented in both MathSAT5 and TabularAllSMT, can significantly 
reduce the Boolean search space and, as a result, the number of calls to the T-solver. However, while early pruning can be beneficial, 
it may also lead to unnecessary calls to the T-solver. In the context of enumeration, this overhead can negatively affect performance, 
as the extra solver calls introduce additional computational cost, explaining why results are less impactful than those shown in §6.

We remark that the experiments in this section focus on linear real arithmetic; TabularAllSMT, however, is compatible with all 
theories accepted by MathSAT5.

8. Conclusion

In this work, we introduced TabularAllSAT and TabularAllSMT, two new solvers designed for efficient projected enumeration 
in AllSAT and AllSMT, respectively. By combining CDCL and chronological backtracking, we addressed the inherent inefficiencies 
of traditional blocking solvers, avoiding the performance degradation caused by excessive blocking clauses. Our novel aggressive 
implicant shrinking algorithm further reduced the number of partial assignments with respect to its predecessor, ensuring a more 
compact representation of the solution space. We extended our solver framework to support projected enumeration and SMT formulas, 
integrating theory reasoning into the search process. Extensive experimental results showed that our solvers outperform existing state-

of-the-art techniques, offering a significant advantage in both propositional and SMT-based problems.
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