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Uncovering and Classifying Bugs in MaxSAT Solvers
through Fuzzing and Delta Debugging
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Abstract

In this study we continue the success story of fuzz testing automated reasoning tools by providing the
first extensive fuzzing study on MaxSAT solvers. As somewhat expected we identify interesting defects
and failures in almost all MaxSAT solvers from the MaxSAT Evaluation 2022. A classification of these
bugs into four main classes and various subclasses can help developers in debugging them. Finally,
we show how to uncover additional issues by a preliminary MaxSAT delta debugging strategy on top
of reducing the failing test cases significantly. This study clearly shows that MaxSAT solvers are less
reliable and robust than expected, and further suggests that fuzzing and delta debugging can help to
improve this situation. Furthermore, we provide a regression suite of interesting small instances.
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1. Introduction

Reliable maximum satisfiability (MaxSAT) solving is of great interest due to wide-ranging
applications such as hardware and software verification, constraint programming, and Al
planning [1, 2, 3, 4, 5, 6, 7]. It is crucial to develop efficient and robust MaxSAT solvers to address
ever-growing complexity and reliability in these domains. The continuous improvement of
MaxSAT algorithms which can be seen at the yearly MaxSAT evaluation (MSE) [8], allows for
increasingly complex problems to be solved.

MaxSAT and its variations are optimization variants of SAT solving, seeking a truth assign-
ment to a Boolean formula in Conjunctive Normal Form (CNF) such that the number of satisfied
clauses is maximized [9, 10]. In the weighted variant, a weight is assigned to each clause, where
the goal is, to maximize the accumulated weight of the satisfied clauses.

There are different ways of achieving a reliable MaxSAT solver. One method is programming
the whole MaxSAT solver in a verified programming language, as it is already done in SAT with
IsaSAT [11]. This has the drawback that all applied techniques have to be proven, which is not
easily achieved, and therefore the solver is generally slower on complex problems. Another way
is adding proofs to the solutions [12, 13] verifiable by a proof checker. Unfortunately, proofs are
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Table 1

This overview shows the used techniques in the fuzzed solvers and their rank (sometimes two solver
variants) in the MSE 22’ (PAcose MSE 21°). We combined the MaxSAT preprocessor MAXPRE2 with
EvALMAXSAT, the most reliable solver according to our results. Most of the solvers using multiple
solving techniques as: Branch and Bound (BB); Pseudo Boolean Constraints (PB); Hitting Set (HS);
Unsat-based (UB); Sat-Unsat-based (SUB); Satisfiability Modulo Theories (SMT) and recently Integer
Linear Programming (ILP) is becoming popular to solve instances (Top 4 solver of 2022 using ILP).

Rank MaxSAT Solver HS | UB | SUB | PB | BB | ILP | SMT | Others

1. & 2. | CASHWMAXSAT [19, 20] X X

3. & 7. | UWRMAXSAT [21] X X

4. MaxHS [22] X | X | X X

5. & 6. | WMAXCDCL [23, 24] X

8. EVALMAXSAT [25] X

9. CGSS [26] X

10. ExacT [27] X X

6. PAcoske [28] X X
z3Rrc2 [29, 30] X X X
Z3MAXRES [29, 30] X X X
Z3WMAX [29, 30] X X X
MAXPRE 2.0 [31, 32] X

not yet available for the weighted variant. In our study we chose a third technique, a dynamic
software testing approach, requiring no changes in the code of solvers. This approach, called
fuzz testing or fuzzing, is applied to enhance the robustness of solvers.

Fuzz testing has been successful in detecting software vulnerabilities and bugs across various
fields [14]. The first paper in 1990 shows the efficiency of identifying reliability issues in UNIX
utilities [15]. In MaxSAT related fields such as Satisfiability Modulo Theories (SMT) [16], SAT,
Quantified Boolean Formulas (QBF) [17], and And-Inverter Graph Verification [18] fuzz testing
has demonstrated its effectiveness. This study presents the first extensive study in fuzzing
MaxSAT solvers. As expected, we found numerous failures in almost all the 15 fuzzed MaxSAT
algorithms and solvers as detailed in Section 3. We then classified these bugs into 4 main and
14 subcategories, as outlined in Section 2.4. Additionally, we employ our preliminary delta
debugger to shrink the formulas, as described in Section 2.3. During the delta debugging phase
many additional faults were triggered, due to the reduction process as described in Section 3.

In Table 1 we describe the tested solvers, their ranking in the MSE and also point out the
techniques they use.

Regarding related work, we are only aware of two available MaxSAT fuzzers supporting the
old pre MSE22 WCNF format. The first fuzzer [33] tests only for invalid exit codes of the solver
and a missing o-value or one which is bigger than sum of weights. The second fuzzer [34]
comes along with a MaxSAT solver GaussMaxHS [35], which has not yet participated in the
MSE. The authors generated a CNF, added xor gates and converted it with bit blasting into
WCNF with a bundle of python and shell scripts. Our understanding is that both fuzzers do not
check whether the o-value matches the model or an optimum is reached.



2. Methodology

In this section we introduce the four key components of our study: We begin by discussing
the techniques to construct random WCNF formulas by our fuzzer WCNFuzz. Next, we describe
our WCNFCompare tool, developed to compare and log the faults of solvers, providing a valuable
direct comparison of their results. Following that, we describe our preliminary implementation
of the delta debugging algorithm. Finally, we present our fault classification scheme, which
categorizes the discovered faults from WCNFCompare.

2.1. Fuzz testing

Fuzzing is a technique to detect software vulnerabilities with the idea to treat software as a black
box and generate random inputs in order to uncover critical defects as segmentation faults,
overflows or incorrect results [14]. Our novel tool WCNFuzz is a generation-based grammar-
aware [36] fuzzer. It generates random WCNF instances, following the input language rules, to
identify crashes, performance bottlenecks, invalid solver outputs and hard to solve instances.
This allows developers to understand weaknesses and strengths of their solvers to improve the
reliability and efficiency of their software [14].

There already exist successful fuzzing tools for CNF formulas like CNFuzz and FuzzSAT [17].
CNFuzz generates structured instances, which results in problems closer to industrial examples,
than simply applying a variable clause ratio [37, 38, 39], as done in many studies to generate
hard random 3-SAT formulas. Our goal is to construct difficult problems with only a few
clauses, because it is shown in previous studies [17, 14], that with such instances most faults
are triggered. WCNFuzz modifies CNFuzz to generate such WCNF formulas.

In the following we use our implementation of a “Linear Congruential Generator”, with
values from the “Art of Computer Programming” [40], to pick all random choices. WCNFuzz adds
up to 10 layers of clauses with each containing up to 70 variables. Layers consist entirely either
of hard or soft clauses. Soft clause layers are chosen randomly with higher chance initially
and lower chance for the following soft layers. The clauses of the n’th layer contains variables
of its own layer with high probability and with decreasing chances variables of lower layers.
Most of the clauses (around 2/3) are ternary, with decreasing chances they are of higher order
and around every tenth clause is binary. We calculate the number of clauses in each layer by
picking a suitable clause-variable-ratio. As we want hard clauses to be satisfiable with a high
chance, we pick a low ratio r € [1,2.5] for hard clause layers. For soft clause layers we want to
have at least some clauses making the problem unsatisfiable, therefore we choose a high ratio
re[3.5,5.5].

Additionally, we add Tseitin encoded Equality, AND, 3-XOR and 4-XOR gates. We include an
activation literal to all clauses of 3/4 of the gate encodings and add one additional soft clause
containing only the negated activation literal. Furthermore, one out of ten instances is forced
to contain only soft clauses. In very rare cases, all layers and gates are decided to consist only
of hard clauses.

The maximal weight in the MSE is often relatively small, and often there are unweighted
problems to solve. Therefore, the maximal weight is chosen to be in one of the following ranges,
for each interval the probability is 1/5: [1,1];[2, 32];[33, 256];[257, 65535]; with a probability



of 4/25 it is in the range of [65536,2%?]; and with the probability 1/25 it is in the range of
[2%2 + 1, 2%% — 1]; with 2% — 1 being the maximal possible weight. We further ensure that the
maximal sum of weights is less than 26 — 1, as described in the official rules of the MSE [8].

2.2. Comparing and Logging Results

In the following, we discuss challenges in fuzzing a single MaxSAT solver and present our
solution WCNFCompare, a Python tool to automate the comparison, validation, and logging of
multiple MaxSAT solver results.

Evaluating the optimality of a single fuzzed MaxSAT solver presents a challenge in the
absence of a certified proof or solver. To address these issues, we introduce WCNFCompare, a
Python tool that automates the process of comparing the results produced by multiple MaxSAT
solvers. In its default configuration, WCNFCompare runs all solvers mentioned in Section 1, with
a default timeout of 20 seconds for each solver. It then verifies the satisfiability of hard clauses,
and checks the o-value against the model for each solver result, using our WCNFverifier. We
use the best model verified solution as a representative for the unverified optimal outcome. If
other solvers do not produce the same o-value, it indicates an erroneous result. Subsequently,
the tool classifies results into approximately 30 different fault classes, which are doubled again,
depending on the sum of weights, as discussed in Section 2.4. Each solver is assigned a number,
as are the types of faults that occur (see Section 2.4), with fault types numbered from 1 to 60
within the tool. If multiple errors occur, then the exit codes and solver position are added up
and taken modulo 255, as 255 is the highest possible exit code.

One limitation of the comparison script is that identical exit codes can emerge from various
solver failure combinations. Consequently, as the delta debugger reduces instances only con-
sidering the exit code, we can end up with different solver-fault combinations at the end of a
reduction. To address this issue, we introduced a command line option that restricts the script
to only return the exit code of a single solver for the delta debugger run.

WCNFCompare also logs results, generating individual files for each WCNF-solver-fault com-
bination. As fuzzing and delta debugging can run concurrently on multiple cores, we need
to prevent access to the same solver-fault combinations logfile from multiple cores, which is
done by adding a unique seed. These files contain a clear fault comparison overview, the final
o-values of each solver, error messages, and the solver’s output to stdout and stderr. At the end
of the whole fuzzing/delta debugging run, these log files are consolidated into a single log file
per solver fault combination. This approach offers a significant advantage: it permits the use of
any instance generation tool or shrinking tool, while maintaining a consistent logging process.

2.3. Delta Debugging

Delta debugging [41, 42, 43] is a powerful and efficient technique to isolate and simplify failure
causing inputs in software testing. If we apply delta debugging without restarts, we have a
complexity of O(n). It assists to identify the root cause of a problem by systematically decreasing
the size of a test input while preserving the failure triggering property.

This greedy approach attempts to remove portions of the input not contributing to the fault.
Initially, the approach attempts to remove the whole input, then successively reduces this to



half, a quarter, and so on. In the worst-case scenario, every second atomic element needs to be
removed, which makes the algorithm worse than merely iterating once through all elements.

It still has a O(n) complexity, which makes it an advanced tool for isolating and simplifying
failure-inducing inputs in MaxSAT problems, supporting developers in discovering root causes
of solver bugs. Additionally, during the reduction process, WCNFCompare is called for all created
WCNF instances. We are the first to log errors and saving fault triggering WCNFs arising during
the reduction phase. Instances that might not have been generated by the initial fuzzer are
produced. This aims to uncover additional interesting new solver-fault combinations that might
have remained undetected otherwise.

We plan to elaborate on delta debugging in a forthcoming extended version.

2.4. Fault Classification

Next, we discuss how faults, in the context of MaxSAT solvers, can be classified. Therefore,
we introduce four main fault classes: Crashes, Lower/Upper Bound Violations, Performance
Regressions, and Other Issues.

WCNFCompare originally returns 60 different fault classes for which 1-30 are for a sum of
weight smaller than 232 and the 31-60 debug the same faults for bigger weights. We simplified
this list into four main and 14 subclasses, still differentiating between small and big weights.

In order to simplify the fault classification list, we propose the following notation for the
different types of o-values: let ogyjyver denote the best o-value given in the solver output, 0,0del
denotes the o-value represented by the solver’s model (as calculated by the model-verifier), and
finally o,,i,, denotes the best verified o-value of all solvers. Using this notation, we present the
different fault classes and their respective errors:

1. Crashes:

1.1. MaxSAT solver’s exit code is 134 (SIGABRT, internal error or inconsistency)

1.2. MaxSAT solver’s exit code is 135 (SIGSEGV, segmentation fault)

1.3. MaxSAT solver’s exit code is 136 (SIGFPE, arithmetic error or overflow)

1.4. MaxSAT solver’s exit code is 137 (SIGKILL, immediately shutdown)

1.5. MaxSAT solver’s exit code is 139 (SIGSEGV / SIGBUS, segmentation or bus fault)
1.6. MaxSAT solver’s exit code is XXX (all other exit codes)

2. Bound Violations:

2.1. Omin < Ogolver and Osolver == Omodel

2.2. Ogolyer # Omodel aNd Omodel # Omin and Ogolver # Omin -

2.3. Either op,p4e] OF 0golyer Unequals oy,

2.4. Verifier asserts that provided model is UNSATISFIABLE.

2.5. Verifier states hard clauses are SATISFIABLE, but solver states UNSATISFIABLE.

3. Performance Regressions:

3.1. Potential Fault: Solver had timeout, but this timeout is 50 times larger than the
average time of the non-timeout solvers.



4. Other Issues:

4.1. Solver has an error either stated in stdout or stderr.
4.2. Inconsistency in status line and output.

4.3. Unexpected behavior of a verifier.

Determining the severity of these errors is a crucial aspect. As an example, fault 3.1. is only
a potential fault that may indicate a performance issue or a more severe infinite loop problem.
Generally it is not considered a serious fault. Crashes are more severe, but at least they do not
deliver an incorrect value/model which we tend to trust. Bound violations, on the other hand
are considered serious, as we cannot trust the solver reliability. Most of these faults can be
detected with a sanity check, which implies a check if the hard clauses are satisfiable and if the
model’s o-value matches the given solver o-value. This suggests that the most critical fault in
these violations could occur if this quick check appears to be sane, yet a fault such as the one
indicated by 2.1. is still present. In the current version of our tool, we overlooked the inclusion
of a model sanity check. This means we only verify if the provided model already contradicts
the formula, without checking if the number of variables is correct. We have acknowledged
this oversight and plan to address it in the upcoming version of the tool.

The sequence in which these faults are evaluated during the fault classification process plays
an important role in ensuring an accurate fault detection. The order should minimize the risk
of missing important bugs as occurred in previous versions of the compare script. For instance,
the solver status should be evaluated before evaluating the o-value and model. Is it worth
considering the occurrence of multiple faults in a single solver run? If, for example an error
message is thrown, but has at the same time a bound violation, we decided to only catch the
bound violation, as we do not interpret error messages. Further some solver as MAXHS print
often such messages but still provides correct results. We believe that our approach has a good
balance between not over-categorizing faults and not neglecting important faults.

3. Results

In this section, we present results of our MaxSAT solver fuzzing and delta debugging experiments.
The tests were run on a system powered by an i9-12900 processor with 16 cores and 128 GB
of memory. The experiments were executed on all 16 cores around one week for fuzzing and
afterwards we performed delta debugging on the first five faults that occurred in each class of
the original 60 classes, which took another week. All experimental data, the regression suite,
and source code is available at https://cca.informatik.uni-freiburg.de/maxsatfuzz. During setup,
we challenged the following issues:

« Z3 doesn’t support competition standard output, therefore we implemented a transforma-
tion script.

« The MSE provides a useful benchmark code base for verifying models, transforming
WCNFs from new to old format and vice versa, and more. However, we could not use
these tools as they only accept a sum of weights up to 263, and we aimed to support the
full range up to 24 — 2, as it is standard in the competition.


https://cca.informatik.uni-freiburg.de/maxsatfuzz

Table 2

The fault occurrences in each fault class outlined in Subsection 2.4. Each cell contains 4 values, rep-
resented as Z“Z, with the first row (a|b) representing results from fuzzing, and the second row (c|d)
representing fault occurrences triggered by delta debugging. The first value of each cell-row (¢) cor-
responds to instances with a sum of weights less than 2%?, while the second value (}) corresponds to
a higher sum of weights, but less than 26* — 1. Several faulty instances triggered faults in multiple
solvers. The MSE 22’ solvers are arranged according to their rank in the weighted category. The table
shows 23};2 fault-solver occurrences in the four categories. It is evident that not all solver can reliably
handle higher weights, as indicated especially often by fault 2.5. (false classification of an instance as
unsatisfiable). Delta debugging triggered a wider range of faults, possibly due to the presence of less
structured instances with variable gaps, resulting from reduction and shuffling.

Crashes|Bound Violations pPerf. |Other Issues
1. 2.1. 2.2. 2.3. 2.4. 2.5. 3. 4.1. 4.2. #faults
CASHWMaxSAT- | 8|le4|3e3|le4|5e3(2e4|8e4| 1| \ | 13 | 20 | 4e4|9e4
CorePlus [19] 822|2e3 |6e3|1e4|9e3|7e4|2e4|3e5(260| \ |[1e4| 82|1e4 | 3ed|4e5
CASHWMaxSAT- | 8|le4|3e3|led|5e3|2e4|8e4| 1| | | 13 | 20 | 4e4|9e4
Plus [20] 822|2e3 |6e3|1e4|9e3|7e4|2e4(3€5(260] | [1e4| 82|1e4| | |3e4|4e5
UWRMAXSAT- | 7 [3e4|8e3|5e4|2e4|5e4|9e4(266| 56| | | 16| | 21| | |1e5|1e5
SCIP [21] 822|1e3 |7e3|1e4|1e4|1e5|2e4|3e5[505|265 \ |5e3 |6e3 | de4d|4e5
MAxHS [22] 1] 1 |6e4|2e4|3e4|8e3|5e4|3e4 | | 2e4|5e3|1e4|4e3|8e3|3e3|2e5|7e4
249|395 |2e4|3e4|1e4|3e4|2e4|1e5 | \ le4|3e4|2e3|9e3|9e3|5e3|7e4|2e5
WMaxCDCL | 2 | 78| |138| 9|3e3|2e5|5e4| [2e4| | 61| 2|3e4| | |2e5|1e5
[23] 48|2e3 3|3e3 |7e3|2e3|3e4|3e4|7e4 |4e4 |1e4(932|2e5 | 3e4[3e5
WMaxCDCL- | 25 | 78| |138| 9|3e3|2e5|5e4| [2e4| | 61| 2|3e4| | |2e5|1e5
BandAll [24] 48|3e3 | 3|3e3 |7e3|2e3|3e4|3e4|7e4 |[4e4 |1e4|932|2e5 | 3e4|3e5
UWRMAXSAT [21] \ 2| 14 | \ | \ | | | 2| 14
822| 792|609| | | | | 55| 4| | | |2e3|613
EVALMAXSAT [25] \ | | | | \ | \ | o] 0
822| | | | | | | | | |82z
CGSS [26] 3e5| 39| 17 | 4 |3e4 | \ | | | 3e5|3e4
2e4| 9e3|5e3 |2e3 [1e5 | | | | | 2e4|le5
ExacT [27] | 1| | | | | 4 12| | \ 5 12
2] le3| | | | | 2e3|4e3 | | 3e3|4e3
PAcosE [28] 3e5|9e4 \ 11] | | 2] | | 8| 12| 23| 10|3e5|9e4
2e4|3e5 | [889]9e3| |1 3 | | 3|1e3|268|2e3|3e3|3e4|3e5
Z3MAXRES [29, 30] \ 78|7e3| 12|3e4| 5|6e3 | [1e5 | 3 \ | 95|1e5
| 5e3|3e4|1e3|8e4|2e3|4e4 | |[4e5(359|2e3 | | 8e3[5e5
Z3wMAXx [29, 30] | | 8 |185 |206| | 32| |1e5| | | |2e6|4e5|2e6|5e5
| [374|  |2e3|281|9e3|481|1e3|  |4e5| | | |3e5|7e5|3e5]|1e6
z3Rrc2 [29, 30] \ 7e5|1e5|5e4|4e4| 2|4e3 | [1e5 | 2 \ | 8e5|3e5
| le5|2e5|1e4|1e5|1e3|3e4 | |4e5 |646 | | le5|8e5
MAXPRE2 [31, 32] [2e5|8e3 | | 9ed|2e4|2e6|4e5 \ | | | 2e6|5e5
+EVALMAXSAT 4e4|5e4 | | 4e4|7e4|2e5|9e5 \ | | \ 2e5|1e6
#faults 7e5|1e5 |9e5|2e5|2e5|1e5|2e5]4e5(3e6|5e5 |3e5|2e4|6e3|1e4|6e4|2e6]4e5|7e6|2e6
8e4|3e5 [2e5|3e5|6e4|5e5|1e5|1e6|2e5|1e6 |le6|2e4|9e4|5e3|4e5(3e5|7e5|1e6|6e6
#faulty solver 4| 8| 9] 11| 7| 10| 9] 11| 6 6| | 5| 2| 10| 4| 6 3| 3| 44| 70

12| 8| 11| 11| 7| 11| 10| 12| 7| 6| | 5 4| 11| 6 7| 3| 3| 60| 74
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Figure 1: This shows a comparison of six solver outputs running the same WCNF instance (blue), all
but the solver of the bottom right (green) are faulty (orange). The first five solver claim that the result is
2 which matches their given model, while other solvers found a better result as shown by EVALMAXSAT.
We discovered this fault by our fuzzing (reproducible with seed 1633784527538860147) and reduced the
instance by our delta debugger. Remarkably, all top four solvers from the MaxSAT Evaluation 22’ and
Microsofts Z3 solver with the RC2 technique failed. The first three solvers, which do not satisfy the first
clause with their model, employ the SCIP solver in two versions as a preprocessor. By deactivating it, we
get correct results. Interestingly, different incorrect results were observed among these SCIP versions
in other examples (c.f. seed 2065838794411768763). MaxHS identifies only 5 variables and 8 clauses;
however, it is unlikely that this is due to a parser error, as each variable appears in at least 2 clauses.
The incomplete model still produces a wrong result of 2 (variable 6 is irrelevant). Microsoft’s Z3 solver
found another incorrect o-value and model (not satisfying clauses 5 and 6). In contrast, other solvers
such as EVALMAXSAT (shown in green) found the optimal result of 1 (not satisfying clause 5).

« Z3 and PACOSE require the old evaluation format as input, we added a script to rewrite the
instances. However, this led to additional fault classes during parallel execution, which
were non-reproducible and hence, excluded from our results.

« MAXPRE2 outputs the old v-line format. We implemented a script to rewrite the output,
which likely triggered unverifiable fault classes. These were also excluded from our
results. In an updated version Maxpre2 can handle also the new v-line output format.

« Pacosk sometimes writes "SATISFIABLE” instead of ”s SATISFIABLE”

« Solvers throw different exit codes. For instance, when an optimum solution is found,
ExAcT returns 30, while PAcosE returns an exit code of 10.

+ CGSS and ExacT only work with *.wenf named files.

+ In UWRMAXSAT-SCIP, grepping for "UNSAT” in the verbose=0 variant let the status line
disappear.

Table 2 presents our findings, displaying the number of faults detected for each fault class,
as outlined in Section 2.4, in fuzzing and delta debugging runs. The exact numbers are not
crucial, as the detected faults increase at a consistent rate, if run for extended periods. A detailed
examination of the solvers during this study led to several interesting observations:

+ Only MaxHS and Z3 can handle empty instances. This is the reason why EVALMAXSAT
crashed 822 times with exit code 255 and the UWRMAXSAT and CASHWMAaXSAT variants
with exit code 139. This happens only during the reduction phase, as no empty instance



is generated with our fuzzer.
« CGSS and Pacosk do not accept a wenf with only hard clauses, resulting in 271 131 crashes.

« The following invalid exit codes occured causing a crash fault (fault category 1.): 1, 3, 105,
108, 134, 135, 136, 139, 141, 255

« CGSS throws exit code 1 for unsatisfiable instances - but the same exit code is thrown, if
the whole instance is empty. This means, that these instances are reduced to the empty
instance, after the first solver call of the delta debugger.

Our preliminary delta debugger showed already significant effectiveness. Some instances took
up to a week to reduce, particularly when performance regression (3.1) occurred for instances
with large numbers, making weight reduction a very time-intensive task.

The reduced instances uncovered intriguing problems, such as in Figure 1, where a fault was
significantly minimized. Another issue occurred with the timeout fault class 3.1 in MAXHS due
to a simple instance with just three soft and one hard clause, the original instance (reproducible
with seed 193251431004265909) having 41 soft and 157 hard clauses. This problem forced MaxHS
into a type of infinite loop, only terminated by the technique’s 1500-second timeout. A nearly
identical error with another instance occurred with the EXAcT solver, but this time with a real
timeout. That instance (seed 1795142913688699408) could be reduced to 7 soft and 24 hard
clauses, underscoring that even timeouts can reveal interesting bugs.

Furthermore, we highlight that we could trigger 20 additional solver-fault combinations
during our delta debugging phase. As demonstrated in Table 2, these additional combinations
are additional entries within the second line. The ability to invoke these additional combinations
is significant, as it provides further opportunities to probe the robustness of the solvers and
expose potential vulnerabilities. This observation underscores the value of our novel approach
of logging during the delta debugging phase, as it notably enhances the comprehensiveness of
our testing process.

The results of our MaxSAT solver fuzzing and delta debugging experiments reveal crucial
insights into the behavior and robustness of various solvers. Our fuzzer WCNFuzz effectively
detects a significant number of interesting faults due to WCNFcompare, in various fault classes.
Despite some initial challenges, our preliminary delta debugging tool leads to considerable
reductions in input instances and exposes interesting issues, such as unexpected exit codes,
timeout faults and interesting bound violations. These findings highlight the importance of
rigorous testing and debugging in the development and refinement of MaxSAT solvers.

4. Discussion

In the course of our research, we have constructed a useful regression set of interesting instances
that we believe will be beneficial for solver development. These instances include:
« Empty instance, empty soft/hard clause.

« Non trivial reducible maximal weight instances with a maximum single weight 23 — 1
and a maximal sum of weights 264 — 2.

« Simple unsatisfiable instances.



« Tautology soft/hard clauses

« With our fuzzer created and delta debugged instances for each fault class-solver combina-
tion, causing each at least one solver to crash.

At least one of these instances are triggering a fault in all the tested solvers, as some of these
instances are not yet supported by the official rules. E.g. empty clauses / instances cannot be
handled even by most SAT solvers. We suggest the following rules be incorporated into the
competition solver rules:

« An empty instance should yield a weight "o 0”, with an empty model line "v” and the
status line ”s OPTIMUM FOUND”.

« An unsatisfiable instance should produce the status line s UNSATISFIABLE”.

+ An empty hard clause should result in an unsatisfiable instance.

« An empty soft clause should be unsatisfiable, but the instance can still be satisfiable.
+ The exit code of a solver should be 0 for all results but s UNKNOWN”.

We would like to offer the MaxSAT community these instances, provided as a zip file from
the MSE homepage, along with a script executing the solver with a subset or all instances
and verifying the results and models. This surely would assist developers in improving the
robustness of their solvers.

5. Conclusion

In this research, we explored an automated testing approach for MaxSAT solvers, utilizing
fuzzing and delta debugging to uncover and minimize intriguing faults.

The input instances were significantly reduced during the delta debugging phase and our
methods allowed us to identify and isolate critical issues, even within large, complex instances.

We also created a compact regression suite of small instances for solver development, which
were shown to trigger specific errors in all tested solvers. We will provide these instances along
with a script for executing and verifying the solver’s results to the MaxSAT community. We
also proposed new rules to include in the MaxSAT Evaluation rule-book, to ensure the standard
handling of basic clauses as provided by our regression suite.

In a extended version of this paper, we aim to expand upon our preliminary delta debugger,
providing a more detailed exposition of its workings. Additionally, we intend to communicate
with all authors regarding the discovered bugs to assist them in debugging their MaxSAT solvers.

In conclusion, our research demonstrates that automated testing methods, such as fuzzing
and delta debugging, can trigger severe faults in MaxSAT solvers. We believe that our work
will significantly contribute to the ongoing efforts to enhance the robustness and reliability of
these solvers.
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