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Abstract
Distributed clause-sharing SAT solvers have recently been established as powerful automated
reasoning tools that can conquer previously infeasible instances. A common design of distributed
SAT solvers is to run many off-the-shelf sequential solvers in parallel, employ some diversification
(e.g., restart intervals or decision orders), and share conflict clauses among the solver threads.
This approach, naïvely, adopts all best practices of sequential solver design for distributed solving,
where these practices may be less useful or even actively detrimental. In this work we diagnose
such shortcomings in the state-of-the-art system MallobSat and propose first effective mitigations.
In particular, we replace the redundant pre– and inprocessing at all threads with single-core
preprocessing that runs next to the parallel search, remove LBD values from the clause-sharing
operation, and slim down solver diversification to very few lightweight and uniform methods.
Experimental evaluations on up to 3072 cores (64 nodes) confirm that our measures improve
performance while also drastically simplifying the SAT solving program that is run in parallel.
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1 Introduction

Over the last years, parallel and distributed approaches to propositional satisfiability (SAT)
solving have gained significant traction and established themselves as powerful automated
reasoning tools to conquer previously infeasible problems [22, 55]. In large parts, this success
is due to careful exchange of conflict clauses that are learned by individual sequential SAT
solver threads during their search [41]. Recent findings [55] indicate that such clause sharing
can serve as its own powerful kind of parallelization, even if all solver threads are initially
completely identical, challenging the predominant view that solver threads need to either
explicitly operate on different sub-spaces (search space splitting) or be explicitly diversified
in terms of their approaches (portfolio) [55]. In light of these new insights, we explore ways
to improve both simplicity and performance of distributed SAT solving.

State-of-the-art parallel and distributed solvers commonly employ cutting-edge SAT
solvers as sequential building blocks. These sequential solvers, most recently CaDiCaL [11]
and Kissat [12] in particular, are highly engineered pieces of software optimized for sequential,
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general-purpose SAT solving performance [26]. To this end, they feature a large number of
simplification or preprocessing techniques, some of which are heuristically scheduled into
their solver program (inprocessing) [17]. In most established parallel solvers, these tasks are
performed by all solver threads in a fully redundant fashion, with the exception of some
coordinated preprocessing [21, 49] and disabling individual techniques for individual threads
in the name of diversification [4, 54]. While inprocessing significantly improves sequential
SAT solving performance [17], its impact for parallel and distributed clause-sharing solving
is largely unexplored (cf. [20]). One notable caveat is that pre– and inprocessing tasks,
performed redundantly at all solver threads, are not parallelized and can therefore present a
scalability bottleneck. This holds especially if the effort spent on a pre–/inprocessing task
is not a fixed, small share of each thread’s CPU time (e.g., 10%) but rather takes up large
portions of the total, parallel CPU time – which we do confirm to be the case for some
techniques. Another aspect is that simplification techniques often heavily modify the original
formula. When two solvers operate on different representations of the problem, efficient and
effective information exchange can be obstructed. For instance, Schreiber and Sanders noticed
that bounded variable elimination (BVE) can prevent solver threads from importing many
incoming clauses because the clauses feature variables that are locally already eliminated [55].

In this work, we diagnose and mend some of the mentioned shortcomings in modern
distributed SAT solver design. A large portion of our contributions are of an analytical
and observational nature. In particular, we profile the cutting-edge distributed SAT solver
MallobSat [54, 55] in terms of the amount of time individual solver threads spend in different
tasks. We observe that pre–/inprocessing provides little to no net benefit for distributed
solving and that disabling it does in fact improve performance. Similarly, we complement
recent findings [35, 50] questioning the significance of the Literal Block Distance (LBD) [2]
metric for clause-sharing solving. We subsequently propose first improvements as a reaction
to these insights: We implement a single-core preprocessing approach that runs while
“pure” CDCL solving is already ongoing, remove LBDs from distributed clause sharing, and
drastically cut diversification of solver threads down to two trivial methods (random seeds
and variable phases). Our enhanced setup of MallobSat outperforms the prior state of the art,
especially on application-oriented benchmarks, while only executing pure, uniform, clause-
sharing-powered CDCL search at the parallel cores – further departing from a “portfolio
solver”. Going forward, our results call for designing distributed SAT solvers in a more holistic
and unified manner, whereas our proposed solving approach opens up new opportunities for
understanding, analyzing, and advancing distributed clause-sharing SAT solving.

The paper at hand is structured as follows. Section 2 introduces relevant preliminaries and
related work. Two empirical studies follow, first on examining pre–/inprocessing in distributed
SAT solving (Section 3) and secondly on the role of LBDs (Section 4). In Section 5, we
propose an alternative approach to integrating simplification techniques into distributed SAT
solving in a more scalable manner. Section 6 features a thorough experimental evaluation.
We discuss results in Section 7 and conclude our work in Section 8.

2 Background

In the following, we provide some necessary background for the work at hand.
Given a propositional formula F =

∧n
i=1

∨ki

j=1 lij , where each lij is a Boolean variable or
its negation, the propositional satisfiability (SAT) problem is to find a variable assignment
that satisfies F or, if impossible, to report unsatisfiability [16]. Most sequential state-of-
the-art SAT solvers are based on the Conflict-Driven Clause Learning paradigm [41], which
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encompasses a heuristic search over the space of partial variable assignments. When a CDCL
solver encounters a logical conflict under its current assignment, it can derive a so-called
conflict clause and add it to its knowledge base. Intuitively, such a clause represents a pruned
sub-space of search space that has been deemed unsatisfiable.

In distributed computing, multiple machines with no shared memory perform a joint
computation. They usually coordinate by exchanging messages over a network. Parallel
and distributed approaches to SAT solving have mostly been separated into two major
classes of approaches: search space splitting and portfolio solving [5]. Search space splitting
(a.k.a. search space partitioning, divide&conquer, later cube&conquer [34]) was the earliest
parallelization technique, forcing workers to search pairwise disjoint sub-spaces of search
space. While this is situationally powerful [31, 33], load balancing problems can occur if
the problem is split in an uneven or ineffective manner [56]. Portfolio solving has been
proposed to circumvent these problems, instead aiming to achieve speedups by running many
different sequential SAT solvers on the same, original, formula [30]. Both parallelization
paradigms have been enhanced by clause sharing, i.e., mechanisms to exchange learned
conflict clauses across workers [30, 57]. The result is a form of parallel search space pruning:
If solver thread A learns clause c and transmits it to thread B, then B will not re-explore the
sub-space prohibited by clause c. This pruning is imperfect in nature since solver threads
periodically forget (i.e., discard) clauses, losing pruning information in the process [2, 43].
Earlier works still showed that clause sharing is beneficial for performance of portfolios [4, 30]
(resulting in clause-sharing portfolio solvers) and search space splitting solvers [57].

Modern distributed SAT solving systems include PRS [61], Painless [48], and MallobSat [54,
55], which generally fit the clause-sharing portfolio paradigm. MallobSat in particular features
a highly engineered form of periodic all-to-all clause sharing. Its authors demonstrated
that this clause sharing is the central driver of the system’s scalability. Notably, MallobSat
performs rather competitively even if all solver threads are initially identical – down to
the exact same seed – the reason being that individual threads import slightly different
clause sets at slightly different points in time due to the non-determinism of the distributed
program. This alone suffices for clause sharing to act as effective search space pruning [55].
While this finding does not immediately translate to a new distributed solving approach –
usual diversification of solvers still benefits performance – it raises the question of whether
the notion of clause-sharing portfolios still applies to a system that does not depend on
any actual portfolio. Schreiber & Sanders suggested the term clause-sharing solver [55] to
emphasize that clause sharing is, demonstrably, its very own kind of parallelization and
should not be considered a mere supplement to portfolio solving or search space splitting.

We refer to the Handbook of Satisfiability [17] for an overview of pre– and inprocessing
techniques. Regarding parallel pre- and inprocessing, Gebhardt et al. [27] presented a shared-
memory parallelization of certain techniques including subsumption, clause strengthening,
and bounded variable elimination (BVE). The scalability of this approach is rather limited
due to the employed memory lock schemes. Wieringa et al. [59] showed that vivification-like
inprocessing could be elegantly achieved in a parallel fashion by adding a second pure
clause strengthening thread to each CDCL solver. The ParKissat system [60] applies some
single-core preprocessing prior to parallel solving, including techniques to handle XOR and
cardinality constraints, which was adopted by PRS [21] and subsequently by the state-of-the-
art shared-memory solver PL-PRS-BVA-KISSAT [48]. The latter system also runs a number
of bounded variable addition (BVA) [29, 40] threads next to CDCL [49]. The results from
all but one BVA thread are discarded; other threads can seamlessly integrate the “winning”
result in their ongoing CDCL search. To our knowledge, the solver threads in the mentioned
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systems still perform inprocessing during search, on top of the coordinated preprocessing.
Focusing on shared clauses, Vallade et al. [58] proposed to boost sharing efficiency by

concurrently strengthening shared clauses since, in a parallel setting, these might be the most
rewarding clauses to invest work in. They observed improved performance for unsatisfiable
but negative results for satisfiable instances. Iida et al. [35, 36] recently tested several metrics
for selecting clauses to share. In contrast to the older LBD metric [2], which depends on the
solver state [3], their proposed metrics are based on the formula’s (static) graph structure.

Osama et al. [44] introduced utilizing GPUs for pre-/inprocessing, achieving speedups
by more than an order of magnitude for garbage collection and gate detection. For variable
elimination however, the speedups were limited to around 1.5, highlighting the difficulty of
uniting the rather irregular program flow of SAT solving with monolithic GPU architectures.

3 Examining Pre–/Inprocessing in Distributed SAT

In the following, we present and analyze running time profiles of a state-of-the-art distributed
clause-sharing solver in order to gain insights in its behavior and directions for improvements.

We use MallobSat, essentially configured as in the International SAT Competition 2024 [51]
but using only 2024 Kissat [12] as its solver backend. In the scope of this work, we decided to
focus on a single cutting-edge solver backend (Kissat) in order to obtain clean results and keep
the experimental design space more manageable. We use the HPC cluster SuperMUC-NG,
where each node features a two-socket Intel Skylake Xeon Platinum 8174 processor clocked at
2.7 GHz with 48 physical cores (96 hardware threads) and 96 GB of RAM. For the following
experiments, we use 16 nodes (768 cores), which amounts to a decently large scale and
still allows us to run more experiments than we could at larger scales.1 In order to obtain
profiling results, we make use of Kissat’s integrated profiling capabilities: each solver thread
bookkeeps the accumulated time it spends in relevant sub-procedures. Given that used CPU
time is challenging to obtain asynchronously for a solver thread in MallobSat’s multi-threaded
processes, we changed Kissat’s profiling to use wallclock rather than CPU time.

In terms of problem inputs, we need to balance responsible use of computational resources
with instance diversity and robustness of results [51]. To ensure a great variety of benchmark
families, we consider all 796 unique instances from the last two SAT Competitions, 2023 and
2024. We then reduce the resulting benchmark set to a random selection of 396 instances –
reserving the remaining 400 instances for scaling experiments (Section 6).

Fig. 1 shows the ratio of time the solver threads spend in selected tasks for single-
core Kissat (left) and for 768-core MallobSat (right) for each of the 396 instances. Fig. 2
(left) shows according statistics; more details are provided in the appendix (Tab. 2). First,
it is worth mentioning that Kissat, as other sequential solvers participating in the SAT
Competition, is tuned for running times up to 5000 s. At distributed scales, we usually aim
for much lower running times on the order of 300 s [55]. For such time scales, the inprocessing
scheduling may turn out suboptimal. We thus ran Kissat for up to 5000 s (vs. 300 s for
MallobSat) to aggregate more representative statistics for it.

The label “search” in Fig. 1 denotes actual CDCL search, which is the only parallelized
task (via clause sharing). Visually, the markers for sequential Kissat corresponding to

1 We acknowledge that we spent a total of 709 880 core-hours for all experiments in the paper (including
testing and debugging), which amounts to ≈2.3 tons of CO2eq (320 g CO2eq / kWh) – similar to the
emissions caused by six economy passengers on a flight from Frankfurt to New York. The SAT’2021
Mallob paper [54] spent a similar amount of resources (also in the order of 700k ch).
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Figure 1 By-input distribution over the total solver time ratio spent in actual (CDCL) search
and in selected pre–/inprocessing tasks, for single-threaded Kissat (left) and at 768 cores (right),
relative to overall (wallclock) running time.

Seq. Kissat 768 cores
Category mean total mean total
search 66.74 86.32 63.29 79.15
vivify 6.30 7.03 8.32 8.35
fastel 0.30 0.30 0.76 2.96
congruence 0.24 0.46 0.55 1.85
sweep 2.08 2.18 2.88 1.54
eliminate 0.31 1.01 0.75 1.33 0 60 120 180 240 300

Running time t [s]

0

50

100

150

200

250

300

#
in

st
an

ce
s

so
lv

ed
in
≤
t

768×search-only
768×default
1×default
1×search-only

Figure 2 Left: Percentages of time spent in selected tasks, for sequential Kissat and 768-core
MallobSat, in terms of the geometric mean over all non-zero time ratios reported across all solver
threads and inputs (“mean”) and in terms of adding up the total time all solver threads spent on a
technique and then dividing by the sum of total running times across all solver threads and inputs
(“total”). Right: Performance with and without pre–/inprocessing, at one and 768 cores each.

search are strongly clustered at about 0.9, while they appear lowered and more scattered
for distributed MallobSat. The total ratio of solver time spent in search is 86% for single-
core Kissat but only 79% for 768-core MallobSat. By contrast, most pre–/inprocessing
techniques [12] take proportionally more time in our distributed setting. Some of the most
costly tasks are vivification [39], initial fast variable elimination (“fastel”) and, to a lesser
extent, congruence closure, SAT sweeping, and variable elimination during inprocessing. For
example, the relative cost of vivification increases from 7% at one core to 8.4% at 768 cores,
possibly because of the increased number of vivification candidates due to clause sharing.

Other techniques however, such as initial variable elimination, do not follow this logic and
are expected to incur a fixed amount of work. At a distributed scale, where CDCL search
profits from speedups, the redundant and non parallelized preprocessing on all cores accounts
for increasing portions of the total work performed (from 0.3% to 2.96% for “fastel”). SAT
sweeping is an exception to this effect (relative cost decrease from 2.18% to 1.54%), the
probable reason being that it only incurs significant relative cost at very low running times
(< 1 s), where MallobSat performs similar or even worse than sequential Kissat. Also note
how some tasks such as vivification use relatively consistent shares of time since Kissat can
control their computational budget in an accurate manner. Other tasks that are highly
dependent on problem structure, such as initial variable elimination, show high variances in
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the time spent and occasionally even account for the majority of compute time.
The impact on solving performance is shown in Fig. 2 (right). We ran MallobSat as before

and also in a search-only configuration where pre– and inprocessing is disabled for all threads.
At a sequential scale, Kissat with pre–/inprocessing significantly outperforms its search-only
variant, as one would expect. At 768 cores, however, many instances are slowed down by
the cost of preprocessing and simplification. As such, our “search-only” setup achieves a
geometric mean speedup of 3.7% over the default setup (computed over commonly solved
instances) and solved 12 more instances. Let us discuss some potential causes for this effect:

As presented above, certain pre–/inprocessing techniques can constitute a large share of
the total (parallel) work performed, whereas their merit remains constant regardless of
the number of cores computing it. Due to this scalability bottleneck, the techniques incur
increasing opportunity cost that eventually outweighs their benefits: Our search-only
setup raises the share of time spent on search from 79.15% to 95.4% (appendix Tab. 2).
Clause sharing may functionally “simulate” certain pre–/inprocessing techniques to some
degree. This is plausible for techniques related to identifying short clauses that are
implied by the input formula, such as subsumption or vivification: Since MallobSat’s
clause sharing aggregates the globally shortest distinct clauses [55], it may become unlikely
that vivifying a clause results in a shorter clause that no other solver thread has found so
far. That being said, we are yet to find specific evidence for (or against) this suspicion.
Deviating preprocessing levels across solver threads may result in “language barriers”
across solvers, hindering cooperation and rendering clause sharing less effective. This may
especially apply to techniques eliminating variables, which restrict the clauses that a solver
thread can subsequently import [55]: In our 768-core experiment with pre–/inprocessing,
the geometric mean ratio of incoming clauses that were imported successfully by a solver
thread is 62%. The median ratio is higher (75%) since every tenth solver thread is
configured to skip variable elimination completely and can therefore import all clauses.
Still, about 22% of solver threads could import less than half of their incoming clauses.

In terms of benchmark families [37], we observed that pre–/inprocessing is most beneficial
for unsatisfiable miter instances (i.e., combinational circuit equivalence checking; nine in-
stances with mean speedup 3.4 and two more instances not solved by “search-only”), which is
unsurprising since Kissat’s SAT sweeping and congruence closure are designed for this exact
application [13, 14]. Notable benchmark families where the search-only setup performed
better include satisfiable instances on scheduling (9 instances, speedup 1.59) and Folkman
graphs (5 instances, speedup 1.83). For the latter, the mean time ratio spent on CDCL search
increases from 89.1% to 99.2% when disabling pre–/inprocessing, mostly due to vivification
(7.7%). Additional family-specific results are given in the appendix (Table 3).

All in all, the presented results paint a clear picture: Pre– and inprocessing techniques
are currently being employed in distributed SAT solving in a suboptimal manner. They are
neither designed nor tuned for clause-sharing solving and incur significant cost which limits
the attainable speedup and, in many cases, outweighs their benefits.

4 Revisiting LBDs in Distributed Solving

In sequential solving, the Literal Block Distance (LBD) of a clause indicates the number of
distinct decisions involved in the according conflict [2]. LBDs have proven useful as a quality
metric, i.e., to decide whether to keep or to discard a clause [43]. LBDs have also been used
in many parallel SAT solvers [1, 4, 25, 38] as a metric to decide which learned clauses a
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Figure 3 By-instance solving time comparison between a default run of MallobSat and a run
where LBD scores of shared clauses are shuffled within each clause length, both at 768 cores.

solver unit should contribute to clause sharing. However, the usefulness of LBDs does not
necessarily translate to parallel clause sharing: A clause’s LBD depends on the solver state
and may thus not be meaningful to a different solver (thread) [3]. As recently evidenced,
using LBD as a clause selection metric is not beneficial compared to clause length [35, 54].
MallobSat currently uses LBDs only as a tie-breaker, after clause length, when prioritizing
clauses to share. Its authors also reported very similar performance for different ways of
manipulating the LBD values of incoming shared clauses, just before a solver thread imports
them [55]. However, some of the underlying tests have the potential flaw that they do not
only change individual LBD values but also their overall distribution. This distribution can
be relevant since it influences the volume of kept clauses and, therefore, the propagation
speed and search behavior. Changing it, e.g., by assigning random LBD values to incoming
clauses, may thus result in side effects which improve or degrade performance.

In the following, we examine two aspects of LBDs in distributed solving separately: The
significance of a particular incoming clause carrying a particular LBD, and subsequently the
distribution over the LBDs of incoming clauses.

To reexamine the significance of individual LBDs, we suggest the following experiment:
After globally aggregating all clauses to share, we shuffle the mapping of clauses to LBD
values within each clause length uniformly at random. As such, we can cleanly observe the
effect of disconnecting LBDs from their meaning while the distribution over LBD values in
solver threads remains fixed. As Fig. 3 shows, we were unable to discern any meaningful
differences in solving performance with vs. without shuffling of LBD scores: Shuffling LBD
scores resulted in one additional solved instance (290 vs. 289) and a speedup of 1.27%.
This complements recent evidence [35, 55] that communicating and forwarding the LBDs of
individual shared clauses does not carry any useful information in parallel clause-sharing.

Given that individual LBD values do not appear to be of any significance, let us now sep-
arately evaluate the impact of different distributions over incoming LBD values. Specifically,
we explore different strategies to fabricate LBDs synthetically. For a synthetic distribution to
be sensible, our intuition is that high-LBD clauses should be more frequent, low-LBD clauses
should be rare, and min-LBD clauses (LBD 1 or 2) should be avoided, reflecting the typical
three-tier clause management in modern solvers [15, 43]. We refrain from assigning min-LBD
clauses because solvers commonly keep them indefinitely, which may lead to overcrowding if
too many such clauses arrive from external sources [55]. We compare four strategies:

1. Original LBDs: The original LBD values are kept, used as a secondary clause sharing
selection metric (after clause length), and incremented upon import [55].
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LBD Strategy # + − PAR2

Deactivated 322 153 169 137.2
Original 322 153 169 137.3
Triangular 319 150 169 139.9
Uniform 318 148 170 141.2

1 3 5 7 9 11 13

Original

1 3 5 7 9 11 13

Deactivated

1 3 5 7 9 11 13

LBD

Uniform

1 3 5 7 9 11 13

LBD

Triangular

Figure 4 Left: Performance of different strategies for fabricated LBDs, showing number of solved
instances (#), of which satisfiable (+) and unsatisfiable (−), and PAR2 scores. Right: Measured
LBD distributions, observed directly at import in each thread. Here shown are statistics for clauses
of size 11 during solving of a single instance. Each histogram represents ≈ 800 000 clauses.

2. Deactivated LBDs: When a clause is produced, its LBD value is set to its maximum
value possible [24], the size of the clause. This functionally deactivates any logic related
to LBDs in the distributed solver.

3. Uniform LBDs: When a clause is produced, its LBD value is set to its maximum. When
a clause is imported and its size is |c| ≥ 3, the importing thread randomly draws a new
LBD ∈ [3, . . . , |c|] with uniform probability for each value. Initially setting LBDs to their
maximum ensures that they play as little a role as possible during clause sharing.

4. Triangular LBDs: When a clause is produced, its LBD value is set to its maximum.
When a clause is imported and its size is |c| ≥ 3 the importing thread randomly draws
a new LBD ∈ [3, . . . , |c|] whereas each LBD value s has a probability weight of s − 2.
Visually, the probability density resembles a triangle; low LBDs receive a lower probablity
to be sampled and high LBDs a higher probablity. This distribution produces fewer
low-LBD clauses than the uniform distribution, which could affect the clause databases.

We ran each of these four strategies on 396 instances with a timeout of 300 s, distributed
on 768 cores. We also deactivate all other sources of diversification (random seeds and sparse
random variable phases [4]), as in ref. [55], such that any diversification introduced by just the
LBD settings would be most observable. Results are shown in Fig. 4. Overall, all strategies
performed similarly; best performance is achieved by using and incrementing original LBD
scores or by removing them from the equation entirely. We were unable to observe any
positive diversification effect due to randomized LBD scores in the triangular and uniform
strategies. We suspect that these two strategies may still result in too many low-LBD clauses,
at least at the tested scale and with MallobSat’s default sharing configuration.

Put together, we found that removing LBD scores from clause sharing alltogether (and
assigning the maximum LBD score to each incoming clause during import) preserves per-
formance. Together with earlier findings [35, 55], this paints the clear picture that LBDs
are not a useful metric for modern clause-sharing solvers. Going forward, we consider to
either replace LBD with a different metric, as proposed by Iida et al. [35], or to remove them
entirely from MallobSat’s solver interfaces and sharing logic.

5 Streamlined Solver Design

Our profiling results (Fig. 1–2) have shown that distributed clause-sharing solving performs
pre– and inprocessing in a highly suboptimal manner. We now suggest some first improve-



D. Schreiber and N. Rigi-Luperti and A. Biere 23:9

Preprocessing

Figure 5 Left: Common distributed solver design, where a portfolio of solvers (colored squares)
with diverse strategies (symbols in the squares) periodically exchange insights (connections between
squares) with some “language barriers”. Right: Streamlined design, where parallel solver threads are
uniform CDCL searchers and operate on the results of preprocessing that is logically separate.

ments to this situation, incorporating insights from the above discussion and measurements.
We can discern several general approaches for any single pre–/inprocessing technique:

1. Keep the technique as is, i.e., computed redundantly by all threads. This (non-)approach
can be sensible if the technique consistently incurs little cost.

2. Disable the technique. This is reasonable especially if the technique is fairly expensive
and is difficult or even infeasible to parallelize, or if it causes negative side effects for the
parallelization. An example is variable elimination during inprocessing, which prevents
the import of many clauses if not performed in a synchronized fashion [55].

3. Sequentially apply the technique with a single solver thread, then distribute the result.
This can be a practical compromise for techniques that are challenging to parallelize,
feasible to perform sequentially in little time, but still costly if performed by all threads.

4. Parallelize the technique. This can be an option if the technique is beneficial in a
distributed setting and if it is expensive sequentially but feasible to parallelize. While
there have been some works in this regard (see Section 2), so far next to no techniques
have been explored in the context of state-of-the-art distributed SAT solving.

MallobSat’s default configuration follows options 1 (for most threads) and 2 (for some
threads, for the sake of diversification). In the long term, we are interested in finding scalable
parallel algorithms for promising inprocessing tasks (option 4). In the scope of this mostly
empirical work, we consider options 2 and 3 to obtain a more scalable distributed solver.

Specifically, we propose the following changes to MallobSat’s setup: We drop all pre– and
inprocessing, which, for the case of Kissat, amounts to disabling the options preprocess,
simplify, probe, and lucky. Since many of MallobSat’s native diversification options
for individual solver backends [55] concern specific pre–/inprocessing techniques, we also
completely disable this native diversification. This results in a “pure” clause-sharing solver
with uniform worker threads (Fig. 5 right) and next to no characteristics of a portfolio (Fig. 5
left). We then configure a single thread to perform a single run of a number of crucial
simplification techniques – similar to the preprocessing performed by PRS and PL-PRS-
BVA-KISSAT (see Section 2) and also how the early portfolio solver Plingeling used to
handle preprocessing [6].2 Our approach differs in that all distributed resources are tasked
immediately with search-only SAT solving as long as preprocessing is still ongoing. In terms
of employed preprocessing techniques, we use the out-of-the-box preprocessing capabilities of
Kissat, which includes not only bounded variable addition but also congruence closure and
SAT sweeping, fast initial variable elimination, backbones, and lucky phases [12].

2 In a sense, Plingeling’s “preprocess-then-fork” model has gotten buried due to HordeSat’s [4] slim
and modular solver interface, prohibiting this mode of usage when integrating Plingeling’s solver
diversification, and thus never found its way into HordeSat and later MallobSat.
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Once completed, the preprocessor reports the entire preprocessed formula. Since our
execution environment Mallob natively supports concurrent execution and flexible load
balancing of SAT solving tasks [47], we can simply introduce the preprocessed formula as
an additional task that runs next to the original solving task. This raises the question of
how to distribute the available computational resources among these two tasks. Assume that
the original task jo has been running for time to whereas the preprocessed task jp has been
running for time tp. Given equal time and resources, we assume that the preprocessed task
is likely to be easier to solve. Therefore, as tp

to
increases and eventually approaches 1, the

relative worth of jp over jo increases. Following up on this intuition, we suggest to gradually
shift computational resources from jo to jp until only a single process for jo is remaining.
Eventually, jo is interrupted completely. A result is reported if the preprocessor manages to
solve the formula directly or when either jo or jp report a result. A satisfying assignment
reported by jp must be converted to a satisfying assignment to the original formula, using
the preprocessor’s data structures for solution reconstruction.

6 Evaluation

In the following, we provide an evaluation of our improvements.
First of all, we examine the impact of different sources of solver thread diversification. Our

search-only setup with prior single-core preprocessing only features a single solver backend
(Kissat) and no longer features a hand-crafted sequence of solver configurations that are being
cycled over (cf. [54]). This drastically cuts diversity and leaves what can be characterized
rather as a uniform array of CDCL searchers than a classical “portfolio” (Fig. 5). In our
study on LBDs (Section 4), we found that the diversification introduced by deviating LBD
distributions across solver threads does not influence performance even when all other sources
of diversification are disabled. We thus follow the “Deactivated” LBD strategy in our new
setup. Two other computationally cheap, basic, and uniform diversification techniques we
consider are setting different random seeds and variable phases per solver [4, 55]. We thus
ran our baseline without any diversification, with seeds only, and with seeds and phases.

Results are reported in Fig. 6. While MallobSat still performs well without any explicit
diversification – an effect examined in detail in ref. [55] and attributed to deviating clause
imports across solver threads – we see that different random seeds are beneficial for short
running times, especially below 10 s. Random seeds essentially provide a warm-start for
deviating search behavior rather than having to wait for diversity induced by the first few
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Figure 7 768-core performance comparisons. Top left: Only running a search-only task j0

vs. adding a preprocessed task jp via sequential preprocessing (“j0 + jp”). Top right: “j0 + jp”
vs. shifting resources gradually from j0 to jp (“shift j0→jp”). Bottom left: “shift j0→jp” vs. evicting
j0 immediately once jp enters. Bottom right: evicting j0 vs. never launching j0 in the first place.

clause imports. This contrasts randomized LBDs, which can only have any impact after
the first sharing(s). Randomized phases only have a minimal effect, but still lead to a net
positive and incur no opportunity cost. We also explored some additional diversification, such
as randomizing VSIDS score decays or clause database reduction ratios, without observing
significant improvements; according results are given in the appendix (Fig. 12–13).

Next, we evaluate different strategies surrounding our single-core preprocessing. An
overview is provided in Fig. 7. First, adding sequential preprocessing to an otherwise
search-only run and launching a task jp that operates on the preprocessed formula is highly
beneficial to performance. The run with preprocessing solves 19 additional instances and
improves performance for several unsatisfiable instances (which incur much less running time
variance than satisfiable instances). The preprocessor solved 18 instances directly and mostly
finishes in few seconds. Secondly, rather than allotting equal resources to j0 and jp (as in
the prior run), we gradually shift resources from j0 to jp, over a time span corresponding to
twice the preprocessor’s running time, and then remove j0 entirely. For long running times,
this approach is preferable for unsatisfiable instances since it eventually commits all available
resources to a single task. Next, we evict j0 immediately as soon as jp enters, which results
in mildly worse performance (2.4% mean slowdown), indicating that jo occasionally solves
an instance after the arrival of jp. Lastly, omitting jo entirely, thus deferring distributed
solving until a preprocessing result is available, clearly performs worse (14.7% slowdown).

We continue our experiments with the “shift” strategy since it assumedly results in the
best scalability in the long term (i.e., eventually allotting all resources to a single task) while
not immediately discarding the progress made by the plain searcher task.

We now assess the scaling of our streamlined setup, using the 400 remaining, previously
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Figure 8 Strong scaling of MallobSat’s baseline K and KCL configurations (left, center) and our
new setup (right) in terms of absolute performance from 1 to 64 nodes (48–3072 cores). We also
show running times of sequential Kissat and 48-core PL-PRS-BVA-KISSAT (“Painless”).
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Figure 9 Direct comparison of the three tested MallobSat configurations at 1, 8, and 64 nodes.
At one node (48 cores), the run of PL-PRS-BVA-KISSAT (“Painless”) is shown as well.

unused instances from the 2023–2024 benchmark sets. We use 1–64 nodes (48–3072 cores),
doubling the number of nodes at each step. As points of reference, we use two state-of-the-art
configurations of MallobSat: Only running Kissat (“K”), and running Kissat, CaDiCaL,
and Lingeling alternatingly (“KCL”). The first configuration is the (prior) single-solver
configuration with assumedly best general-purpose performance whereas KCL corresponds to
the version of MallobSat submitted to the 2024 SAT Competition Cloud Track (which it won).
Notably, the inclusion of Lingeling [7, 9] is known to noticeably boost performance on the
2023–2024 benchmark sets due to some peculiar instances which can be solved immediately
by Lingeling’s cardinality constraint reasoning [10] (see also [52]). This circumstance provides
KCL with a distinct advantage over Kissat-only configurations in terms of solving performance
metrics. Due to native diversification, roughly 13% of solver threads in the K and KCL
setups run without or with significantly reduced pre– and inprocessing.

Fig. 8–9 show the scaling behavior of the three considered configurations, with precise
statistics given in Tab. 1. In terms of baselines, we included the performance of sequential
Kissat (winner of the SAT Competition 2024 Main track) and of PL-PRS-BVA-KISSAT [49]
(“painless-2” in SAT Competition 2024, winner of the Parallel track) executed at 48 cores. All
configurations of MallobSat show consistent performance improvements up to the largest scale



D. Schreiber and N. Rigi-Luperti and A. Biere 23:13

K KCL Ours
cores # + − PAR Sg St # + − PAR Sg St # + − PAR Sg St

48 270 132 138 226.4 7.8 17.9 282 129 153 208.6 10.8 18.2 294 135 159 191.2 8.4 20.0
96 286 140 146 202.2 11.1 29.3 293 132 161 188.7 14.3 24.4 302 137 165 177.0 11.5 30.4

192 292 143 149 191.3 13.4 36.9 309 140 169 165.3 17.7 35.7 311 142 169 161.0 14.7 40.2
384 297 144 153 180.7 17.1 52.7 315 140 175 155.1 21.6 50.7 318 145 173 147.6 17.2 63.5
768 305 147 158 169.4 19.0 57.3 319 143 176 146.9 26.0 61.4 327 149 178 133.6 21.7 82.7

1536 314 151 163 155.8 21.1 67.0 323 144 179 139.0 30.2 72.1 329 149 180 127.4 24.6 98.3
3072 318 152 166 148.5 23.3 75.6 335 154 181 122.7 34.4 88.3 334 151 183 119.4 26.7 111.5

Table 1 Performance of three MallobSat configurations at 48–3072 cores, showing the number
of solved instances (#), thereof satisfiable (+) and unsatisfiable (−) instances, Penalized Average
Runtime which rates each timeout as solved in twice the time limit, i.e., 600 s (PAR-2), geometric
mean speedup vs. sequential Kissat over all commonly solved instances (Sg), and corresponding total
speedup, i.e., summing up the sequential solver’s running times and then dividing by the sum of the
parallel solver’s running times (St). At each scale, the best values of each metric are highlighted.
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Figure 10 Direct performance comparison of our approach vs. the two baseline configurations K
(left) and KCL (right) at 3072 cores.

considered (3072 cores). The out-of-the-box Kissat-only configuration results in the worst
performance. Notably, it features neither cardinality constraint reasoning (as in Lingeling)
nor any reasoning beyond general resolution (as in bounded variable addition, which is part of
our preprocessing). The diverse Kissat–CaDiCaL–Lingeling portfolio improves performance
substantially (25.8 PAR-2 score points at 3072 cores). Our approach, in turn, outperforms
all other approaches, achieving the lowest PAR-2 scores at all scales.

The performance margin to KCL is the smallest at 3072 cores, and mean speedups are
consistently the highest for KCL. This raises the question whether we are observing a distinct
scalability limit of our new approach. A direct comparison of the runs at 3072 cores (Fig. 10)
suggests that this is not the case: Compared to both K and KCL, our approach clearly tends
to perform better as running times increase. A distinct advantage of the KCL setup is that
it solves a number of unsatisfiable instances in the sub-second range which are challenging or
even infeasible to solve with Kissat only. At 3072 cores, we identified 17 such instances; all
of them are in fact solved by a Lingeling solver thread. The concerned instances are eleven
register allocation graph coloring problems [28], four Tseitin formulas [19], and two Pidgeon
hole problems [8]. Our approach compensates for this disadvantage with generally better
scalability, solving other instances which KCL fails to solve; however, at the largest scale,
our approach runs out of such instances while KCL manages to close the gap.

A second advantage of KCL is the dedicated Stochastic Local Search solver YalSAT [9]
in Lingeling’s portfolio. KCL outperforms our new setup by a factor of ≥ 5 for 21 satisfiable
instances; 18 of them were solved by a Lingeling instance, and 14 of them specifically
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Figure 11 Weak Scaling of MallobSat. The color denotes the scale of solving (1–64 nodes);
continuous lines denote our approach whereas dotted lines denote the “K” baseline configuration.
Point (x, y) on a curve indicates that the corresponding run achieved a geometric mean speedup of
y on the instances which took sequential Kissat at least time x to solve. A curve ends prematurely
if this amounts to less than 20 considered instances.

by YalSAT. This includes seven instances surrounding Folkman graphs [32] and six set
covering problems [62]. On the flipside, our new approach performs remarkably well on many
benchmarks adjacent to real-world applications (see also appendix Tab. 4), such as bitvectors
(4 instances, 67% mean speedup over KCL), verifying floating-point commutativity (6×,
66%), hashtable safety (7×, 48%), software (5×, 38%) and hardware verification (7×, 38%),
school timetabling (9×, 26%), and hash function properties (18×, 23%). We attribute this
success to our streamlined solver design (cf. Fig. 2); while KCL is missing BVA, this technique
is highly unlikely to cause such scaling improvements on such kinds of instances [29].

The overall, direct geometric mean speedup of our configuration over KCL at 3072 cores is
0.815 (i.e., a slowdown). Removing the 17 instances solved immediately by Lingeling results
in a speedup of 0.907 (still a slowdown). When we additionally remove the 14 instances
where YalSAT found a solution ≥ 5× faster than our approach did, the speedup is 1.036.

Fig. 11 provides insights into MallobSat’s weak scaling for the “K” baseline and our new
setup (cf. [55]). Intuitively, the further right a curve goes, the more difficult are the instances
that we consider for computing the mean speedup. We measure “difficulty” in terms of
the sequential baseline’s running time. For example, our approach at 3072 cores reaches
a speedup of 315.1 for instances that took sequential Kissat at least 1 h to solve, which
corresponds to a resource efficiency of 315.1/3072 = 10.3%. Under the same circumstances,
the baseline configuration “K” achieves a speedup of 299.8 (resource efficiency 9.8%). The
KCL portfolio (not shown3) results in the best weak scaling, with a speedup of 451.5 and
an according resource efficiency of 14.7%. This discrepancy can be explained by the fact
that KCL performs noticeably better than our new approach in the first 10–20 s of solving,
for reasons discussed above (i.e., due to Lingeling and YalSAT). The corresponding short
running times cause relatively high speedups. In terms of total speedups (Table 1), which
emphasize longer running times, our approach consistently achieves the best results.

3 The weak scaling as we compute it heavily depends on the sets of instances a certain approach is able
to solve. The weak scaling curves of the KCL configuration are therefore difficult to compare to the
other configurations due to the different kinds of instances solved (mostly by Lingeling/YalSAT). We do
provide a weak scaling plot of the KCL configuration in the appendix (Fig. 14).
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7 Discussion

In the following, we provide a brief discussion of the obtained insights and results.
Our work results in a slimmed down and yet competitive solver system. Let us attempt to

provide a coarse quantitative estimate of the achieved reduction by considering the involved
lines of code. We counted roughly 25k effective lines of code (ELOC; disregarding blank lines
and comments) in Lingeling’s main source file lglib.c, 30k ELOC in CaDiCaL’s source files
(*.cpp) and also 30k ELOC in Kissat’s source files (*.c). We estimate that roughly 20k
ELOC of the Mallob system are in use. Our changes to Mallob amount to few hundred lines
of code. Going by these measures, our setup reduces the code to be considered from 105k
ELOC to 50k ELOC. Moreover, the code executed by the parallel solver threads decreases
by roughly 13k ELOC (when excluding Kissat’s source files related to pre–/inprocessing).
While these measures are not fully reliable (as each solver backend already features some
unused code), we believe it is safe to assume that our changes to MallobSat cut the lines of
executed code roughly in half and drastically reduce the solver program executed in parallel.

Comparing our setup to MallobSat’s KCL portfolio, we noticed some remaining short-
comings of our somewhat radical approach, mostly due to foregoing dedicated Stochastic
Local Search (SLS) threads and due to missing special techniques for certain hard inputs.
This motivates us to (a) reintegrate SLS in our approach, which presents only a minor
increase in complexity (especially in terms of information flow), and (b) to integrate ad-
vanced preprocessing techniques (as in ref. [60]) that are required to conquer the kinds of
instances which our current setup still struggles to solve. Specifically, our new approach to
preprocessing can be adapted well to preprocessors that exploit advanced proof systems,
such as extended resolution (which our preprocessing already features via bounded variable
addition) [29], symmetry breaking (e.g., BreakID [18, 23]), or propagation redundancy (e.g.,
PReLearn [46]). Following our evaluation, we have made first simple steps in this direction
by adding Lingeling’s preprocessing and 5% YalSAT threads to our setup; we observed
significantly improved performance at a shared-memory level (see appendix Fig. 15).

On a related note, transferring our findings to a CaDiCaL-only setup within MallobSat
will allow to exploit MallobSat’s proof production and checking capabilities (which, as
of now, rely on CaDiCaL’s LRUP proof output [45]). While it appears challenging to
generalize distributed proof production [42] and real-time checking [52] to proof systems
beyond resolution, our pragmatic approach to preprocessing allows to “outsource” advanced
reasoning to a strict, sequential prefix of the distributed solver’s reasoning, which could
greatly facilitate combining scalable proof technology with modern proof systems.

Lastly, and perhaps most significantly, the presence of a competitive “pure” clause-sharing
solver may have notable consequences for future research in parallel and distributed SAT
solving. Rather than assuming a gathering of diverse and opaque reasoners who periodically
exchange insights [55], we may now rather accurately consider the central building block of
modern parallel SAT solving to be a uniform parallel CDCL procedure, parallelized by clause
sharing. This more precise and transparent algorithmic model lends itself for establishing
new theory, heuristics, and algorithms surrounding parallel SAT solving.

8 Conclusion

In this work, we investigated modern distributed clause-sharing SAT solver design. In
particular, we empirically confirm earlier suspicions [20] that such distributed solvers are being
held back by performing non-scalable tasks fully redundantly, such as pre– and inprocessing
techniques. We also show conclusively that LBD values have no measurable significance
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for MallobSat’s distributed clause sharing. At the same time, we show that sequential
preprocessing employed next to search-only solving can still greatly benefit distributed
solving. Our practical result is a clean distributed clause-sharing solver whose solver threads
are “pure” CDCL solving engines with very lightweight and uniform diversification. This
system is able to achieve competitive performance, even compared to a mixed portfolio
consisting of many different search strategies and advanced reasoning techniques.

In terms of future work, we intend to explore scalable algorithms for selected pre– and/or
inprocessing tasks, such as vivification, variable elimination, or SAT sweeping. Distributed
computing may allow for much more powerful simplification procedures while the parallel
search logic could remain separate, uniform, and fully scalable. Orthogonally, we intend
to retrofit our new setup from this work to MallobSat’s CaDiCaL backend, which (as of
yet) is MallobSat’s only modern engine for incremental SAT solving [53] and for proofs
of unsatisfiability [42, 52]. Lastly, it may be promising to allow sharing (certain) clauses
between an original task jo and a preprocessed task jp, since this may allow to transfer made
progress from jo to jp following preprocessing.
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A Parameter Studies

We now report two additional parameter studies. They were done with the setting denoted
“Ours”, with one difference: original LBDs were still used instead of the Deactivated-LBDs
setting. Each run consisted of 396 instances with 300 s timeout on 8 nodes (384 cores).

The first study explores clause database reduction. Kissat offers parameters reduce-low
(default 500) and reduce-high (default 900), which control the aggressiveness of database
reductions. The default parameters correspond to reductions by 50% early in the run and by
up to 90% later in the run. We tested four parameter settings, described briefly.
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Reduce setting # + − PAR2
Default 323 153 170 137.9
Point 323 154 169 139.2
Gaussian 321 151 170 140.8
Range 318 149 169 144.2
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Figure 12 Effects of diversifying Kissat’s reduce-low and reduce-high parameters.

Default reduce: Default reduce parameters. Point reduce: Value r ∈ [0, ..., 1000] is uni-
formly sampled per solver and both reduce-low and reduce-high are set to it. This creates
some extreme solvers that keep all clauses forever (r = 0) and others that delete every clause al-
most immediately (r = 1000). Range reduce: A value r ∈ [−200, 1200] is uniformly sampled
per thread; then we set reduce-low=max(0,r-200) and reduce-high=min(1000,r+200).
Intuitively this slides the default interval [500,900] randomly to higher or lower values and
leaves per solver the flexiblity of shifting from low to high reductions. Gaussian reduce: A
value r is sampled from a Gaussian distribution with mean 700 and standard deviation 150,
then r is clipped to be within [300,980] and both reduce-low and reduce-high are set to it.
This sampling specifically avoids the extremes from the other two settings.

The results of the four reduce settings are shown in Fig. 12. Default reduce performs
overall best, whereas Point reduce performs strongly on some SAT instances, which might be
due to some aggressive solvers being allowed to eliminate almost all learned clauses.

The second study focuses on the decay of (E)VSIDS scores controlled by the decay
parameter. Its default value is 50 (per mille), corresponding to an update of variables activity
scores to 95% of their former value. Higher decay results in more aggressive updates.

Decay setting # + − PAR2
Uniform [1,50] 324 154 170 135.5
Default [50] 323 153 170 137.9
Uniform [1,200] 322 152 170 140.1
Uniform [50,200] 321 151 170 141.1
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Figure 13 Effects of diversifying Kissat’s decay parameter.

Kissat accepts values in the range of [1,...,200]. We explore this full range by testing
three settings: Uniform[1,50], Uniform[1,200] and Uniform[50,200]. In each setting
every solver thread samples its decay value uniformly from the given interval. The third
setting is thus much more eager than the default, while the first is more conservative.

The results of the different decay settings are shown in Fig. 13. Regarding PAR2 scores,
the conservative updating with decay at or below 50 performs better than the more aggressive
choices. However, similar to the database reductions, the more eager approaches perform
better on some SAT instances, observable in the direct comparison plot.
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B Supplementary Data

Procedure Kissat 768×d 768×s-o
backbone 0.12 0.18 —
congruence 0.46 1.85 —
eliminate 1.01 1.33 —
extend 0.00 0.00 —
factor 0.55 — —
fastel 0.30 2.96 —
focused 43.39 44.65 49.97
lucky 0.08 1.34 1.59
parse 0.15 — —
preprocess 0.83 4.77 —
probe 11.15 13.52 —
reduce 1.37 2.68 3.24
search 86.32 79.15 95.41
simplify 12.61 13.86 1.77
stable 42.93 34.50 45.44
substitute 0.66 1.39 —
subsume 0.39 0.36 —
sweep 2.18 1.54 —
transitive 0.17 0.20 —
vivify 7.03 8.35 —
walking 0.96 0.65 1.77

Table 2 Percentages of total (“CPU”) time spent in different procedures of Kissat’s SAT solving,
for sequential Kissat, 768-core default setup, and 768-core search-only setup. Note that some
categories subsume each another (e.g., focused and stable are disjoint sub-categories of search).

Family # Avg. time Speedup
miter-unsat 14 34.86 0.30
profitable-robust-production-sat 5 7.19 0.35
heule-nol-sat 7 18.50 0.43
social-golfer-sat 6 8.23 0.52
grs-fp-comm-unsat 8 75.60 0.62
scheduling-unsat 9 26.66 0.80
software-verification-unsat 10 56.29 0.97
cryptography-simon-sat 8 0.13 0.98
random-circuits-sat 5 24.89 1.01
hamiltonian-unsat 11 7.11 1.05
cryptography-ascon-unsat 6 8.58 1.05
argumentation-unsat 18 7.45 1.06
satcoin-unsat 5 16.36 1.28
brent-equations-sat 7 0.96 1.29
hamiltonian-sat 12 2.14 1.35
maxsat-optimum-sat 5 5.78 1.36
scheduling-sat 9 40.00 1.59
heule-folkman-sat 5 81.82 1.82
school-timetabling-sat 8 21.01 2.00
cryptography-sat 6 12.77 2.05
set-covering-sat 14 11.07 2.09
mutilated-chessboard-unsat 6 31.48 2.27

Table 3 Geom. mean speedup of “search-only” configuration over default Kissat-only configuration,
at 768 cores, for each GBD benchmark family and result (SAT/UNSAT) group with data on ≥ 5
instances (“#”). “Avg. time” denotes the default configuration’s according average running time.
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Family # Avg. time Speedup
set-covering-sat 6 0.21 0.04
heule-folkman-sat 6 5.82 0.08
register-allocation-unsat 11 0.12 0.10
random-circuits-sat 10 23.27 0.60
rbsat-sat 5 13.93 0.68
maxsat-optimum-unsat 5 19.11 0.70
hamiltonian-unsat 9 5.19 0.78
brent-equations-sat 9 0.63 0.81
argumentation-unsat 16 12.00 0.84
profitable-robust-production-sat 8 70.91 0.84
cryptography-ascon-unsat 10 8.12 0.88
quantum-kochen-specker-unsat 6 9.92 0.90
hamiltonian-sat 8 1.46 1.03
scheduling-unsat 6 28.64 1.04
scheduling-sat 17 24.12 1.08
satcoin-unsat 10 13.73 1.16
cryptography-sat 8 24.14 1.18
school-timetabling-sat 9 11.98 1.25
miter-sat 9 87.61 1.25
miter-unsat 23 29.96 1.26
coloring-unsat 5 24.48 1.26
software-verification-unsat 5 34.61 1.38
hashtable-safety-unsat 7 100.41 1.48
cryptography-ascon-sat 8 3.00 1.57
grs-fp-comm-unsat 6 65.93 1.63

Table 4 Geometric mean speedup of our new setup over KCL, at 3072 cores, split as in Table 3.
“Avg. time” denotes the average running time of KCL on the respective instances.

K KCL Ours
cores # + − PAR Sg St # + − PAR Sg St # + − PAR Sg St

48 122 57 65 429.9 7.6 20.0 134 55 79 411.5 12.8 16.7 142 61 81 400.1 8.7 25.0
96 128 62 66 419.7 10.9 40.9 136 55 81 406.6 16.7 23.0 146 62 84 394.0 12.3 39.1

192 129 62 67 418.0 13.1 43.5 141 57 84 398.8 20.4 39.6 148 62 86 388.7 15.5 56.9
384 132 62 70 412.3 16.5 72.5 147 58 89 391.6 23.5 60.2 151 63 88 384.0 16.8 91.3
768 137 64 73 406.5 17.0 70.5 150 61 89 386.5 28.0 74.5 159 67 92 373.2 21.5 116.9

1536 142 66 76 398.8 18.1 80.5 151 60 91 384.4 30.8 81.5 157 65 92 374.5 23.4 120.6
3072 146 67 79 393.8 18.9 83.5 160 68 92 372.2 33.2 97.8 159 65 94 371.3 25.2 158.9

Table 5 Performance as in Tab. 1, limited to the 209 randomly chosen instances from SAT
Competition 2023.

K KCL Ours
cores # + − PAR Sg St # + − PAR Sg St # + − PAR Sg St

48 148 75 73 396.5 8.1 16.6 148 74 74 397.1 9.3 19.1 152 74 78 391.1 8.2 16.8
96 158 78 80 382.4 11.3 22.6 157 77 80 382.1 12.5 25.1 156 75 81 383.0 10.9 25.0

192 163 81 82 373.3 13.7 32.6 168 83 85 366.5 15.6 33.7 163 80 83 372.4 14.1 31.3
384 165 82 83 368.4 17.6 39.7 168 82 86 363.5 20.1 42.5 167 82 85 363.6 17.6 45.3
768 168 83 85 363.0 20.8 46.9 169 82 87 360.4 24.4 52.1 168 82 86 360.4 21.9 53.7

1536 172 85 87 357.0 24.1 55.8 172 84 88 354.6 29.6 64.4 172 84 88 352.9 25.8 76.8
3072 172 85 87 354.7 28.0 67.6 175 86 89 350.5 35.6 81.0 175 86 89 348.1 28.1 76.4

Table 6 Performance as in Tab. 1, limited to the 191 randomly chosen instances from SAT
Competition 2024.
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Figure 14 Weak Scaling of KCL configuration (as in Fig. 11).
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Figure 15 Performance of our approach from the paper (“Ours”), an enhanced version (“Ours+”)
with added Lingeling-based preprocessing and each 20th thread running YalSAT, and state-of-the-art
shared-memory solver PL-PRS-BVA-KISSAT, at a single node (48 cores) and for up to 5000 s of
running time, as in the SAT Competition Parallel tracks. Note the y axis offset.
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