
Disjoint Partial Enumeration without Blocking Clauses

Giuseppe Spallitta, 1 Roberto Sebastiani, 1 Armin Biere 2

1DISI, University of Trento
2University of Freiburg

giuseppe.spallitta@unitn.it, roberto.sebastiani@unitn.it, biere@cs.uni-freiburg.de

Abstract

A basic algorithm for enumerating disjoint propositional
models (disjoint AllSAT) is based on adding blocking clauses
incrementally, ruling out previously found models. On the
one hand, blocking clauses have the potential to reduce the
number of generated models exponentially, as they can han-
dle partial models. On the other hand, the introduction of a
large number of blocking clauses affects memory consump-
tion and drastically slows down unit propagation. We pro-
pose a new approach that allows for enumerating disjoint par-
tial models with no need for blocking clauses by integrat-
ing: Conflict-Driven Clause-Learning (CDCL), Chronolog-
ical Backtracking (CB), and methods for shrinking models
(Implicant Shrinking). Experiments clearly show the benefits
of our novel approach.

Introduction
All-Solution Satisfiability Problem (AllSAT) is an exten-
sion of SAT that requires finding all possible solutions of
a propositional formula. AllSAT has been heavily applied in
the field of hardware and software verification. For instance,
AllSAT can be used to generate test suites for programs
automatically (Khurshid et al. 2004) and for bounded and
unbounded model checking (Jin, Han, and Somenzi 2005).
Recently AllSAT has found applications in artificial intelli-
gence. For example, (Spallitta et al. 2022) exploits AllSMT
(a variant of AllSAT dealing with first-order logic theories)
for probabilistic inference in hybrid domains. AllSAT has
also been applied to data mining to deal with the frequent
itemset mining problem (Dlala et al. 2016). Lastly, model
counting over first-order logic theories (#SMT) (Chistikov,
Dimitrova, and Majumdar 2015) relies on AllSAT too.

Exploring the complete search space efficiently is a major
concern in AllSAT. For a formula F with n variables, there
are 2n possible total assignments. Generating all of these as-
signments explicitly would require exponential space com-
plexity. To mitigate the issue, we can use partial models to
obtain compact representations of a set of solutions. If a par-
tial model does not explicitly assign the truth value of a vari-
able, then it means that its truth value does not impact the
satisfiability of that assignment, thus two assignments are
represented by the partial one. In problems with n variables,

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a partial assignment with m variables covers 2n−m total as-
signments in one shot.

The literature distinguishes between enumeration with
repetitions (AllSAT) and enumeration without repetitions
(disjoint AllSAT). Whereas covering the same model may
not be problematic for certain applications (e.g. predicate
abstraction (Lahiri, Bryant, and Cook 2003)), it can result
in an incorrect final solution for other contexts, such as
Weighted Model Integration (Morettin, Passerini, and Se-
bastiani 2019) and #SMT (Chistikov, Dimitrova, and Ma-
jumdar 2015). In this paper, we will address disjoint AllSAT.

SAT-based propositional enumeration algorithms can be
grouped into two main categories: blocking solvers, and
non-blocking solvers.

Blocking AllSAT solvers (McMillan 2002; Jin, Han, and
Somenzi 2005; Yu et al. 2014) rely on Conflict Driven
Clause-Learning (CDCL) and non-chronological backtrack-
ing (NCB) to return the set of all satisfying assignments.
They work by repeatedly adding blocking clauses to the for-
mula after each model is found, which rules out the previ-
ous set of satisfying assignments until all possible satisfy-
ing assignments have been found. These blocking clauses
ensure that the solver does not return the same satisfying
assignment multiple times and that the search space is effi-
ciently scanned (Morgado and Marques-Silva 2005a). Al-
though blocking solvers are straightforward to implement
and can be adapted to retrieve partial assignments, they
become inefficient when the input formula F has a high
number of models, as an exponential number of blocking
clauses might be added to make sure the entire search space
is visited. As the number of blocking clauses increases, unit
propagation becomes more difficult, resulting in degraded
performance.

Non-blocking AllSAT solvers (Grumberg, Schuster, and
Yadgar 2004; Li, Hsiao, and Sheng 2004) overcome this is-
sue by not introducing blocking clauses and by implement-
ing chronological backtracking (CB) (Nadel and Ryvchin
2018): after a conflict arises, they backtrack on the search
tree by updating the most recently instantiated variable.
Chronological backtracking guarantees not to cover the
same model of a formula multiple times without the typi-
cal CPU-time blow-up caused by blocking clauses. The ma-
jor drawback of this class of AllSAT solvers is that they only
generate total assignments. Moreover, regions of the search

space with no solution cannot be escaped easily.
(Möhle and Biere 2019b) proposes a new formal calcu-

lus of a disjunctive model counting algorithm combining
the best features of chronological backtracking and CDCL,
but without providing an implementation or experimental
results. In (Sebastiani 2020; Möhle, Sebastiani, and Biere
2020, 2021) the authors discuss the calculus behind differ-
ent approaches to determine if a partial assignment satisfies
a formula when chronological backtracking is implemented
in the CDCL procedure. However, both works rely on dual
reasoning, which could perform badly when a high number
of variables is involved (SAT and QBF oracle calls required
by (Möhle, Sebastiani, and Biere 2020) may be expensive).

Contributions In this work, we propose a novel AllSAT
procedure to perform disjoint partial enumeration of propo-
sitional formulae by combining the best of current All-
SAT state-of-the-art literature: (i) CDCL, to escape search
branches where no satisfiable assignments can be found; (ii)
chronological backtracking, to ensure no blocking clauses
are introduced; (iii) efficient implicant shrinking, to reduce
in size partial assignments, by exploiting the 2-literal watch-
ing scheme. We have implemented the aforementioned ideas
in a tool that we refer to as TABULARALLSAT and com-
pared its performance against other publicly available state-
of-the-art AllSAT tools using a variety of benchmarks, in-
cluding both crafted and SATLIB instances. Our experi-
mental results show that TABULARALLSAT outperforms all
other solvers on nearly all benchmarks, demonstrating the
benefits of our approach.

Background
Notation
We assume F is a propositional formula defined on the set of
Boolean variables V = {v1, ..., vn}, with cardinality |V |. A
literal ℓ is a variable v or its negation ¬v. L(V) denotes the
set of literals on V. We implicitly remove double negations:
if ℓ is ¬v, by ¬ℓ we mean v rather than ¬¬v. A clause is the
disjunction of literals

∨
ℓ∈c ℓ. A cube is the conjunction of

literals
∧

ℓ∈c ℓ.
The function M : V 7→ {⊤,⊥} mapping variables in F

to their truth value is known as assignment. An assignment
can be represented by either a set of literals {ℓ1, ..., ℓn} or a
cube conjoining all literals in the assignment ℓ1 ∧ ... ∧ ℓn.
We distinguish between total assignments η or partial as-
signments µ depending on whether all variables are mapped
to a truth value or not, respectively.

A trail is an ordered sequence of literals I = ℓ1, ..., ℓn
with no duplicate variables. The empty trail is represented by
ε. Two trails can be conjoined one after the other I = KL,
assuming K and L have no variables in common. We use
superscripts to mark literals in a trail I: ℓd indicates a lit-
eral assigned during the decision phase, whereas ℓ∗ refers
to literals whose truth value is negated due to chronologi-
cal backtracking after finding a model (we will refer to this
action as flipping). Trails can be seen as ordered total (resp.
partial) assignments; for the sake of simplicity, we will refer
to them as total (resp. partial) trails.

Definition 1 The decision level function δ(V) 7→ N ∪ {∞}
returns the decision level of variable V , where ∞ means
unassigned. We extend this concept to literals (δ(ℓ) =
δ(V (ℓ))) and clauses (δ(C) = {max(δ(ℓ))|ℓ ∈ C}).

Definition 2 The decision literal function σ(dl) 7→ L(V) ∪
{ε} returns the decision literal of level dl. If we have not
decided on a literal at level dl yet, we return ε.

Definition 3 The reason function ρ(ℓ) returns the reason
that forced literal ℓ to be assigned a truth value:

• DECISION, if the literal is assigned by the decision se-
lection procedure;

• UNIT, if the literal is unit propagated at decision level
0, thus it is an initial literal;

• PROPAGATED(c), if the literal is unit propagated at a
decision level higher than 0 due to clause c;

The 2-watched literal scheme
The 2-watched literal scheme (Moskewicz et al. 2001) is an
indexing technique that efficiently checks if the currently-
assigned literals do not cause a conflict. For every clause,
two literals are tracked. If at least one of the two literals is
set to⊤, then the clause is satisfied. If one of the two literals
is set to⊥, then we scan the clause searching for a new literal
ℓ′ that can be paired with the remaining one, being sure ℓ′

is not mapped to ⊥. If we reach the end of the clause and
both watches for that clause are set to false, then we know
the current assignment falsifies the formula. The 2-watched
literal scheme is implemented through watch lists.

Definition 4 The watch list function ω(ℓ) returns the set of
clauses {c1, ..., cn} currently watched by literal ℓ.

CDCL and non-chronological backtracking
Conflict Driven Clause Learning (CDCL) is the most pop-
ular SAT-solving technique (Marques-Silva and Sakallah
1999). It is an extension of the older Davis-Putnam-
Logemann-Loveland (DPLL) algorithm (Davis, Logemann,
and Loveland 1962), improving the latter by dynamically
learning new clauses during the search process and using
them to drive backtracking.

Every time the current trail falsifies a formula F , the SAT
solver generates a conflict clause c starting from the falsified
clause, by repeatedly resolving against the clauses which
caused unit propagation of falsified literals. This clause is
then learned by the solver and added to F . Depending on
c, we backtrack to flip the value of one literal, potentially
jumping more than one decision level (thus we talk about
non-chronological backtracking, or NBC). CDCL and non-
chronological backtracking allow for escaping regions of the
search space where no satisfying assignments are admitted,
which benefits both SAT and AllSAT solving. The idea be-
hind conflict clauses has been extended in AllSAT to learn
clauses from partial satisfying assignments (known in the
literature as good learning or blocking clauses (Bayardo Jr
and Pehoushek 2000; Morgado and Marques-Silva 2005b))
to ensure no total assignment is covered twice.

Chronological backtracking
Chronological backtracking (CB) is the core of the origi-
nal DPLL algorithm. Considered inefficient for SAT solv-
ing once NBC was presented in (Moskewicz et al. 2001), it
was recently revamped for both SAT and AllSAT in (Nadel
and Ryvchin 2018; Möhle and Biere 2019a). The intuition
is that non-chronological backtracking after conflict analy-
sis can lead to redundant work, due to some assignments
that could be repeated later on during the search. Instead, in-
dependent of the generated conflict clause c we chronolog-
ically backtrack and flip the last decision literal in the trail.
Consequently, we explore the search space systematically
and efficiently, ensuring no assignment is covered twice dur-
ing execution. Chronological backtracking combined with
CDCL is effective in SAT solving when dealing with satis-
fiable instances. In AllSAT solving, it guarantees blocking
clauses are no more needed to ensure termination.

Enumerating disjoint partial models without
blocking clauses

We propose a novel approach that allows for enumerating
disjoint partial models with no need for blocking clauses,
by integrating: Conflict-Driven Clause-Learning (CDCL),
to escape search branches where no satisfiable assignments
can be found; Chronological Backtracking (CB), to ensure
no blocking clauses are introduced; and methods for shrink-
ing models (Implicant Shrinking), to reduce in size partial
assignments, by exploiting the 2-watched literal schema.

To this extent, (Möhle and Biere 2019b) discusses a for-
mal calculus to combine CDCL and CB for propositional
model counting, strongly related to the task we want to
achieve. We take the calculus presented in that paper as the
theoretical foundation on top of which we build our algo-
rithms, and refer to that paper for more details.

Disjoint AllSAT by integrating CDCL and CB
The work in (Möhle and Biere 2019b) exclusively describes
the calculus and a formal proof of correctness for a model
counting framework on top of CDCL and CB, with neither
any algorithm nor any reference in modern state-of-the-art
solvers. To this extent, we start by presenting an AllSAT
procedure for the search algorithm combining the two tech-
niques, which are reported in this section. In particular, we
highlight the major differences to a classical AllSAT solver
implemented on top of CDCL and NBC.

Algorithm 1 presents the main search loop of the AllSAT
algorithm. The goal is to find a total trail T that satisfies
F . At each decision level, it iteratively decides one of the
unassigned variables in F and assigns a truth value (lines
10-11); it then performs unit propagation (line 4) until either
a conflict is reached (lines 5-10), or no other variable can
be unit propagated leading to a satisfying total assignment
(lines 7-8) or DECIDE has to be called again (lines 10-11).

Notice that the main loop is identical to an AllSAT solver
based on non-chronological CDCL; the only differences are
embedded in the procedure to get the conflict and the partial
assignments. (From now on, we color in red the lines that
differ from the baseline CDCL AllSAT solver.)

Algorithm 1: CHRONO-CDCL(F, V)

1: T ← ε
2: dl← 0
3: while true do
4: T, c← UNITPROPAGATION()
5: if c ̸= ε then
6: ANALYZECONFLICT(T, c, dl)
7: else if |T | = |V | then
8: ANALYZEASSIGNMENT(T, dl)
9: else

10: DECIDE(T)
11: dl← dl + 1
12: end if
13: end while

Algorithm 2: ANALYZECONFLICT(T, c, dl)

1: if δ(c) < dl then
2: T ← BACKTRACK(δ(c))
3: end if
4: if dl = 0 then
5: terminate with all models found
6: end if
7: ⟨uip, c′⟩ ← LASTUIP-ANALYSIS()
8: T ← BACKTRACK(dl − 1)
9: T.push(¬uip)

10: ρ(¬uip)← PROPAGATED(c′)

Suppose UNITPROPAGATION finds a conflict, returning
one clause c in F which is falsified by the current trail T , so
that we invoke ANALYZECONFLICT. Algorithm 2 shows the
procedure to either generate the conflict clause or stop the
search for new assignments if all models have been found.

We first compute the maximum assignment level of all
literals in the conflicting clause c and backtrack to that de-
cision level (lines 1-2) if strictly smaller than dl. This ad-
ditional step, not contemplated by AllSAT solvers that use
NCB, is necessary to support out-of-order assignments, the
core insight in chronological backtracking when integrated
into CDCL as described in (Nadel and Ryvchin 2018).

Apart from this first step, Algorithm 2 behaves simi-
larly to a standard conflict analysis algorithm. If the solver
reaches decision level 0 at this point, it means there are no
more variables to flip and the whole search space has been
visited, and we can terminate the algorithm (lines 4-5). Oth-
erwise, we perform conflict analysis up to the last Unique
Implication Point (last UIP, i.e. the decision variable at the
current decision level), retrieving the conflict clause c′ (line
7), as proposed in (Möhle and Biere 2019b). Finally, we per-
form backtracking (notice how we force chronological back-
tracking independently from the decision level of the conflict
clause), push the flipped UIP into the trail, and set c′ as its
assignment reason for the flipping (lines 8-10).

Suppose instead that every variable is assigned a truth
value without generating conflicts (Algorithm 1, line 7); then
the current total trail T satisfies F , and we invoke ANA-
LYZEASSIGNMENT. Algorithm 3 shows the steps to possi-

Algorithm 3: ANALYZEASSIGNMENT(T, dl)

1: dl′ ← IMPLICANT-SHRINKING(T)
2: if dl′ < dl then
3: T ← BACKTRACK(dl′)
4: end if
5: store model T
6: if dl′ = 0 then
7: terminate with all models found
8: else
9: ℓflip ← ¬(σ(dl′))

10: T ← BACKTRACK(dl′ − 1)
11: T.push(ℓflip)
12: ρ(ℓflip) = BACKTRUE
13: end if

bly shrink the assignment, store it and continue the search.
First, IMPLICANT-SHRINKING checks if, for some deci-

sion level dl′, we can backtrack up to dl′ < dl and obtain a
partial trail still satisfying the formula (Algorithm 3, lines 1-
3). (We discuss the details of chronological implicant shrink-
ing in the next subsection.) We can produce the current as-
signment from the current trail T (line 5). Then we check if
all variables in T are assigned at decision level 0. If this is
the case, then this means that we found the last assignment
to cover F , so that we can end the search (lines 6-7). Oth-
erwise, we perform chronological backtracking, flipping the
truth value of the currently highest decision variables and
searching for a new total trail T satisfying F (lines 9-12).

We remark that in (Möhle and Biere 2019b) it is implicitly
assumed that one can determine if a partial trail satisfies the
formula right after being generated, whereas modern SAT
solvers cannot check this fact efficiently, and detect satisfac-
tion only when trails are total. To cope with this issue, in our
approach the partial trail satisfying the formula is computed
a posteriori from the total one by implicant shrinking. More-
over, the mutual exclusivity among different assignments is
guaranteed, since the shrinking of the assignments is per-
formed so that the generated partial assignments fall under
the conditions of Section 3 in (Möhle and Biere 2019b)).

Notice that the calculus discussed in (Möhle and Biere
2019b) assumes the last UIP is the termination criteria for
the conflict analysis. We provide the following counter-
example to show that the first UIP does not guarantee mutual
exclusivity between returned assignments.

Example 1 Let F be the propositional formula:

F =

c1︷ ︸︸ ︷
(x1 ∨ ¬x2)∧

c2︷ ︸︸ ︷
(x1 ∨ ¬x3)∧

c3︷ ︸︸ ︷
(¬x1 ∨ ¬x2)

For the sake of simplicity, we assume CHRONO-CDCL to
return total truth assignments. If the initial variable ordering
is x3, x2, x1 (all set to false) then the first two total and the
third partial trails generated by Algorithm 1 are:

T1 = ¬xd
3¬xd

2¬xd
1; T2 = ¬xd

3¬xd
2x

∗
1; T3 = ¬xd

3x
∗
2

Notice how T3 leads to a falsifying assignment: x2 forces
x1 due to c1 and ¬x1 due to c3 at the same time. A conflict

Algorithm 4: IMPLICANT-SHRINKING(T)

1: b← 0
2: T ′ ← T
3: while T ′ ̸= ε do
4: ℓ← T ′.pop()
5: if ρ(ℓ) ̸= DECISION then
6: b← max(b, δ(ℓ))
7: else if δ(ℓ) > b then
8: b← CHECK-LITERAL(ℓ, b, T ′)
9: else if δ(ℓ) = 0 or (δ(ℓ) = b and ρ(ℓ) = DECISION)

then
10: break
11: end if
12: end while
13: return b

arises and we adopt the first UIP algorithm to stop conflict
analysis. We identify x2 as the first unique implication point
(UIP) and construct the conflict clause ¬x2. Since this is a
unit clause, we force its negation ¬x2 as an initial unit. We
can now set x3 and x1 to ⊥ and obtain a satisfying assign-
ment. The resulting total trail T = ¬x3¬x2¬x1 is covered
twice during the search process. ⋄

We also emphasize that the incorporation of restarts in
the search algorithm (or any method that implicitly exploits
restarts, such as rephasing) is not feasible, as reported in
(Möhle and Biere 2019b).

Chronological implicant shrinking
Effectively shrinking a total trail T when chronological

backtracking is enabled is not trivial.
In principle, we could add a flag for each clause c stating

if c is currently satisfied by the partial assignment or not, and
check the status of all flags iteratively adding literals to the
trail. Despite being easy to integrate into an AllSAT solver
and avoiding assigning all variables a truth value, this ap-
proach is unfeasible in practice: every time a new literal ℓ
is added/removed from the trail, we should check and even-
tually update the value of the flags of clauses containing it.
In the long term, this would negatively affect performances,
particularly when the formula has a large number of models.

Also, relying on implicant shrinking algorithms from the
literature for NCB-based AllSAT solvers does not work for
chronological backtracking. Prime-implicant shrinking al-
gorithms do not guarantee the mutual exclusivity between
different assignments, so that they are not useful in the con-
text of disjoint AllSAT. Other assignment-minimization al-
gorithms, as in (Toda and Soh 2016), work under the as-
sumption that a blocking clause is introduced.

For instance, suppose we perform disjoint AllSAT on the
formula F = x1 ∨ x2 and the ordered trail is T1 = xd

1x
d
2.

A general assignment minimization algorithm could retrieve
the partial assignment µ = x2 satisfying F , but obtaining
it by using chronological backtracking is not possible (it
would require us to remove x1 from the trail despite being
assigned at a lower decision level than x2) unless blocking
clauses are introduced.

Algorithm 5: CHECK-LITERAL(ℓ, b, T ′)

1: for c ∈ ω(ℓ) do
2: if ∃ℓ′ ∈ c s.t. ℓ′ ̸= ℓ and ℓ′ ∈ T ′ then
3: Watch c by ℓ′ instead of ℓ
4: else
5: b← max(b, δ(ℓ))
6: end if
7: end for
8: return b

In this context, we need an implicant shrinking algorithm
such that: (i) it is compatible with chronological backtrack-
ing, i.e. we remove variables assigned at level dl or higher as
if they have never been assigned; (ii) it tries to cut the high-
est amount of literals while still ensuring mutual exclusivity.

Considering all the aforementioned issues, we propose a
chronological implicant shrinking algorithm that uses state-
of-the-art SAT solver data structures (thus without requiring
dual encoding), which is described in Algorithm 4.

The idea is to pick literals from the current trail starting
from the latest assigned literals (lines 3-4) and determine the
lowest decision level b to backtrack and shrink the implicant.
First, we check if ℓ was not assigned by DECIDE (line 5). If
this is the case, we set b to be at least as high as the deci-
sion level of ℓ (δ(ℓ)), ensuring that it will not be dropped by
implicant shrinking (line 6), since ℓ has a role in performing
disjoint AllSAT.

If this is not the case, we compare its decision level δ(ℓ)
to b (line 7). If δ(ℓ) > b, then we actively check if it is
necessary for T to satisfy F (line 8) and set b accordingly.
Two versions of CHECK-LITERAL will be presented.

If ℓ is either an initial literal (i.e. assigned at decision level
0) or both ρ(ℓ) = DECISION and δ(ℓ) = b hold, all literals
in the trail assigned before ℓ would have a decision level
lower or equal than b. This means that we can exit the loop
early (lines 9-10), since scanning further the trail would be
unnecessary. Finally, if none of the above conditions holds,
we can assume that b is already greater than δ(ℓ), and we
can move on to the next literal in the trail.

Checking literals using 2-watched lists. In (Déharbe
et al. 2013) the authors propose an algorithm to shorten to-
tal assignments and obtain a prime implicant by using watch
lists. We adopted the ideas from this work and adapted them
to be integrated into CB-based AllSAT solving, which we
present in Algorithm 5.

For each literal ℓ we check its watch list ω(ℓ) (line 1). For
each clause c in ω(ℓ) we are interested in finding a literal ℓ′
such that: (i) ℓ′ is not ℓ itself, (ii) ℓ′ satisfies c and it is in
the current trail T ′ so that it has not already been checked
by IMPLICANT-SHRINKING (line 2). If it exists, we update
the watch lists, so that now ℓ′ watches c instead of ℓ, then
we move on to the next clause (line 3). If no replacement
for ℓ is available, then ℓ is the only remaining literal that
guarantees c is satisfied, and we cannot reduce it. We update
b accordingly, ensuring ℓ would not be minimized by setting
b to a value higher or equal than δ(ℓ) (line 6).

Example 2 Let F be the following propositional formula:

F =

c1︷ ︸︸ ︷
(x1 ∨ x2 ∨ x3)

F is satisfied by 7 different total assignments:

{ x1, x2, x3}, {¬x1, x2, x3}, { x1,¬x2, x3},

{¬x1,¬x2, x3}, { x1, x2,¬x3}, {¬x1, x2,¬x3},
{ x1,¬x2,¬x3}

When initialized, our solver has the following watch lists:

ω(x1) ={c1}; ω(x2) = {c1}; ω(x3) = ∅

Algorithm 1 can produce the total trail I1 = xd
3x

d
2x

d
1.

CHECK-LITERAL starts by minimizing the value of x1. The
watch list associated with x1 contains c1, hence we need to
substitute x1 with a new literal in clause c1. A suitable sub-
stitute exists, namely x3. We update the watch lists according
to Algorithm 5, and obtain:

ω(x1) = ∅; ω(x2) = {c1}; ω(x3) ={c1}

Next, CHECK-LITERAL eliminates x2 from the current trail:
x1 was already cut off, x2 and x3 are the current indexes for
c1, and x3 is assigned to ⊤. Since no other variables are
available in c1, we must force x3 to be part of the partial
assignment, and we set b to 1 to prevent its shrinking. This
yields the partial trail T1 = x3.

Chronological backtracking now restores the watched lit-
eral indexing to its value before implicant shrinking (in this
case the initial state of watch lists) and flips x3 into ¬x3.
DECIDE will then assign ⊤ to both x2 and x1. The new trail
T2 = ¬x∗

3x
d
2x

d
1 satisfies F . Algorithm 5 drops x1 since c1

is watched by x2 and thus we would still satisfy F without
it. x2, on the other hand, is required in T2: x3 is now as-
signed to ⊥ and thus cannot substitute x2. We obtain the
second partial trail T2 = ¬x3x

d
2. Last, we chronologically

backtrack and set x2 to ⊤. Being x3 and x2 both ⊥, UNIT-
PROPAGATION forces x1 to be ⊤ at level 0. We obtain the
last trail satisfying F , T3 = ¬x3¬x2x1.

The final solution is then:

{x3}, {x2,¬x3}, {x1,¬x2,¬x3}
A faster but conservative literal check. In Algorithm
5 the cost of scanning clauses using the 2-watched literal
schema during implicant shrinking could result in a bottle-
neck if plenty of models cover a formula. Bearing this in
mind, we propose a lighter variant of Algorithm 5 that does
not requires watch lists to be updated.

Suppose that the current trail T satisfies F , which implies
that for each clause c in F , at least one of the two watched
literals of c, namely ℓ1 and ℓ2, is in T . If CHECK-LITERAL
tries to remove ℓ1 from the trail, instead of checking if there
exists another literal in c that satisfies the clause in its place
as in line 2 of Algorithm 5, we simply check the truth value
of ℓ2 as if the clause c is projected into the binary clause
ℓ1 ∨ ℓ2. If ℓ2 is not in I , then we force the AllSAT solver to
maintain ℓ1, setting the backtracking level to at least δ(ℓ1);
otherwise we move on to the next clause watched by it.

It is worth noting that this variant of implicant shrinking
is conservative when it comes to dropping literals from the
trail. We do not consider the possibility of another literal ℓ′
watching c, is in the current trail T , and has a lower deci-
sion level than the two literals watching c. In such a case,
we could set b to δ(ℓ′), resulting in a more compact partial
assignment. Nonetheless, not scanning the clause can signif-
icantly improve performance, making our approach a viable
alternative when covering many solutions.

Implicit solution reasons
Incorporating chronological backtracking into the AllSAT
algorithm makes blocking clauses unnecessary. Upon dis-
covering a model, we backtrack chronologically to the most
recently assigned decision variable ℓ and flip its truth value,
as if there were a reason clause c - containing the negated de-
cision literals of T - that forces the flip. These reason clauses
c are typically irrelevant to SAT solving and are not stored
in the system. On the other hand, when CDCL is combined
with chronological backtracking, these clauses are required
for conflict analysis.

Example 3 Let F be the same formula from Example 1.
We assume the first trail generated by Algorithm 1 is T1 =
¬xd

3¬xd
2¬xd

1. Algorithm 4 can reduce x1 since ¬x2 suffices
to satisfy both c1 and c3. Consequently, we obtain the as-
signment µ1 = ¬x3 ∧ ¬x2, then flip ¬x2 to x2. The new
trail I2 = ¬xd

3x
∗
2 forces x1 to be true due to c1; then c3

would not be satisfiable anymore and cause the generation
of a conflict. The last UIP is x3, so that the reason clause
c′ forcing x2 to be flipped must be handled by the solver to
compute the conflict clause. ⋄

To cope with this fact, a straightforward approach would
be storing these clauses in memory with no update to the lit-
eral watching indexing; this approach would allow for c to be
called exclusively by the CDCL procedure without affecting
variable propagation. If F admits a large number of mod-
els, however, storing these clauses would negatively affect
performances, so either we had to frequently call flushing
procedures to remove inactive backtrack reason clauses, or
we could risk going out of memory to store them.

To overcome the issue, we introduce the notion of virtual
backtrack reason clauses. When a literal ℓ is flipped after
a satisfying assignment is found, its reason clause contains
the negation of decision literals assigned at a level lower
than δ(ℓ) and ℓ itself. Consequently, we introduce an ad-
ditional value, BACKTRUE, to the possible answers of the
reason function ρ. This value is used to tag literals flipped
after a (possibly partial) assignment is found. When the con-
flict analysis algorithm encounters a literal ℓ having ρ(ℓ) =
BACKTRUE, the resolvent can be easily reconstructed by
collecting all the decision literals with a lower level than ℓ
and negating them. This way we do not need to explicitly
store these clauses for conflict analysis, allowing us to save
time and memory for clause flushing.

Decision variable ordering
As shown in (Möhle and Biere 2019b), different orders dur-
ing DECIDE can lead to a different number of partial trails

retrieved if chronological backtracking is enabled. After an
empirical evaluation, we set Decide to select the priority
score of a variable depending on the following ordered set
of rules.

First, we rely on the Variable State Aware Decaying Sum
(VSADS) heuristic (Huang and Darwiche 2005) and set the
priority of a variable according to two weighted factors: (i)
the count of variable occurrences in the formula, as in the
Dynamic Largest Combined Sum (DLCS) heuristics; and
(ii) an ”activity score,” which increases when the variable
appears in conflict clauses and decreases otherwise, as in the
Variable State Independent Decaying Sum (VSIDS) heuris-
tic. If two variables have the same score, we set a higher
priority to variables whose watch list is not empty (this is
particularly helpful when the lighter variant of the implicant
shrinking is used). If there is still a tie, we rely on the lexi-
cographic order of the name of the variables.

Experimental evaluation
We implemented all the ideas discussed in the paper in a tool
we refer to as TABULARALLSAT. The code of the algo-
rithm and all benchmarks are available here: https://zenodo.
org/records/10397723. It is built on top of a minimal SAT
solver: besides chronological backtracking, it does not have
any preprocessing, restarts and rephasing are disabled, and
watching data structures are similar to MiniSAT.

Experiments are performed on an Intel Xeon Gold 6238R
@ 2.20GHz 28 Core machine with 128 GB of RAM, running
Ubuntu Linux 20.04. Timeout has been set to 1200 seconds.

Benchmarks
The benchmarks used on related works on enumeration
(Toda and Soh 2016) are typically from SATLIB (Hoos and
Stützle 2000), which were thought for SAT solving. How-
ever, most of these benchmarks are not suited for AllSAT
solving: some benchmarks are UNSAT or admit only a cou-
ple of solutions, whereas others are encoded in a way that
no total assignment can be shrunk into a partial one. For the
sake of significance for AllSAT, we considered benchmarks
having two characteristics: (i) each problem admits a high
number of total assignments; (ii) the problem structure al-
lows for some minimization of assignments, to test the effi-
ciency of the chronological implicant shrinking algorithms.

Binary clauses is a crafted dataset containing problems
with n variables defined by binary clauses in the form:

(x1 ∨ xn) ∧ (x2 ∨ xn−1) ∧ ... ∧ (xn/2−1 ∨ xn/2)

Finding all solutions poses a significant challenge: retriev-
ing all possible assignments requires returning 3n/2 assign-
ments within a feasible timeframe.

Rnd3sat contains 410 random 3-SAT problems with n
variables, n ∈ [10, 50]. In SAT instances, the ratio of clauses
to variables needed to achieve maximum hardness is about
4.26, but in AllSAT, it should be set to approximately 1.5
(Bayardo Jr and Schrag 1997). For this reason, we choose
not to use the instances uploaded to SATLIB and we created
new random 3-SAT problems accordingly.

We also tested our algorithms over SATLIB benchmarks,
specifically CBS and BMS (Singer, Gent, and Smaill 2000).

TABULARALLSAT BDD NBC MathSAT BC BC PARTIAL
binary clauses (50) 30 28 21 16 13 18

rnd3sat (410) 410 409 396 229 194 210
CSB (1000) 1000 1000 1000 997 865 636
BMS (500) 499 498 498 473 368 353
Total (1960) 1939 1935 1915 1715 1440 1217

Table 1: Table reporting the number of instances solved by each solver within the timeout time (1200 seconds).

10 2 10 1 100 101 102 103 104

Light-check

10 2

10 1

100

101

102

103

104

W
at

ch
Lis

t-c
he

ck

BINARY
RND3SAT
BMS
CBS

(a) CPU Time (in seconds)

100 102 104 106 108 1010

Light-shrinking

100

102

104

106

108

1010

W
at

ch
Lis

t-s
hr

in
ki

ng

BINARY
RND3SAT
BMS
CBS

(b) # of partial models

Figure 1: Scatter plot comparing CPU time and log-total # of partial models with the two implicant shrinking algorithms.

Comparing implicant shrinking techniques
In Figure 1 we compare the two implicant shrinking algo-
rithms with respect to CPU time and the number of dis-
joint partial assignments. We checked the correctness of the
enumeration by testing if the number of total assignments
covered by the set of partial solutions was the same as the
model count reported by the #SAT solver Ganak (Sharma
et al. 2019), being always correct for both algorithms.

Results suggest that, with no surprise, dynamically updat-
ing watches is more effective in shrinking total assignments.
When considering time efficiency, however, the faster but
conservative simplification algorithm outperforms the other
variant. The computational cost of updating each watch list
ω(ℓ) significantly slows down the computation process the
higher the number of total models satisfying F is.

All the experiments in the following subsections assume
TABULARALLSAT relies on the lighter variant.

Baseline solvers
We considered BC, NBC, and BDD (Toda and Soh 2016),
respectively a blocking, a non-blocking, and a BDD-based
disjoint AllSAT solver. BC also provides the option to obtain
partial assignments (from now on BC PARTIAL). Lastly, we
considered MATHSAT5 (Cimatti et al. 2013), since it pro-
vides an interface to compute partial enumeration of propo-
sitional problems by exploiting blocking clauses.

Some other AllSAT solvers, such as BASOLVER (Zhang,
Pu, and Sun 2020) and ALLSATCC (Liang et al. 2022), are
currently not publicly available, as reported also in another
paper (Fried, Nadel, and Shalmon 2023).

Results
Table 1 reports the number of instances solved by each
solver for each set of benchmarks before reaching timeout,
where ”solved” means that they enumerated completely a
set of disjoint partial models covering all total models. We
see that TABULARALLSAT solves the highest amount of in-
stances for each benchmark, even though BDD and NBC are
close. We also present some scatter plots comparing TAB-
ULARALLSAT time performance against each of the other
AllSAT solvers available, using different marks and colors to
distinguish instances from different benchmarks. The CPU
times reported in Figure 2 consider only the time taken to
reach each assignment, without storing them.

TABULARALLSAT outperforms all the other solvers in
every benchmark excluding RND3SAT, where BDD outper-
forms our approach. The latter instances are not structurally
complex due to the low clause-to-variable ratio and can be
compiled into BDDs with minimal inefficiencies, thus justi-
fying this behavior: the higher the number of clauses is, the
more challenging the compilation of the propositional for-
mula into a BDD is, as we can see with BMS and CSB.

Conclusion
We presented an AllSAT procedure that combines CDCL,
CB, and chronological implicant shrinking to perform par-
tial disjoint enumeration. The experiments confirm the ben-
efits of combining them, avoiding both performance degra-
dations due to blocking clauses and bottlenecks generated
by the solver being stuck in non-satisfiable search sub-trees.

This work could be extended in several directions. First,
we plan to compare our algorithm against other enumeration

10 2 10 1 100 101 102 103 104

BC

10 2

10 1

100

101

102

103

104

Ou
r a

pp
ro

ac
h

BINARY
RND3SAT
BMS
CBS

(a) BC

10 2 10 1 100 101 102 103 104

BC_SIMPLIFY

10 2

10 1

100

101

102

103

104

Ou
r a

pp
ro

ac
h

BINARY
RND3SAT
BMS
CBS

(b) BC PARTIAL

10 2 10 1 100 101 102 103 104

NBC

10 2

10 1

100

101

102

103

104

Ou
r a

pp
ro

ac
h

BINARY
RND3SAT
BMS
CBS

(c) NBC

10 2 10 1 100 101 102 103 104

BDD

10 2

10 1

100

101

102

103

104

Ou
r a

pp
ro

ac
h

BINARY
RND3SAT
BMS
CBS

(d) BDD

10 2 10 1 100 101 102 103 104

MATHSAT

10 2

10 1

100

101

102

103

104

Ou
r a

pp
ro

ac
h

BINARY
RND3SAT
BMS
CBS

(e) MathSAT

Figure 2: Scatter plots comparing TABULARALLSAT CPU times against the other AllSAT solvers. The x and y axes are both log-scaled.

algorithms based on knowledge compilation (for instance
D4 (Lagniez and Marquis 2017)), even though this might
involve a potentially costly compilation process before enu-
meration and accordingly such an approach is not any-time.
Then, to further improve the performances of TABULAR-

ALLSAT, we plan to explore novel decision heuristics that
are suitable for chronological backtracking. Finally, we plan
to extend our techniques to handle also projected enumera-
tion and to investigate the integration of chronological back-
tracking with component caching.

Acknowledgements
We acknowledge the support of the MUR PNRR project
FAIR – Future AI Research (PE00000013), under the NRRP
MUR program funded by the NextGenerationEU. The work
was partially supported by the project “AI@TN” funded by
the Autonomous Province of Trento. This research was par-
tially supported by TAILOR, a project funded by the EU
Horizon 2020 research and innovation program under GA
No 952215.

References
Bayardo Jr, R. J.; and Pehoushek, J. D. 2000. Counting mod-
els using connected components. In AAAI/IAAI, 157–162.

Bayardo Jr, R. J.; and Schrag, R. 1997. Using CSP look-back
techniques to solve real-world SAT instances. In Aaai/iaai,
203–208. Citeseer.

Chistikov, D.; Dimitrova, R.; and Majumdar, R. 2015. Ap-
proximate counting in SMT and value estimation for proba-
bilistic programs. In Tools and Algorithms for the Construc-
tion and Analysis of Systems: 21st International Conference,
TACAS 2015, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015, Proceedings 21, 320–334.
Springer.

Cimatti, A.; Griggio, A.; Schaafsma, B. J.; and Sebastiani,
R. 2013. The MathSAT5 SMT solver. In Tools and Algo-
rithms for the Construction and Analysis of Systems: 19th
International Conference, TACAS 2013, Held as Part of the
European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2013, Rome, Italy, March 16-24, 2013. Pro-
ceedings 19, 93–107. Springer.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A ma-
chine program for theorem-proving. Communications of the
ACM, 5(7): 394–397.

Déharbe, D.; Fontaine, P.; Le Berre, D.; and Mazure, B.
2013. Computing prime implicants. In 2013 Formal Meth-
ods in Computer-Aided Design, 46–52. IEEE.

Dlala, I. O.; Jabbour, S.; Sais, L.; and Yaghlane, B. B. 2016.
A comparative study of SAT-based itemsets mining. In Re-
search and Development in Intelligent Systems XXXIII: In-
corporating Applications and Innovations in Intelligent Sys-
tems XXIV 33, 37–52. Springer.

Fried, D.; Nadel, A.; and Shalmon, Y. 2023. AllSAT for
Combinational Circuits. In 26th International Conference
on Theory and Applications of Satisfiability Testing (SAT
2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Grumberg, O.; Schuster, A.; and Yadgar, A. 2004. Mem-
ory efficient all-solutions SAT solver and its application for
reachability analysis. In Formal Methods in Computer-
Aided Design: 5th International Conference, FMCAD 2004,
Austin, Texas, USA, November 15-17, 2004. Proceedings 5,
275–289. Springer.

Hoos, H. H.; and Stützle, T. 2000. SATLIB: An online re-
source for research on SAT. Sat, 2000: 283–292.

Huang, J.; and Darwiche, A. 2005. Using DPLL for efficient
OBDD construction. In Theory and Applications of Satisfia-
bility Testing: 7th International Conference, SAT 2004, Van-
couver, BC, Canada, May 10-13, 2004, Revised Selected Pa-
pers 7, 157–172. Springer.
Jin, H.; Han, H.; and Somenzi, F. 2005. Efficient conflict
analysis for finding all satisfying assignments of a Boolean
circuit. In Tools and Algorithms for the Construction and
Analysis of Systems: 11th International Conference, TACAS
2005, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2005, Edinburgh,
UK, April 4-8, 2005. Proceedings 11, 287–300. Springer.
Khurshid, S.; Marinov, D.; Shlyakhter, I.; and Jackson, D.
2004. A case for efficient solution enumeration. In Theory
and Applications of Satisfiability Testing: 6th International
Conference, SAT 2003, Santa Margherita Ligure, Italy, May
5-8, 2003, Selected Revised Papers 6, 272–286. Springer.
Lagniez, J.-M.; and Marquis, P. 2017. An Improved
Decision-DNNF Compiler. In IJCAI, volume 17, 667–673.
Lahiri, S. K.; Bryant, R. E.; and Cook, B. 2003. A symbolic
approach to predicate abstraction. In Computer Aided Ver-
ification: 15th International Conference, CAV 2003, Boul-
der, CO, USA, July 8-12, 2003. Proceedings 15, 141–153.
Springer.
Li, B.; Hsiao, M. S.; and Sheng, S. 2004. A novel SAT all-
solutions solver for efficient preimage computation. In Pro-
ceedings Design, Automation and Test in Europe Conference
and Exhibition, volume 1, 272–277. IEEE.
Liang, J.; Ma, F.; Zhou, J.; and Yin, M. 2022. AllSATCC:
Boosting AllSAT Solving with Efficient Component Analy-
sis. In IJCAI, 1866–1872.
Marques-Silva, J. P.; and Sakallah, K. A. 1999. GRASP: A
search algorithm for propositional satisfiability. IEEE Trans-
actions on Computers, 48(5): 506–521.
McMillan, K. L. 2002. Applying SAT methods in un-
bounded symbolic model checking. In Computer Aided Ver-
ification: 14th International Conference, CAV 2002 Copen-
hagen, Denmark, July 27–31, 2002 Proceedings 14, 250–
264. Springer.
Möhle, S.; and Biere, A. 2019a. Backing backtracking. In
Theory and Applications of Satisfiability Testing–SAT 2019:
22nd International Conference, SAT 2019, Lisbon, Portugal,
July 9–12, 2019, Proceedings 22, 250–266. Springer.
Möhle, S.; and Biere, A. 2019b. Combining Conflict-Driven
Clause Learning and Chronological Backtracking for Propo-
sitional Model Counting. In GCAI, 113–126.
Möhle, S.; Sebastiani, R.; and Biere, A. 2020. Four flavors
of entailment. In International Conference on Theory and
Applications of Satisfiability Testing, 62–71. Springer.
Möhle, S.; Sebastiani, R.; and Biere, A. 2021. On
Enumerating Short Projected Models. arXiv preprint
arXiv:2110.12924.
Morettin, P.; Passerini, A.; and Sebastiani, R. 2019. Ad-
vanced SMT techniques for weighted model integration. Ar-
tificial Intelligence, 275: 1–27.

Morgado, A.; and Marques-Silva, J. 2005a. Good learning
and implicit model enumeration. In 17th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI’05),
6 pp.–136.
Morgado, A.; and Marques-Silva, J. 2005b. Good learning
and implicit model enumeration. In 17th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI’05),
6–pp. IEEE.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient SAT solver.
In Proceedings of the 38th annual Design Automation Con-
ference, 530–535.
Nadel, A.; and Ryvchin, V. 2018. Chronological backtrack-
ing. In Theory and Applications of Satisfiability Testing–SAT
2018: 21st International Conference, SAT 2018, Held as
Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 9–12, 2018, Proceedings 21, 111–121. Springer.
Sebastiani, R. 2020. Are You Satisfied by This Partial As-
signment? arXiv preprint arXiv:2003.04225.
Sharma, S.; Roy, S.; Soos, M.; and Meel, K. S. 2019.
GANAK: A Scalable Probabilistic Exact Model Counter. In
Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI).
Singer, J.; Gent, I. P.; and Smaill, A. 2000. Backbone
fragility and the local search cost peak. Journal of Artifi-
cial Intelligence Research, 12: 235–270.
Spallitta, G.; Masina, G.; Morettin, P.; Passerini, A.; and Se-
bastiani, R. 2022. SMT-based weighted model integration
with structure awareness. In Uncertainty in Artificial Intel-
ligence, 1876–1885. PMLR.
Toda, T.; and Soh, T. 2016. Implementing efficient all so-
lutions SAT solvers. Journal of Experimental Algorithmics
(JEA), 21: 1–44.
Yu, Y.; Subramanyan, P.; Tsiskaridze, N.; and Malik, S.
2014. All-SAT using minimal blocking clauses. In 2014
27th International Conference on VLSI Design and 2014
13th International Conference on Embedded Systems, 86–
91. IEEE.
Zhang, Y.; Pu, G.; and Sun, J. 2020. Accelerating All-SAT
computation with short blocking clauses. In Proceedings of
the 35th IEEE/ACM International Conference on Automated
Software Engineering, 6–17.

