
Efficient Proof Checking with LRAT in CADICAL (Work in Progress)
Florian Pollitt, Mathias Fleury , and Armin Biere
pollittf@informatik.uni-freiburg.de, fleury@cs.uni-freiburg.de, biere@cs.uni-freiburg.de
University of Freiburg, Germany

Abstract

The proof format DRAT used in the SAT competition is rather inefficient to check, often even slower to check than it takes
the SAT solver to solve the instance and generate the proof. Therefore we implemented within the SAT solver CADICAL
the possibility to generate LRAT proofs directly, where LRAT on the one hand is much easier and way more efficient
to check, but on the other hand much harder to generate. Unlike previous approaches our implementation generates
LRAT directly in the solver without intermediate translations. We further propose the tool LRAT-TRIM, which can trim
redundant proof steps from LRAT proofs, which not only reduces proof size but also leads to much faster proof checking.

1 Introduction

Proof checking is an important part of SAT solving, e.g.,
unsatisfiable problems do not count as solved in the SAT
Competition unless a proof is provided which passes a
proof checker. To increase trust even further proof check-
ers are used which are entirely verified [5, 7].
The currently only allowed proof format in the SAT Com-
petition is DRAT [8].1 The main issue with DRAT is that
checking can take several times the amount of solving time.
The reason is that the DRAT proof certificate format fa-
vors ease of generation and is not detailed enough to avoid
searching during checking. Therefore both the solver and
the checker have to propagate clauses (actually using sim-
ilar data structures). To reduce this overhead (and simplify
verification) all verified checkers follow the same princi-
ple. First the DRAT proof is converted by an (untrusted)
external program to a more detailed proof format such as
LRAT [5] or GRAT [7]. The resulting proof in an enriched
format – containing enough details to avoid search – is
checked by the verified program instead.
Note, however, that neither our SAT solver CADICAL [3]
nor the winners of the SAT Competition of the last 2 years
need the full power of RAT. They provide proofs in the
upward-compatible but less powerful DRUP proof format.
On the other hand CADICAL contains many different in-
processing techniques, which makes it a good candidate to
implement direct generation of LRAT proofs – even though
some of these techniques are not activated by default.
A similar attempt to resolve the performance issues with
DRAT [1] lead to a new proof format, FRAT, that sits
between LRAT (because it allows for justifications) and
DRAT (because it still allows steps without justification).
Their aim was to fill out most gaps and leave the “harder”
cases as black box to be filled in by the proof checker.
Therefore, they still use a tool FRAT-RS to convert the
FRAT proof to a proper LRAT proof – trimming the proof

1A change was announced in the SAT Competition 2023, as different
proof checkers (and therefore different proof format) could be allowed.

on the way, to reduce the number of proof steps to check.
In this work-in-progress, we have extended our SAT solver
CADICAL [3] to generate the richer LRAT format directly.
The focus of our work is on three different aspects:

C1. directly produce correct LRAT proofs

C2. without slowing down the solver and

C3. without changing its search space.

Our first goal C1 lead us to reimplement LRAT generation
during conflict analysis and as part of all inprocessing tech-
niques of CADICAL, some of which were not covered in
the FRAT implementation, such as equivalent literal sub-
stitution (Section 3).
As it is common, our implementation generates a vast
number of proof steps on-the-fly, from which however at
the end a significant fraction turns out to be unnecessary
to derive the empty clause ⊥. This applies to most tools
that process DRAT or FRAT which accordingly can bene-
fit from some form of trimming. Therefore, we also imple-
mented a tool called LRAT-TRIM to trim proofs down and
improve performance of checking proofs with the verified
checker CAKE_LPR (Section 4).
At this point we can not report on extensive experiments
yet, and therefore we focus in this work-in-progress report
on making our proof generation robust and will discuss
preliminary results for a problem with a very large large
proof from the SAT Competition 2022. (Section 5).
Our implementation is publicly available2 and is going to
be merged into the main CADICAL version.

2 Preliminaries

For a detailed introduction to SAT solving, we refer to the
Handbook of Satisfiability [4]. For the purpose of this pa-
per, it is sufficient to know that SAT solvers build a partial

2https://github.com/florianpollitt/radical

http://orcid.org/0000-0002-1705-3083
http://orcid.org/0000-0001-7170-9242
https://github.com/florianpollitt/radical


p cnf 2 4
1 2 0
1 -2 0
-1 2 0
-1 -2 0
(a) DIMACS input

1 0
d 1 2 0
d 1 -2 0
2 0
d -1 2 0
0
(b) DRAT proof

o 1 1 2 0
o 2 1 -2 0
o 3 -1 2 0
o 4 -1 -2 0
a 5 1 0 l 1 2 0
d 1 1 2 0
d 2 1 -2 0
a 6 2 0
d 3 -1 2 0
a 7 0 l 5 6 4 0
f 4 -1 -2 0
f 5 1 0
f 6 2 0
f 7 0
(c) FRAT proof

5 1 0 1 2 0
5 d 1 2 0
6 2 0 5 3 0
6 d 3 0
7 0 5 6 4 0
(d) LRAT proof

Figure 1 Example DRAT, FRAT, and LRAT proofs for the same CNF on the left.

model. Along the way, they learn new clauses preserving
satisfiability until either the partial model becomes a total
model (translating the model back to a model of the orig-
inal clause set) or the empty clause ⊥ is derived, meaning
that the problem is unsatisfiable.
The DRAT proof format consists simply of all the clauses
learned by the SAT solver. This design decision helps
DRAT to easily capture all techniques currently used by
SAT solvers without the need to provide justification. The
LRAT proof format provides more detailed information:
Each clause gets an identifier and each step is the result
of resolving several clauses together. The list of clauses is
given as justification for each step. The last derived clause
is ⊥ – showing that the problem is unsatisfiable.
In related work [1] a new proof format was proposed that
sits in-between LRAT and FRAT: some justification can be
left out. This reduces the amount of implementation work
in the SAT solver, since certain types of functions can be
left unchanged, particularly if they infrequently contribute
to the proof. Confusingly, the option to activate this proof
is called --lrat. Throughout the rest of the paper, we will
call this implementation (CADICAL) FRAT, even when
we talk specifically about the generation of LRAT steps,
because we have nothing to say about the other steps that
are simply unchanged DRAT steps.
Figure 1 illustrates these proof formats for a simple exam-
ple. The shortest proof is obviously the DRAT proof 1b,
but it is missing information on how clauses were derived
(in dark blue). In FRAT we have to repeat all the input as-
sumptions, starting with o. The justification steps are also
optional (see a 6 2 0 without justification).

3 Implementation

Most of the actual computation can be done alongside the
generation of clauses, including clause learning, which by
definition consists of resolving clauses in the order given
by the partial model (Section 3.1). However, some tech-
niques require a deeper change like equivalence literal sub-
stitution (Section 3.2).

3.1 Conflict Analysis
Most clauses derived by a SAT solver originate from con-
flict analysis. When the solver finds a mismatch between
the current partial assignment and the clauses, one conflict-
ing clause is analyzed and the partial assignment adjusted.
One recent addition to the conflict analysis is based on
the concept of “shrinking” [6]. The idea in shrinking is to
derive the first unique implication point [4] on each level
without increasing the proof size. This is very useful for
problems with many binary clauses, such as the planning
instances from the SAT Competition 2020.
Unlike FRAT proof generation for minimization, our im-
plementation perfoms a post-processing step direclty on
the learned clause instead of repropagation. To this extent
we identify literals that were removed or added and add the
necessary reason clauses as needed:

C_old := Clause before shrinking
C_new := Clause after shrinking
Chain_old := LRAT chain for C_old
Chain_new := empty LRAT chain

calculate_lrat_chain (literal K)
C := reason of K in the current assignment
foreach literal L in C different from K

if not (reason of L in Chain_new and
reason of L in Chain_old) and

L not in C_new)
calculate_lrat_chain (L)

add C to Chain_new

for each literal L in C_old
if L is not in C_new

calculate_lrat_chain (L)

Chain_new := Chain_new + Chain_old

This works both for the standard minimization which is
actually used inside shrinking as well as shrinking.



3.2 Equivalence Literal Substitution
Equivalent literal substitution is a procedure that detects
and replaces equivalent literals by a chosen representative.
For example, if the problem includes the clauses ¬A∨B
and A∨¬B, we know that A and B are equivalent and we
can replace all occurrences of either literal by the other.
We use Tarjan’s algorithm to detect cycles in the graph
spanned by the binary clauses and then fix a representa-
tive for each cycle. In the DRAT proof we simply dump all
changed clauses and delete the old ones.
For LRAT we have to produce the resolution chain. This
can only be calculated after fixing the representative and
is done for each replacement in every clause separately,
similarly to the process described in Section 3.1.
Fixing the representative is a rather arbitrary choice (small-
est absolute value). We considered changing this to first
visited by Tarjan’s algorithm. This change would allow us
to reuse some computation possibly making the generation
of LRAT more efficient. In the end we decided against it to
keep the behavior of CADICAL the same.

4 Trimming LRAT proofs

In early experiments we observed that the FRAT tool chain
produced significantly smaller proofs, allowing for much
more efficient proof checking. This is because clauses
which are not required to derive the empty clause are
trimmed from the proof and do not have to be checked nor
at the end verified. An important feature of proof checking
is the ability to trim down the proof which helps to reduce
this redundant checking.
Even though trimming is very effective it is not obvious
how to achieve this reduction in DRAT because depen-
dencies between proof steps are missing. In LRAT these
dependencies are listed explicitly and we implemented a
proof trimmer called LRAT-TRIM to make use of this fact.
It allows us to regularly achieve a reduction by a factor of
2 to 3 also again emphasizing how many useless clauses a
SAT solver actually derives during search.
In essence, trimming is about doing a backward liveness
analysis skipping clauses which are not useful. However, it
is not possible to write a file backwards, so we only iterate
over the graph starting from the ⊥ clause at the end.

mark_antecedents(clause C)
if C is marked return
if C is an original clause return
mark C as used
for each antecedent D of C

mark_antecedents (D)

Once the algorithm has identified all the useful proof steps,
we can dump the proofs back to a file. One step we have
not experimented with is the deletion of clauses: Studying
whether it is better to immediately delete clauses or wait
and delete several clauses at once is left as future work.
However, we observed that eagerly deallocating removed
clauses unfortunately does not improve performance, but it
does reduce maximum memory usage substantially.

5 Early Experiments

After implementing LRAT production in our SAT solver
CADICAL we first identified a minor necessary change
(Section 5.1) that has no major impact. Besides fuzzing we
have also tested our approach on input files containing unit
clauses, which was not supported by FRAT (Section 5.2).
Finally we report on the performance difference for a sin-
gle problem with a very large proof (Section 5.3).

5.1 No Behavior Difference
During our experiments to validate goal C3, we realized
that we had to change solver behavior in two ways. First,
scheduling of garbage collection during bounded-variable
elimination depends on the size of the clauses, which how-
ever changed with LRAT proof generation, as clauses be-
came larger due to the additional required clause identifier
id field. Our new version of CADICAL thus is always
forced to use clause identifiers which however we do not
consider to have a substantial impact on performance no
memory usage. The second change became necessary due
to the way how conflicts were derived in equivalence lit-
eral detection: instead of stopping on detection of such a
conflict, we now simply continue and later propagate the
literal in order to produce a proper LRAT proof.

5.2 Robustness by Fuzzing
Our goal C1 of always being able to generate proofs was
achieved by intensive fuzzing of our solver, proof genera-
tion and proof checking. We first attempted to do the same
with the old implementation, but immediately experienced
failing proofs, due to several reasons, including handling
of unit clauses in the input proof file.
We also observed that resolution chains often listed the
same clause several times. Reducing these occurrences can
lead to a polynomial speedup, since justifying one literal
can pull in several more clauses (e.g., if some of the liter-
als have been removed by minimization).

5.3 Performance Loss
We have not yet studied the goal C2 much. Early exper-
iments indicate that our solver is slightly slower but that
solving and proof checking is significantly faster. As ex-
ample we consider the problem sudoku-N30-10 from the
SAT Competition 2022 [2]. To make the times compara-
ble, we activated clause identifiers in the basic CADICAL
version, ported the modification from the FRAT version to
the newest CADICAL 1.5.2. The only real algorithmic dif-
ference is our shrinking of learned clauses [6], which we
deactivated for the comparison instead of fixing the FRAT
proof generation. All runs are without shrinking (as it is
not supported by the FRAT version). Under these restric-
tions the comparison is fair, as runs produce exactly the
same search behavior, including the same exact number of
conflicts. The experiments were run on a desktop computer
with an Intel i9-12900 with 128 GB RAM and hyperthread-
ing on, except for the GRAT generation which was run on
a machine with 2 TB because 128 GB were not enough.



CADICAL Solving Proof Conversion Conversion+ Trimmed Checking Verified Total
time size tool trimming proof size tool checking

no proofs 4 770 s - - - - - - 4 770 s
DRAT 4 801 s 21 GB DRAT-TRIM 5 639 s 13 GB CAKE_LPR 812 s 11 252 s
DRAT 4 801 s 21 GB GRAT 916 s 13 GB GRATCHK 326 s 6 043 s

(64 threads)
FRAT 5 349 s 78 GB FRAT-RS 1 907 s 23 GB CAKE_LPR 900 s 8 156 s

LRAT⋆ 5 100 s 70 GB - - - CAKE_LPR 3 819 s 8 919 s
LRAT⋆ 5 100 s 70 GB LRAT-TRIM⋆ 263 s 18 GB CAKE_LPR 900 s 6 263 s

Table 1 Timing with different workflows on the sudoku-N30-10 from the SAT Competition 2022. The ⋆ symbol indi-
cates that the tool is a contribution of this work.

Table 1 provides the detailed timings. The DRAT proof
conversion needs slightly more time than the proof pro-
duction. LRAT proof generation has a cost of around 7%,
but the proof checking is heavily reduced. Trimming the
proof has a cost of 263 s, but reduces the checking time by
a factor 3 and the proof size by a factor 4.
One reason explaining that directly produced LRAT proofs
are larger than translated proofs comes from a heuristic
of the translation tools: If they have the choice between
two clauses, they will pick the clause that has already been
used, while our proof production will pick the one used
internally to derive a clause.

6 Conclusion

We have implemented LRAT proof production in our SAT
solver CADICAL. Early experiments show that perfor-
mance is slightly reduced, but the full workflow of produc-
ing and checking the proof becomes much faster thanks to
our other tool LRAT-TRIM.
Future work includes a proper evaluation of the implemen-
tation on the entire set of problems of the SAT competition.
Another interesting idea is to check the proofs online, di-
rectly while generated.

7 Literatur

[1] S. Baek, M. Carneiro, and M. J. H. Heule. A flexi-
ble proof format for SAT solver-elaborator communi-
cation. Log. Methods Comput. Sci., 18(2), 2022. doi:
10.46298/lmcs-18(2:3)2022.

[2] T. Balyo, M. Heule, M. Järvisalo, M. Iser, and
M. Suda, editors. Proceedings of SAT Competition
2022: Solver and Benchmark Descriptions, volume
B-2022-1 of Department of Computer Science Series
of Publications B. Department of Computer Science,
University of Helsinki, Finland, 2022. URL https:
//helda.helsinki.fi/bitstream/handle/
10138/347211/sc2022_proceedings.pdf.

[3] A. Biere, M. Fleury, and M. Heisinger. CADICAL,
KISSAT, PARACOOBA entering the SAT Competition
2021. In M. Heule, M. Järvisalo, and M. Suda, editors,
SAT Competition 2021, 2021.

[4] A. Biere, M. Järvisalo, and B. Kiesl. Preprocessing in
SAT solving. In A. Biere, M. Heule, H. van Maaren,
and T. Walsh, editors, Handbook of Satisfiability, vol-
ume 336 of Frontiers in Artificial Intelligence and Ap-
plications, pages 391 – 435. IOS Press, 2nd edition
edition, 2021.

[5] L. Cruz-Filipe, M. J. H. Heule, J. Hunt, Warren A.,
M. Kaufmann, and P. Schneider-Kamp. Efficient cer-
tified RAT verification. In L. de Moura, editor, Auto-
mated Deduction - CADE 26 - 26th International Con-
ference on Automated Deduction, Gothenburg, Swe-
den, August 6-11, 2017, Proceedings, volume 10395
of Lecture Notes in Computer Science, pages 220–236.
Springer, 2017. doi: 10.1007/978-3-319-63046-5_14.

[6] M. Fleury and A. Biere. Efficient All-UIP learned
clause minimization. In C. Li and F. Manyà, edi-
tors, Theory and Applications of Satisfiability Testing -
SAT 2021 - 24th International Conference, Barcelona,
Spain, July 5-9, 2021, Proceedings, volume 12831 of
Lecture Notes in Computer Science, pages 171–187.
Springer, 2021. doi: 10.1007/978-3-030-80223-3\
_12.

[7] P. Lammich. Efficient verified (UN)SAT certificate
checking. J. Autom. Reason., 64(3):513–532, 2020.
doi: 10.1007/s10817-019-09525-z.

[8] N. Wetzler, M. Heule, and J. Hunt, Warren A. DRAT-
trim: Efficient checking and trimming using expres-
sive clausal proofs. In C. Sinz and U. Egly, editors,
Theory and Applications of Satisfiability Testing - SAT
2014 - 17th International Conference, Held as Part of
the Vienna Summer of Logic, VSL 2014, Vienna, Aus-
tria, July 14-17, 2014. Proceedings, volume 8561 of
Lecture Notes in Computer Science, pages 422–429.
Springer, 2014. doi: 10.1007/978-3-319-09284-3_31.

https://helda.helsinki.fi/bitstream/handle/10138/347211/sc2022_proceedings.pdf
https://helda.helsinki.fi/bitstream/handle/10138/347211/sc2022_proceedings.pdf
https://helda.helsinki.fi/bitstream/handle/10138/347211/sc2022_proceedings.pdf

	1 Introduction
	2 Preliminaries
	3 Implementation
	3.1 Conflict Analysis
	3.2 Equivalence Literal Substitution

	4 Trimming LRAT proofs
	5 Early Experiments
	5.1 No Behavior Difference
	5.2 Robustness by Fuzzing
	5.3 Performance Loss

	6 Conclusion
	7 Literatur

