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Abstract
Since 2013, the leading SAT solvers in SAT competitions all use inprocessing, which, unlike
preprocessing, interleaves search with simplifications. However, inprocessing is typically a
performance bottleneck, in particular for hard or large formulas. In this work, we introduce
the first attempt to parallelize inprocessing on GPU architectures. As one of the main chal-
lenges in GPU programming is memory locality, we present new compact data structures
and devise a data-parallel garbage collector. It runs in parallel on the GPU to reduce memory
consumption and improve memory locality. Our new parallel variable elimination algorithm
is roughly twice as fast as previous work. Moreover, we augment the variable elimination
with the first parallel algorithm for functional dependency extraction in an attempt to find
more logical gates to eliminate that cannot be found with syntactic approaches. We present a
novel algorithm to generate clausal proofs in parallel to validate all simplifications running
on the GPU besides the CDCL search, giving high credibility to our solver and its use in
critical applications such as model checkers. In experiments, our new solver ParaFROST
solves numerous benchmarks faster on the GPU than its sequential counterparts. With func-
tional dependency extraction, inprocessing in ParaFROST was more effective in reducing
the solving time. Last but not least, all proofs generated by ParaFROST were successfully
verified.

Keywords SAT solving · Inprocessing · GPUs · Clausal proofs · Functional dependency
extraction

1 Introduction

During the past decade, SAT solving has been used extensively in a plethora of applications,
such as combinational equivalence checking [53], automatic test pattern generation [43, 57],
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automatic theorem proving [14, 33, 60], and symbolic model checking [6, 13, 15, 16, 31].
Simplifying SAT problems prior to solving them has proven its effectiveness in modern
conflict-driven clause learning (CDCL) SAT solvers [5, 8, 19], particularly when applied on
real-world applications relevant to software and hardware verification [18, 22, 26, 27, 47].

Since 2013, simplification techniques [9, 18, 21, 25, 58] are also used periodically during
SAT solving, which is known as inprocessing [4, 5, 8, 27]. Applying inprocessing itera-
tively to large problems can be a performance bottleneck in SAT solving procedure, or even
increase the size of the formula in case of bounded variable elimination [9, 18, 58], negatively
impacting the solving time.

Graphics processors (GPUs) have become more and more attractive for general-purpose
computing with the availability of programming models such as Open Computing Language
(OpenCL) [38] and the Compute Unified Device Architecture (CUDA) [39]. On the one
hand, OpenCL is portable to both CPUs and GPUs manufactured by different vendors such
as AMD and NVIDIA. On the other hand, CUDA is designed by NVIDIA to make the opti-
mum use of their hardware capabilities in accelerating applications that are computationally
intensive w.r.t. data processing. For instance, we have applied CUDA to accelerate explicit-
state model checking [12, 65–67], bisimilarity checking [64], wind turbine emulation [37],
term rewriting [61, 62], metaheuristic SAT solving [68, 69], SAT-based test generation [43]
and bounded model checking [42, 47]. Recently, we introduced SIGmA [44, 45] as the first
SAT simplification preprocessor to utilize GPUs.

In [48], we introduced the first SAT solver (ParaFROST) with GPU accelerated inpro-
cessing which supports various simplification rules to rewrite a SAT formula into a compact
equisatisfiable one with fewer variables and/or clauses. Preprocessing is done only once
before the solving starts, while in inprocessing, this is done periodically during the solving.
A new dynamically expanded data structure was introduced for clauses supporting both 32-
bit [19] and 64-bit references with a minimum of 16 bytes per clause. In addition, a new
parallel garbage collector was presented, tailored for GPU inprocessing.

In our latest work [47], we have worked on compacting the data structure used in
ParaFROST as much as possible, while still allowing for the application of effective solving
optimisations. Furthermore, we introduced thememory-awareBoundedVariable Elimination
(BVE), to avoid running out of memory due to adding too many new clauses. In practice, we
experienced this problem when applying the original procedure of [48] for Bounded Model
Checking (BMC).

Contributions The current article is an extension of our earlier papers [47, 48], to which
we have added the following original contributions:

� The BVE in ParaFROST can reduce the number of added clauses by detecting in
parallel logical gates that are syntactically translated to Conjunctive Normal Form (CNF)
using Tseitin encoding [59]. Such definition of x is written as x ↔ f (v1, . . . , vn). The
simplest example is the AND gate x ↔ v1∧v2. However, this approach fails to recognize
irregular gates not encoded as simple gate types such asAND,XOR or If-Then-Else gates.
In this work, we provide a semantic way using functional dependency extraction to detect
any gate definition in parallel that could not be found by the syntactic approach. We use
function tables and binary magic numbers to compress the variables to bit-vectors [29].
Moreover, the number of added clauses is further reduced by finding and resolving a
Minimal Unsatisfiable Set (MUS) of clauses representing the gates [34].
� While the impact of accelerating these procedures has been demonstrated in [47, 48],
their correctness in refuting a formula has not yet been addressed, especially if used in
critical applications such asBMC [47]. If the solver claims that a formula is satisfiable, the
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generated solution (model) can be checked linearly in the size of the formula. However, if
a solver declares a formula is unsatisfiable (i.e. has no solutions), there is no guarantee that
theGPU code is sound and correct due to ill logic or data hazards that could be introduced
at the implementation level. Certifying SAT solvers is becoming crucial to validate
the results in tools such as theorem provers and model checkers. For this reason, we
propose an efficient parallel approach to generate clausal proofs for theGPU-accelerated
simplifications in DRAT (Deletion Resolution Asymmetric Tautology) format [24, 63]
with two goals: the proof should be compact and not to pose an overhead to the GPU

solver.
� We provide a comprehensive evaluation of the proposed algorithms with and without
clausal proof generation. Furthermore,ParaFROSTwith the newextensions is compared
to the state-of-the-art sequential solvers developed by the third author.

2 Preliminaries

All SAT formulas in this article are in CNF format. A CNF formula is a conjunction of
clauses

∧m
i=1 Ci where each clause Ci is a disjunction of literals

∨r
j=1 � j such that (m ≥ 1)

and (r ≥ 1). A literal is a Boolean variable x or its negation¬x . For a literal �, var(�) denotes
the referenced variable, i.e., var(x) = x and var(¬x) = x . The domain of all literals is L.
The domain of all variables is var(L). With L(S), we refer to all literals in S. We interpret
a clause C as a set of literals {�1, . . . , �r } representing the clause �1 ∨ . . . ∨ �r , and a SAT
formula S as a set of clauses {C1, . . . ,Cm} representing the formula C1 ∧ . . . ∧Cm . Further,
we denote the set of all clauses of S in which � occurs by S� = {C ∈ S | � ∈ C}. The set of
clauses Ex = Sx ∪ S¬x is called the environment of x . The set of clauses S�|¬� is called the
set of co-factors of S� and is defined as S�|¬� = {C\{�} | C ∈ S�}.

In this article, we interpret constants and data structures with all-capital letters in the
format CONSTANT or STRUCT. All arrays/lists and structure members are named in the
format array or member. Function and solver names are written as function or solver.
The variables defined within the algorithms have the font shape variable.

TheGPU-accelerated inprocessing is integrated with theCDCL [46, 54] search algorithm.
One important feature of CDCL is to learn from previous assignments to prune the search
space and make better decisions in the future. This learning process involves the periodic
adding of new learnt clauses to the input formula while CDCL is running. We consider
clauses to be either LEARNT or ORIGINAL (redundant and irredundant in [27] and in the
SAT solver CaDiCaL [8]). A LEARNT clause is added to the formula by the CDCL clause
learning process, and an ORIGINAL clause is part of the formula from the very beginning.
Moreover, each assignment is associated with a decision level that acts as a time stamp,
to monitor the order in which assignments are performed. The first assignment is made at
decision level one. The number of distinct levels in a clause at which literals are assigned is
called the literal block distance (LBD) or glucose level of that clause [2].

2.1 Bounded variable elimination

BVE can remove variables completely from the CNF formula by trivially eliminating pure
literals [17], applying the resolution rule [17, 30, 58] or gate-equivalence reasoning [18, 32,
49].
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Definition 1 (Pure literal) For a formula S, a literal � is called pure iff S¬� = ∅. A pure
literal can be eliminated from S, resulting in the new formula S ′ = S\S�.

Definition 2 (Resolution rule) Let us consider two clauses C1 and C2 such that for some
variable x , we have x ∈ C1 and¬x ∈ C2. We represent the application of the rule w.r.t. some
variable x using a resolving operator ⊗x on C1 and C2. Given that x ∈ C1 and ¬x ∈ C2,
the operator ⊗x is defined as

C1 ⊗x C2 = (C1 ∪ C2)\{x,¬x}
The result of applying the rule is called the resolvent [58]. Moreover, The ⊗x operator can
be extended to resolve sets of clauses w.r.t. variable x .

Definition 3 (Resolvents set) For a formula S, let L ⊂ S be the set of learnt clauses when
we apply the resolution rule during the solving procedure. The set of new resolvents is then
defined as

Rx (S) = {C1 ⊗x C2 | C1 ∈ Sx\L ∧ C2 ∈ S¬x\L ∧ C1 ⊗x C2 �|
 �}
Notice that learnt clauses can be ignored [27] (i.e., in practice, it is not effective to apply
resolution on learnt clauses). The last condition ensures that a resolvent is not a tautology.

Definition 4 (Tautology) A clause C is called a tautology (i.e. C �|
 �) iff ∃x .{x,¬x} ⊆ C .

The resolvents set Rx (S) replaces Ex (S), producing a logically-equivalent SAT formula. A
bounded version of variable elimination restricts replacing Ex (S) by Rx (S) iff |Rx (S)| ≤
|Ex (S)|.

In gate-equivalence reasoning, we substitute eliminated variables with deduced logical
equivalent expressions. Combining gate equivalence reasoning with the resolution rule tends
to result in smaller formulas compared to only applying the resolution rule [18, 27]. LetG�(S)

be the gate clauses having � as the gate output and H�(S) the non-gate clauses, i.e. clauses
not contributing to the gate itself. For regular gates (e.g. AND), substitution can be performed
by resolving non-gate with gate clauses as follows: Rx (S) = {{Gx ⊗ H¬x }, {G¬x ⊗ Hx }},
omitting the tautological and the redundant parts {Gx ⊗G¬x } and {Hx ⊗ H¬x }, respectively
[27].

Example 1 Consider the following formula:

{{x,¬a,¬b}
︸ ︷︷ ︸

Gx

, {¬x, a}, {¬x, b}
︸ ︷︷ ︸

G¬x

, {x, c}
︸ ︷︷ ︸
Hx

, {y, f }
︸ ︷︷ ︸

Hy

, {¬y, d, e}
︸ ︷︷ ︸

G¬y

, {y,¬d}, {y,¬e}
︸ ︷︷ ︸

Gy

}

The first three clauses in the formula above together capture the AND gate (x ↔ a ∧ b) and
the last three clauses capture the OR gate (y ↔ d∨e), hence resolving the fourth clause with
the second and the third clauses yield the resolvents {a, c} and {b, c}. Similarly, eliminating
y results in { f , d, e}.

In this article, we focus on finding definitions for irregular gates by checking the unsat-
isfiability of the co-factors formula {Sx |¬x ∪ S¬x |x }. In [5, 9], a BDD-based approach is
used to solve the co-factors. In this work, we replace the BDD structure with a function
table (bit-vector) encoding clausal core of the co-factors. Checking the bit-vector of the latter
can be done effectively on the GPU. The clausal core is mapped back to the original gate
clauses Gx and G¬x by adding back x and ¬x , respectively. Then, the set of resolvents
Rx = Sx ⊗ S¬x is reduced to {{Gx ⊗ G¬x }, {Gx ⊗ H¬x }, {G¬x ⊗ Hx }}, dropping the
redundant part {Hx ⊗ H¬x }. In contrast to gate substitution (see Example 1), the resolvents
{Gx ⊗ G¬x } are not necessarily tautological.
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Example 2 Consider the following formula:

{{¬x,¬a,¬b}, {¬x, a}, {x, b}, {x,¬a}}
The co-factors formula is {{¬a,¬b}, {a}, {b}, {¬a}} in which two unsatisfiable cores are
extractable: {{¬a,¬b}, {a}, {b}} or the minimal one {{a}, {¬a}}. If the former is considered,
the original gate clauses Gx and G¬x are identified by adding back x resp. ¬x to the core as
follows:

{{¬x,¬a,¬b}, {¬x, a}
︸ ︷︷ ︸

G¬x

, {x, b}
︸ ︷︷ ︸
Gx

, {x,¬a}
︸ ︷︷ ︸

Hx

}

Thus, the new resolvents are {a, b} and {¬a,¬b}. The reader should be aware that theminimal
core {{a}, {¬a}} would produce the same resolvents in this example.

2.2 Subsumption elimination

Suppose that we have two clauses C1,C2 and C2 ⊂ C1. In subsumption elimination, C1 is
said to be subsumed by C2 or C2 subsumes C1. The subsumed clause C1 is redundant and
can be removed [18]. If C2 is a LEARNT clause, it must be considered as ORIGINAL in the
future, to prevent deleting it during learnt clause reduction [8].

Definition 5 (Self-subsuming resolution) The self-subsuming resolution is a special case of
subsumption. The former can be applied on clauses C1,C2 iff for some variable x , we have
C1 = C ′

1 ∪ {x}, C2 = C ′
2 ∪ {¬x}, and C ′

2 ⊆ C ′
1. In that case, x can be removed from C1.

In this work, with SUB, we refer to the application of self-subsuming resolution followed by
subsumption elimination until a heuristic fixpoint is reached.

Example 3 Consider the formula {{a, b, c}, {¬a, b}, {b, c, d}}. The first clause is self-
subsumed by the second clause w.r.t. variable a and can be strengthened to {b, c} which
in turn subsumes the last clause {b, c, d}. The latter clause is then removed from S and the
simplified formula becomes {{b, c}, {¬a, b}}.

2.3 Eager redundancy elimination

ERE is a newelimination technique thatwe proposed in [48],which repeats the following until
a fixpoint has been reached: for a given formula S and clauses C1 ∈ S,C2 ∈ S with x ∈ C1

and ¬x ∈ C2 for some variable x , if there exists a clause C ∈ S for which C ≡ C1 ⊗x C2,
then let S := S\{C}. In this method, we restrict removing C to the condition

C is LEARNT ∨ (C1 is ORIGINAL ∧ C2 is ORIGINAL)

That is, if C is LEARNT or the resolved clauses (C1, C2) and C are ORIGINAL, then C is
called a redundancy and can be removed.

Note that this method is entirely different from Asymmetric Tautology Elimination in [25].
The latter requires adding so-called hidden literals to all clauses to check which is a hidden
tautology. ERE can operate on learnt clauses and does not require literals addition, making
it more effective and adequate to data parallelism.

Example 4 Consider S = {{a,¬c}, {c,¬b}, {¬d,¬c}, {¬b, a}, {a, d}}. Resolving the first
two clauses gives the resolvent {a,¬b} which is equivalent to the fourth clause in S. Also,
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resolving the third clause with the last clause yields {a,¬c} which is equivalent to the first
clause in S. ERE can remove either {a,¬c} or {a,¬b} but not both.

The effectiveness of ERE relies on the fact that resolution is unit propagation. Consider
the previous example, if the solver sets c to true or false, then either a or ¬b can be directly
assigned as implications, forcing the solver to propagate the fourth clause {¬b, a} in which
the same implications are disjoined. Hence, removing the latter from the formula, saves
unnecessary overhead during unit propagation.

2.4 DRAT clausal proof

DRAT is a clausal proof format that can be constructed from smaller lemmas. Each line of
the proof stores a lemma which is either a sequence of literals terminated by 0 or a deletion
instruction (a prefix represented by the character d). The Lemmas are emitted to an output file
in DIMACS format [28] and are validated using both the Resolution Asymmetric Tautology
(RAT) [24] and Reverse Unit Propagation (RUP) [23] checks via the external proof checker
drat-trim [63]. The mathematical notions behind RAT and RUP are out of this article
scope. Both learnt clauses and resolvents are considered lemma additions. Clause deletions
are not essential for the proof to succeed; however, they help reduce the computation time in
verifying the proof. A proof terminating with an empty clause (i.e. a line containing only a
zero), declares the input formula is UNSAT.

3 GPU architecture and data structures

3.1 GPU architecture

Since 2007, NVIDIA has been developing a parallel computing platform called CUDA [39]
that allows developers to useGPU resources for general purpose processing. AGPU contains
multiple streaming multiprocessors (SMs), each SM consisting of an array of streaming
processors (SPs) or cores. Every SM can execute multiple threads grouped together in 32-
thread scheduling units called warps.

GPUKernelA GPU computation can be launched in a program by the host (CPU side of
a program) by calling a GPU function called a kernel, which is executed by the device (GPU
side of a program). When a kernel is called, it is specified how many threads need to execute
it. These threads are partitioned into thread blocks of up to 1,024 threads (or 32 warps).
Each block is assigned to an SM. All threads together form a grid. Threads and blocks can
be indexed by a one-dimensional, two-dimensional, or three-dimensional unique identifier
(ID) accessible within the kernel. By using this ID, we can achieve that different threads in
the same block work on different data. A hardware warp scheduler evenly distributes the
launched blocks to the available SMs.

We express a thread dimension with a bold italic font dimension. For example, threads or
blocks can be launched in the x or y or z dimension. Additionally, in our developed kernels,
we use two conventions. First of all, with tx, we refer to the block-local ID of the working
thread in x. Second of all, we use so-called grid-stride loops to process data elements in
parallel. The statement for all tid ∈ �0, N� do in parallel expresses that all natural numbers
in the range [0, N ) must be considered in the loop, and that this is done in parallel by having
each executing thread start with element tx, i.e., tid = tx, and before starting each additional
iteration through the loop, the thread adds to tid the total number of threads on the GPU.
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If the updated tid is smaller than N , the next iteration is performed with this updated tid.
Otherwise, the thread exits the loop.Agrid-stride loop ensures thatwhen the range of numbers
to consider is larger than the number of threads, all numbers are still processed.

Memory Hierarchy Concerning the memory hierarchy, a GPU has multiple types of
memory:

• Global memory with high bandwidth but also high latency is accessible by both GPU

threads and CPU threads and thus acts as interface between CPU and GPU.
• Constant memory is read-only for all GPU threads. It has a lower latency than global

memory, and can be used to store any pre-defined constants.
• Shared memory is on-chip memory shared by the threads in a block. Each SM has its

own shared memory. It is much smaller in size than global and constant memory (in the
order of tens of kilobytes), but has a much lower latency. It can be used to efficiently
communicate data between threads in a block.

• Registers are used for on-chip storage of thread-local data. They are very small, but
provide the fastest memory and the possibility for threads in a warp to exchange register
data.

Regarding atomicity, a GPU is capable of executing atomic operations on both global and
shared memory. A GPU atomic function typically performs a read-modify-write memory
operation on one 32-bit or 64-bit word.

Optimisations In this work, we use unified memory [39] to store the main data structures
that need to be regularly accessed by both the CPU (host) and the GPU (device). Unified
memory creates a pool of managed memory that is virtually shared between the host and the
device. This pool is accessible to both sides using the same addresses.

To hide the latency of globalmemory, ensuring that the threads perform coalesced accesses
is one of the best practices.When the threads in awarp try to access a consecutive block of 32-
bit words, their accesses are combined into a single (coalesced) memory access. Uncoalesced
memory accesses can, for instance, be caused by data sparsity or misalignment.

To maximise the bandwidth of memory transfers from device and host arrays allocated
via dedicated memory (non-unified), we use page-locked (or pinned) memory. Memory
allocations on host are pageable by default and the GPU cannot access data directly from
pageable host memory. Therefore, when a data transfer from device to host pageable memory
(and vice versa) is invoked, the CUDA driver must first allocate a temporary pinned buffer,
and copy the data to the buffer first before it reaches its destination. We can avoid this extra
transfer by directly allocating a host array in the pinned memory. However, pinned-memory
allocations should be avoided for large data structures (a SAT formula, for instance) as they
may reduce the physical memory available for the operating system.

3.2 Data structures

To efficiently implement inprocessing techniques (i.e. Variable-Clause Eliminations (VCE))
for GPU architectures with the ability to generate clausal proof, we adopted the clause data
structure described in our latest work [47]. The new structure requires only 12 bytes of
bookkeeping, compared to 16 bytes consumed by our initial design in [48] excluding literals.
Figure1a, b shows the proposed structures to store a clause (denoted by SCLAUSE) and
the SAT formula represented in CNF form (denoted by CNF), respectively. The following
information is stored for each clause:

• The state field (2 bits) stores if the state is ORIGINAL, LEARNT or DELETED.
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Fig. 1 Data structures to store a formula and an occurrence table on the GPU

• The usage field (2 bits) keeps track of how many search iterations a LEARNT clause
can still be used before it gets deleted during database reduction. As a heuristic, LEARNT
clauses are used at most twice [8, 55].

• The added field (1 bit) is used to mark a clause as resolvent.
• The flag field (1 bit) marks the clause when it contributes to a gate (when applying

substitution).
• The literal block distance (lbd) (26 bits) stores the number of decision levels contributing

to a conflict, if there is one [2]. A maximum value of 226 turns out to be sufficient. This
field is updated when the clause is altered. Both used and lbd can be altered via clause
strengthening [8] in SUB.

• The size (32 bits) of the clause, i.e., the number of literals.
• A signature sig (32 bits) is a clause hash, for fast clause comparison [18].

In addition, a list of literals is stored, each literal taking 32 bits (1 bit to indicate whether
it is negated or not, and 31 bits to identify the variable). In total, a clause requires 12 + 4t
bytes, with t the number of literals in the clause. For comparison, MiniSat only requires
4 + 4t bytes, but it does not involve the used, lbd and sig fields, thereby not supporting
the associated heuristics. CaDiCaL [8] uses 28+ 4t bytes, since it applies solving and VCE
via the same clause structure. In ParaFROST, the GPU is only used for VCE; therefore,
heuristic information for probing [35] and vivification [51], for instance, is irrelevant.

As implemented inMiniSat, we use the clauses field in CNF (Fig. 1b) to store the raw
bytes of SCLAUSE instances with any extra literals in 4-byte buckets with 64-bit reference
support. The cap variable indicates the total memory capacity available for the storage of
clauses, andsize reflects the current size of the list of clauses.Wealwayshavesize ≤ cap.
The references field is used to directly access the clauses by saving for each clause a
reference to their first bucket. The mechanism for storing references works in the same way
as for clauses.

In a similar way, an occurrence table structure (Fig. 1c), denoted byOT, is created to record
the 64-bit clause references for each literal in the formula. The references to all clauses in
the formula are stored in a single container called occurrences in OT. The lists array
in OT is created of type occurrence list (OL) to facilitate direct access to the occurrences
memory by saving for each literal a pointer to its first occurrence. The creation of an OL
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instance is done in parallel on the GPU for each literal using atomic instructions. For each
clause C , a thread is launched to insert the occurrences of C’s literals in the associated lists.

Initially, we pre-allocate unified memory for clauses and references which is in
size twice as large as the input formula, to guarantee enough space for the original and
learnt clauses. During variable elimination, every GPU thread checks first before adding
new clauses if there is enough memory allocated using the cap variable in CNF. Variables
exceeding memory boundaries are skipped from elimination. Hence, BVE is guaranteed to
terminate safely no matter how much memory is allocated [47]. More on this is in Sect. 8.
The OTmemory is reallocated dynamically if needed after each variable elimination. Further,
we check the amount of free GPU memory before allocation. If no memory is available, the
inprocessing step is skipped and the solving continues on the CPU.

4 Parallel garbage collection

Modern sequential SAT solvers implement a garbage collection (GC) algorithm to reduce
memory consumption and maintain data locality [2, 8, 19].

Since GPU global memory is a scarce resource and coalesced accesses are essen-
tial to hide the latency of global memory (see Sect. 3.1), we decided to develop an
efficient and parallel GC algorithm for the GPU without adding overhead to the GPU

computations. Figure2 visualises the proposed approach for a simple SAT formula
{{a,¬b, c}, {a, b,¬c}, {d,¬b}, {¬d, b}}, in which {a, b,¬c} is to be deleted. The figure
shows, in addition, how the references and clauses lists in Fig. 1b are updated for the
given formula. The reference for each clause C is calculated based on the sum of the sizes
(in buckets) of all clauses preceding C in the list of clauses. For example, the first clause C1

requires 12 + 4t = 24 bytes or CB + t buckets, where a bucket consists of four bytes, and
the constant CB is the number of buckets needed to store SCLAUSE, in our case 12 bytes / 4
bytes. Given the number of buckets needed for C1 is 6, the next clause (C2) must be stored
starting from position 6 in the list of clauses. This position plus the size of C2 determines in
a similar way the starting position for C3, and so on.

The first step towards compacting the CNF instance whenC2 is to be deleted is to compute
a stencil and a list of corresponding clause sizes in terms of numbers of buckets. In this step,
each clauseCi is inspected by a different thread that writes a ‘0’ at position tid of a list named
stencil if the clause must be deleted, and a ‘1’ otherwise. The size of stencil is equal
to the number of clauses. In a list of the same size called buckets, the thread writes at
position tid ‘0’ if the clause will be deleted, and otherwise the size of the clause in terms of
the number of buckets.

At step 2, a parallel exclusive-segmented scan operation is applied on the buckets array
to compute the new references. In this scan, the value stored at buckets[tid], masked by
the corresponding stencil, is the sum of the values stored at positions 0 up to, but not
including, tid. An optimisedGPU implementation of this operation is available via the CUDA
CUB library,1 which transforms a list of size n in log(n) iterations. In the example, this results
in C3 being assigned reference 6, thereby replacing C2.

At step 3, the stencil list is used to update references in parallel. The
DeviceSelect::Flagged standard function of the CUB library can be deployed for
this, keeping clause references in consecutive positions via stream compaction [11]. Finally,
the actual clauses are copied to their new locations in clauses.

1 https://github.com/NVIDIA/cub.
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Fig. 2 An example of parallel GC on a GPU

Algorithm 1 describes in detail the GPU implementation of the parallel GC. As input,
Algorithm 1 requires a SAT formula Sin as an instance of CNF. The constant CB is kept
in GPU constant memory for fast access. The highlighted lines in light green are executed
on the GPU. To begin GC, we count the number of clauses and literals in the Sin formula
after simplification has been applied (line 1). The counting is done via the parallel reduction
kernel countSurvived, listed at lines 7–33.
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The values rCls and rLits at line 8 will hold the current number of clauses and literals,
respectively, counted by the executing thread. The vcalue b is used as a loop counter and
initially holds the current block size. These variables are stored in the thread-local register
memory. Within the loop at lines 9–14, the counters rCls, rLits are updated incrementally
if the clause at position tid in clauses is not deleted. Once a thread has checked all
its assigned clauses, it stores the counter values in the block-local shared memory arrays
(shCls, shLits) at line 16.

A non-participating thread simply writes zeros (line 18). Next, all threads in the block are
synchronized by the syncThreads call. The loop at lines 21–27 performs the actual parallel
reduction to accumulate the number of non-deleted clauses and literals in shared memory
within thread blocks. In each iteration, the counter b is divided by 2 until it is equal to 32
(note that blocks always consist of a power of two number of threads). The last 32 threads
assembling a full warp reduce the data in the shared memory via warp shuffle reduction (line
28). This operation allows all-reduce direct communication between the threads in a single
warp without the need for synchronization.

The total number of clauses and literals per block is in the end stored by thread 0 in the
shared memory, and this thread adds those numbers using atomic instructions to the globally
stored counters numRefs and numLits at lines 30–31, resulting in the final output. In the
procedure described here, we prevent having each thread perform atomic instructions on
the global memory, by which we avoid a potential performance bottleneck. The computed
numbers are used to allocate enough memory for the output formula at line 2 on the CPU
side.

The kernel computeStencil, called at line 3, is responsible for checking clause states and
computing the number of buckets for each clause. The computeStencil kernel is given at
lines 34–43. If a clauseC is set toDELETED (line 37), the corresponding entries in stencil
and cindex are cleared at line 38, otherwise the stencil entry is set to 1 and the cindex
entry is updated with the number of clause buckets.

The exclusiveScan routine at line 4 calculates the new references to store the remaining
clauses based on the collected buckets. For that, we use the exclusive scan method offered by
the CUB library. The compactRefs routine called at line 5 groups the valid references, i.e.,
those flagged by stencil, into consecutive values and stores them in references(Sout ),
which refers to the references field of the output formula Sout . Finally, copying clause
contents (literals, state, etc.) is done in the copyClauses kernel, called at line 6. This kernel
is described at lines 44–51. If a clause in Sin is flagged by stencil via thread tid, then a
new SCLAUSE reference is created in clauses(Sout ), which refers to the clauses field
in Sout , offset by cindex[tid]. The & symbol at line 47 denotes a memory reference. At line
48, the actual data in Sin[tid] is copied to the new destination Cdest.

The GC mechanism described above resulted from experimenting with several less effi-
cient mechanisms first. In the first attempt, two atomic additions per thread were performed
for each clause, one to move the non-deleted clause buckets and the other for moving the
corresponding reference. However, the excessive use of atomics resulted in a performance
bottleneck and produced a different simplified formula on each run, that is, the order in which
the new clauses were stored depended on the outcome of the atomic instructions. The second
attempt was to maintain stability by moving the GC to the host side. However, accessing
unified memory on the host side results in a performance penalty, as it implicitly results
in copying data to the host side. The current GPU approach is faster and always results in
the same output formula because both segmented scan and stream compaction preserve the
original data order.
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Fig. 3 An example showing the DRAT proof generated by ParaFROST

5 Proof memorymanagement

In this work, we adopt the variable-length encoding in generating the binary DRAT proof.
This format saves significant amount of memory, particularly on the GPU side (ideally, by a
factor of 3 as reported in [63]). Let l and−l be the positive and negatives integers to represent
the literals � resp.¬� inDIMACS format. To encode l in the binary form, it has to be mapped
first to the unsigned literal l+:

l+ =
{

2l, if l ≥ 0
−2l + 1, if l < 0

Themapped value can then be compressed into a variable-byte sequence of 7-bit words (wi ):

words(l+) =
4∑

i=0

wi × 2(7×i)

The 8th bit of a byte in this sequence indicates whether there are still more bytes to follow.
Moreover, every sequence has two additional bytes. The first byte acts as a prefix to express
whether a lemma is added (character ‘a’ or 61 in hexadecimal) or deleted (character ‘d’
or 64 in hexadecimal). The last byte is zero to mark the end of the lemma.

Example 5 Consider the CNF formula in Fig. 3. Eliminating the variables 2 and 4 yields
the resolvents {1, 3}, {1,-3}, and {-1, 5}, {-1,-5}, respectively. Further, eliminating the
variables 3 and 5 produces two unit clauses {1} and {-1}, respectively. Thus, the formula
is declared unsatisfiable due to the contradicting units. In the middle, the DRAT proof is
provided by the ParaFROST solver, revealing all resolvents added after each resolution
step. A binary-equivalent DRAT format is also shown on the rightmost side.

Before applying certified simplifications on the GPU, an upper-bound of memory space
required to store the binary p proof is calculated for all literals. The idea is to compute, per
unsigned literal l+, the minimum number of bytes as indicated by words(l+). To do that
efficiently on the GPU, one can count the number of leading zeros (Z ) in the bit string of the
integer value using the intrinsic function clz. By subtracting Z from 32, we get the position
of the most-significant high bit M (i.e. minimum number of bits to represent l+). Dividing
the latter by 7 (remember binary DRAT uses 7-bit wording), gives the lower bound of the
number of words W . To get the upper bound, W needs to be rounded up using the integer
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Fig. 4 An example of binary DRAT counting on a GPU

division (W + 7 − 1)/7. However, doing this operation for each literal, particularly in large
formulas incurs a performance penalty. Since the position cannot be higher than 32, a small
lookup table is created for all possible values of roundup(W ) and stored in the constant
memory. The table has a fixed length of 31 and its values range between 1 and 5.

Figure 4 gives a working example of the parallel computation of the upper-bound for the
literals 67,713,−63, 64, and−67713. Initially, the literals aremapped to the unsigned integers
135,426, 127, 128, and 135,427, respectively. Next, each thread calculates the minimum
number of bytes per literal as described above and the results are rounded up using the
lookup table LUP stored in the constant memory. For example, 135,427 would occupy a
minimum of 3 bytes to store. Finally, parallel reduction is applied on the pbytes array
to sum up the contents and obtain the upper bound (9 in this example). Ideally, we need a
memory space equal to the literals upper bound plus 2 times the number of clauses in a CNF
formula (recall that DRAT requires two additional bytes per clause). However, in practice,
1.5 times this bound is needed to guarantee enough space for emitting the proof on the GPU
side.
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Algorithm 2 lists in detail the GPU proof memory allocator. It takes as input the formula
S and the lookup table LUP. First, all clauses are flattened into consecutive unsigned literals
and stored in the array literals. At line 2, the kernel countProof is launched (given at
lines 4–31) to create both the pbytes array and the memory bound proofbound. The former
is needed as reference to emit the proof later in VCE using atomic instructions.

The variable rBytes at line 5 will hold the current number of bytes counted by the exe-
cuting thread. Again, the value b initially holds the current block size (used later as a loop
counter). Within the loop at lines 6–14, the counter rBytes is updated incrementally if the
value pbytes[l+] is zero, i.e., the number of bytes has not been computed before for the
literal l+. Notice that we subtract the bit position clz(l+) at line 9 from 30 rather than 32 as
the table is indexed from 0 to 30 (see Fig. 4). Having a non-zero value at pbytes[l+] means
the current literal is a duplicate and its variadic size is already computed before. Accordingly,
in this case, we rely on data racing and thread divergence, which contradicts the convention
of parallel programming. The following example explains this phenomenon.
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Example 6 Suppose we have a set of unsigned literals = {3, 3, 5, 6} and four threads
t0, . . . , t3 where ti represents the tid of thread i . In Algorithm 2, when t0 and t1, both inspect
literal 3, the following two scenarios are possible:

1. Either one of the threads t0 or t1 is faster than the other and takes the control path at
lines 8–10, updating pbytes[3] to 1. The other thread has seen the new updated value
pbytes[3] = 1; thus, taking the control path at lines 11–12. In that case, the more
threads executing that path, the better.

2. Both threads t0 and t1 check the condition at line 8 at the exact same time. Thus, they
both do the counting and update pbytes[3] simultaneously. This is not problematic, as
they both write the same value.

Once a thread has checked its literal, it stores the counter value in the block-local shared
memory array shBytes at line 16. The values in shBytes are then reduced in parallel to
the global variable proofbound. With this value, memory is allocated to the proof stream P
in bytes at line 3.

6 Variable scheduling

In our GPU-accelerated inprocessing, each simplification method is applied on multiple
variables simultaneously. Doing so may lead to data hazards, due to the disjunction between
literals in all clauses (i.e. data dependency). Two variables x and y are dependent iff there
exists a clauseC with (x ∈ C∨¬x ∈ C)∧(y ∈ C∨¬y ∈ C). If the two dependent variables
x and y were to be processed for simplification, two threads might manipulate C at the same
time. To guarantee soundness of the parallel simplifications, we apply our least constrained
variable elections algorithm (LCVE) [44] prior to simplification. It is responsible for electing
a set of mutually independent variables (candidates) from a set of authorised candidates. The
remaining variables relying on the elected ones are frozen.

Moreover,wemap nomore than 12 frozen variables to local variables named q1 to q12.Any
variable beyond this range is set to 0 (i.e. a unique stamp to identify out-of-range variables).
Themapped variables are used later inBVE to build the function tables (denoted by funTab)
with size 212 = 4096 bits.

The authorised, elected and frozen candidates are defined as follows:

Definition 6 (Authorised candidates) Given a formula S, we call A the set of authorised
candidates: A = {x | 1 ≤ h[x] ≤ μ ∨ 1 ≤ h[¬x] ≤ μ}, where
• h is a histogram array (h[x] is the number of occurrences of x in S).
• μ denotes a given maximum number of occurrences allowed for both x and its comple-

ment, representing the cut-off point for the LCVE algorithm.

Definition 7 (Candidate Dependency Relation) We call a relation D: A × A a candidate
dependency relation iff ∀x, y ∈ A, x D y implies that ∃C ∈ S.(x ∈ C ∨ ¬x ∈ C) ∧ (y ∈
C ∨ ¬y ∈ C)

Definition 8 (Elected candidates)Given a set of authorised candidatesA, we call a setΦ ⊆ A
a set of elected candidates iff ∀x, y ∈ Φ. ¬(x D y)

Definition 9 (Frozen variables) Given the sets A and Φ, the set of frozen variables F ⊆ A
is defined as F = {x | x ∈ A ∧ ∃y ∈ Φ. x D y}
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Before LCVE is executed, a sorted list of the variables in S needs to be created, ordered
by the number of occurrences in that formula, in ascending order (following the same rule
as in [18]). From this list, the authorised candidates A can be straightforwardly derived,
using μ as a cut-off point. Construction of this list can be done efficiently on a GPU using
Algorithm 3. As input, it requires a SAT formula S and a cut-off point μ. At line 1, a
histogram array h, providing for each literal the number of occurrences in S, is constructed.
This histogram can be constructed on the GPU using the histogram method offered by
the Thrust library.2 Once assignScores kernel execution has terminated, at line 2, the
candidates in A are sorted on the GPU based on their scores in scores while μ is used to
prune candidates with too many occurrences. We used the radix-sort algorithm as provided
in Thrust.

In assignScores, at line 6, the thread index is used as a variable index (variable indices
start at 1). At lines 7–11, a score is computed for the currently considered variable x . This
score should be indicative of the number of resolvents produced when eliminating x , which
depends on the number of occurrences of both x and ¬x , and can be approximated by the
formula h[x] × h[¬x]. To avoid score zero in case exactly one of the two literals does not
occur in S, we consider that case separately.

LCVE Algorithm Next, Algorithm 4 is executed on the host, given S, A, h and an
instance of OT named T . This algorithm accesses 2 · |A| number of OL instances and parts of
S. The use of unified memory significantly improves the rates of the resulting transfers and
avoids explicitly copying entire data structures to the host side. Initially, all elements inFmap

are set to 0 (line 1). From this point forward, all violet routines or notations suggest a new
contribution compared to our previous work in [47, 48]. Afterwards, the algorithm considers
all variables x in A (line 2). If x has not yet been frozen (line 3), it adds x to Φ (line 4).
Next, the algorithm needs to identify all variables that depend on x . For this, it iterates over
all clauses containing either x or ¬x (line 5), and each literal � in those clauses is compared
to x (lines 6–8). If � refers to a different variable v, then v must be frozen. In addition, we
map v to a value q in the range 1 ≤ q ≤ 12 and store it in Fmap (lines 10–12).

2 https://github.com/NVIDIA/thrust.
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7 Main inprocessing procedure

A top-level description of GPU parallel inprocessing is shown in Algorithm 5. As input, it
takes the current formula Sh from the solver (executed on the host) and copies it to the device
globalmemory asSd (line 1). Initially, before simplification,we compute the clause signatures
and sort clause literals via stream 0 at line 2 (prepareFormula procedure). Concurrently,
via stream 1, variables are ordered at line 3. A stream is a sequence of instructions that are
executed in issue-order on the GPU [39]. The use of concurrent streams allows the running
of multiple GPU kernels concurrently, if there are enough resources. The orderVariables
routine produces an ordered array of authorised candidates A following Definition 6.
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At line 4, Algorithm 2 is executed via the proofAllocator routine on the same stream
as prepareFormula. The space allocated for Pd resides in global memory; whilst Ph gets
a pinned memory space (see Sect. 3.1) on the host side with the same size as Pd .

The for loop at lines 5–21 applies SUB and BVE, for a configured number of iterations
(indicated by phases), with increasingly large values of the threshold μ. Increasing μ expo-
nentially allows LCVE to elect additional variables in the next elimination phase since after
a phase is executed on the GPU, many elected variables are eliminated. In addition, mapping
a new set of frozen variables is essential for the effectiveness of funTab in finding new gate
definitions. The ERE method is computationally expensive. Therefore, it is only executed
once in the final iteration, at line 11. At line 6, syncAll is called to synchronize all streams
being executed. At line 7, the occurrence table T is created. Next, the lcve routine produces
the set Φ (see Definition 8) as explained earlier in Algorithm 4.

The parallel creation of the occurrence lists in T results in the order of these lists being
chosen non-deterministically. Directly applying the eliminate procedure called at line 15,
which performs the parallel simplifications, would produce results non-deterministically as
well. To remedy this effect, the lists in T are sorted according to a unique key in ascending
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order before eliminate is called. Besides the benefit of stability, this allows SUB to abort
early when performing subsumption checks.

The sorting key is given as the device function listKey at lines 22–29. It takes two
references a, b and fetches the corresponding clauses Ca,Cb from Sd (line 23). First, clause
sizes are tested at line 24. If they are equal, the first and the last literal in each clause are
checked, respectively, at lines 25–26. If the literals are equal, clause signatures are tested at
line 27. Otherwise, clause references are compared at line 28. These references are always
distinct; thus, they guarantee sorting stability. However, they should be tested as a last resort.
Experiments have shown that using only clause reference in addition to its size has a negative
impact overall on the CDCL search. CaDiCaL implements a similar function, but only
considers clause sizes [8]. The sortOT routine launches a kernel to sort the lists pointed to
by the variables in Φ in parallel. Each thread runs an insertion sort to in-place swap clause
references using listKey.

The eliminate procedure at line 15 calls SUB to remove any subsumed clauses or
strengthen clauses if possible, after which BVE is applied. The SUB and BVE methods
call kernels that scan the occurrence lists of all variables in Φ in parallel. More information
on this is in Sects. 8 and 9. Both the BVE and SUB methods emit the proof to Pd and may
add new unit clauses atomically to a separate array Ud . The propagation of these units cannot
be done immediately on the GPU due to possible data races, as multiple variables in a clause
may occur in unit clauses. For instance, if we have unit clauses {a} and {b}, and these would
be processed by different threads, then a clause {ā, b̄, c} could be updated by both threads
simultaneously. Therefore, this propagation is delayed until the next iteration, and performed
by the host at line 8. Note that T must be recreated first to consider all resolvents added by
BVE during the previous phase. The ERE method at line 11 is executed only once at the
last phase (phases) before the loop is terminated. Section10 explains in detail how ERE can
be effective in simplifying both ORIGINAL and LEARNT clauses in parallel. Again, clausal
proof of ERE correctness is emitted to Pd .

At line 16–17, the proof stream and new units are copied from the device to the host
arrays Ph and Uh , respectively. The data transfers are done asynchronously via stream1 and
stream2. Similar to Ph , the Uh array is allocated in pinned host memory. It should be noted
that asynchronous data transfers to the host are only permitted if the host memory is page-
locked [39]. The collect procedure does the GC as described by Algorithm 1 via stream3.
At line 19, we synchronise the proof data transfer performed by stream1 and write the byte
stream to the proof output file. Other active streams are synchronised at line 6.

8 Three-phase parallel variable elimination

The BVIPE algorithm in our previous work [44] had a main shortcoming due to the heavy
use of atomic operations in adding new resolvents. Per eliminated variable, two atomic
instructions were performed, one for adding new clauses and the other for adding new literals.
Besides performance degradation, this also resulted in the order of added clauses being chosen
non-deterministically, which impacted reproducibility (even though the produced formula
would always at least be logically the same).
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The approach to avoiding the excessive use of atomic instructions when adding new
resolvents is to perform parallel BVE in three phases. The first phase scans the constructed
list Φ to identify the elimination type (e.g., resolution or gate substitution) of each variable
and to calculate the number of resolvents and their corresponding buckets.

The second phase computes an exclusive scan to determine the new references for adding
resolvents, as is done in our GC mechanism (Sect. 4). At the last phase, we store the actual

123



Formal Methods in System Design

resolvents in their new locations in the simplified formula. For solution reconstruction, we
use an atomic addition to count the resolved literals. The order in which they are resolved is
irrelevant. The same is done for emitting the proof and adding units. For the latter, experiments
show that the number of added units and proof bytes are relatively small compared to the
eliminated variables,3 hence the penalty of using atomic instructions is almost negligible. It
would be an overkill to use a segmented scan for adding proof bytes or units.

At line 1 of Algorithm 6, phase 1 is executed by theVceScan kernel (given at lines 5–18).
Every thread scans the clause set of its designated literals x and ¬x (line 7). References to
these clauses are stored at Tx and T¬x . Moreover, register variables t, rCls, rLits are created
to hold the current elimination type (i.e. NONE, RES, SUBST or CORE), number of added
clauses, and number of added literals of x , respectively (line 8). If x is pure at line 10,
then there are no resolvents to add and the clause sets of x and ¬x are directly marked
as DELETED by the routine toblivion. Moreover, this routine adds the marked literals
atomically to litstack. Note that these clauses are not emitted to the proof. At line 12, we
check first if x contributes to a regular logical gate using the routine gateReasoning, and
save the corresponding rCls and rLits. If this is the case, the type t is set to SUBST, otherwise
we try funTab reasoning at line 13 or resolution at line 14.

The funReasoning procedure at lines 37–46 is responsible for finding irregular gate
definitions as explained in Sect. 2.1. At line 38, two Boolean function tables f p, fn are
created in threads’ local memory.4 Both are bit-vectors of length 4096 entries initialized
to ones. Each table represents a 12-variables Boolean function stored in a vector of 4096
bits. The bit at index i (where i is written as q12, q11, . . . , q1 in binary) gives the value of
the Boolean function for q12, q11, . . . , q1. Note that the maximum number of variables we
support is 12. In real implementation, only enough frozen variables inF aremapped to values
in the domain [1, 12]. At line 39, we encode the clause sets in Sd [Tx ] and Sd [T¬x ] into their
truth tables f p resp. fn via buildFunTab. More on how buildFunTab is implemented is
coming later. If all literals are successfully mapped to the above range, then withinRange is
set to true. A gate is found, in case both tables are built and their bit-wise and is all-zeros
(i.e. unsatisfiable). The clauses set G� can be reduced by finding a shorter clausal core (not
necessarily minimal, though). The loop at lines 42–44 removes a clause at a time from G�

and tests for all-zero bit string via isFalseFun. If G�\C is unsatisfiable, C is marked as
a non-gate clause. After the loop terminates, all non-flagged clauses in G� together form a
clausal core.

The loops at lines 48–58 in the buildFunTab function, transform only the frozen literals
(i.e. � is skipped) in each clause C ∈ Sd [T�] to bit-vectors using binary magic numbers.
A binary magic number is a unique constant in which a sequence of bits is repeating itself
multiple times. These numbers can be used to extract and pack integer values into a single
bit string (e.g. the Boolean function table). At line 52, the frozen variable var(�′) is mapped
to q. If it has the value 0 (line 53), then we bail out immediately with a false. At line 54,
magicNum(q) fetches the corresponding magic number from a 64-bit constant array using
q’s value as an index. With these constants, the truth table of each variable q can be stored in
memory. Afterwards, the elementary truth tables are combined using the bitwise operators
(or, and) to build the truth table of the formula Sd . If the resulting truth table f contains
only zeros, the formula is unsatisfiable.

The condition rCls ≤ (|Tx | + |T¬x |) is always tested implicitly by all above routines
to limit the number of resolvents per x . The varinfo, rindex, and cindex arrays are

3 Deleted clauses in BVE are not added to the proof in order to save GPU memory.
4 Actually a global memory with interleaved addressing for fast parallel access.
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updated at line 15. The total number of buckets needed to store all added clauses is calculated
by the formula (CB × rCls + rLits) and stored in cindex[tid].

Finally, in phase 3,we use the calculated indices inrindex and cindex to guide the new
resolvents to their locations in Sd . The kernel is described at lines 19–36. Each thread either
calls the procedure resolve or substitute or coreSubstitute, based on the type stored for
the designated variables. However, a condition for applying an elimination is that (t �= NONE)
and there is enough memory space, which is checked using line 25. Any produced units are
saved into Ud atomically. The cidx and ridx variables indicate where resolvents should be
stored in Sd per variable x . Similarly, these resolvents are saved into Pd as stream bytes
using the transformation in words(l+). Recall that the number of bytes per literal is already
stored in pbytes and is not required to be computed again.

The sequential running time of Algorithm 6 isO(m · |Φ|), wherem is the maximum length
of a resolved clause in S. In practice, a limit over a resolvent length is set to a small constant
value (≤ 100, for instance). Hence, the worst case is linear w.r.t. |Φ|. Consequently, the
parallel complexity is O(|Φ|/p), where p is the number of threads. Since a GPU is capable
of launching thousands of threads, that is, p ≈ |Φ|, the parallel complexity is an amortised
constant O(1).

9 Parallel subsumption elimination

Parallel SUB through Algorithm 7 is executed on elected variables before variable elimi-
nation. (Self)-subsumption elimination tends to reduce the number of occurrences of these
variables as it usually removes many literals and clauses. The parallelism in Algorithm 7
is achieved on the variable level. In other words, each thread is assigned to a variable x
and performs subsumption checks on all clauses in Ex . At line 5, a new clause is loaded,
referenced by T [x], into shared memory Cs for faster access.
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The shared clause is compared in the loop at lines 6–12 to all clauses referenced by T [¬x]
to check whether x is a self-subsuming literal. If so, both the original clauseC , which resides
in the global memory, and Cs must be strengthened (via the strengthen function). If Cs is
a unit clause, it is added atomically to Ud (line 9). At line 10, we write this clause to the proof
as an added lemma. Subsequently, the strengthened Cs is used for subsumption checking in
the loop at lines 13–21. In case the subsuming clause C ′′ is LEARNT and C is ORIGINAL,
then C ′′ must be turned to ORIGINAL (see Sect. 2.2). This time, the subsumed clause is
written to the proof as a deleted lemma.

Regarding the complexity of Algorithm 7, the worst-case is that a variable x occurs in
all clauses of S. However, in practice, the number of occurrences of x is bounded by the
threshold value μ (see Definition 6). The same applies for its complement. In a worst case
scenario, a variable and its negation both occur μ times. As SUB considers all variables in
Φ and worst case has to traverse each loop μ times, its sequential complexity is O(|Φ| · μ2)

and its parallel complexity is O(μ2).

10 Eager redundancy elimination

Algorithm 8 describes a two-dimensional kernel, in which from each thread ID, an x and y
coordinate is derived. This allows us to use two nested grid-stride loops. In the loops, we
specify which of the two coordinates should be used to initialise tid in the first iteration.
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Based on the kernel’s y ID (line 2), each thread merges where possible two clauses of
its designated variable x and its complement ¬x (lines 3–6), and writes the result in shared
memory as Cm . This new clause is produced by the routine resolve at line 6. At lines
7–11, we check if one of the resolved clauses is LEARNT, and if so, the state st of Cm is
set to LEARNT as well, otherwise it is set to ORIGINAL. This state of Cm will guide the
forwardEquality routine called at line 12 to search for redundant clauses of the same
type. In this function (lines 18–27), the thread’s x ID is used to search the clauses referenced
by the minimum occurrence list Tmin, which is produced by findMinList at line 19. It has
the minimum size among the lists of all literals in Cm . If a clause C is found that is equal to
Cm and is either LEARNT or has a state equal to the one of Cm , it is set to DELETED (lines
23). Finally, at line 24, the deleted clause is emitted to the binary proof Pd .

The worst-case parallel complexity of this algorithm is

O(
|Φ|
py

( μ2

︸︷︷︸

loops at lines 4-5

(

findMinList at line 19

︷︸︸︷

|Cm |( |Tmin|
px

))))

where py and px are the number of launched threads in y resp. x dimensions. Note that
|Tmin| is usually very small compared to the upper bound μ. Hence, the former length can be
neglected w.r.t. px, and the parallel complexity in such case will be O(μ2|Cm |), that is, the
parallel running time is a quadratic function of the upper-bound μ.
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11 Kernel automated tuning

A GPU kernel needs to be configured prior to launch. The kernel configuration sets up the
number of threads per block (blockDim) and the total number of blocks per grid (gridDim).
These parameters are calculated intuitively based on the data size. As a rule of thumb, the
total number of threads (blockDim×gridDim) should cover the whole data given to the kernel
to process and not to exceed the limit (p) supported by the GPU. If the data size is larger
than p, a good practice is to use the grid-stride loops as discussed in Sect. 3.1. However, the
GPU occupancy is crucial to achieve a near-optimal balance of the kernel workload across
theGPU resources. The occupancy defines howmany SMs are busy (occupied) by the thread
blocks. That is, a good occupancy means a fair distribution of the launched blocks across the
available SMs.

Example 7 Consider an array of 1,000 data elements to be read in parallel on aGPU having 64
SMs. Ifwe choose the block size to be 256 threads, thenweneed at leastceil(1, 000/256) = 4
blocks to process all the data in parallel. The occupancy in this case is 4 blocks/64 SMs =
0.0625 or 6.25% which is quite low. However, if we choose a block size of 16 threads, the
occupancy goes significantly up to 98.4% (63 blocks/64 SMs = 0.984).

Algorithm 9 illustrates a way to automate the tuning of the kernel configuration for max-
imum occupancy. It takes as input: the data size N , maximum supported threads p, and the
initial block size initBlockDim. The minimum block size minBlockDim and the minimum
occupancy minOccupancy are user-defined lower boundaries. Initially, the blockDim value
is set to initBlockDim at line 1. Next, gridDim is calculated based on the latter and the data
size. This step gives the initial configuration without tuning. At line 3, the maximum number
of blocks that can be launched at once is computed based on the initial block size. Given this
value and the minimum occupancy desired, minBlocks is obtained at line 4. The loop at lines
5–8 is triggered iff blockDim has not gone lower than the boundary minBlockDim and the
gridDim has not reached the limit minBlocks. The goal of this loop is to keep cutting down
the blockDim by 2 till a maximum value of gridDim (within bounds) is reached. There is still
a possibility that gridDim grows beyond minBlocks; therefore, always the minimum of the
most recent value of gridDim and maxBlocks is targeted (line 9). In ParaFROST, we have
set the minBlockDim and minOccupancy to 4 resp. 0.5.

We observed that the number of scheduled variables |Φ| in the preceding kernels VceS-
can, VceApply, SUB, and ERE usually go down as the solver progresses due to the
elimination of many variables in the preceding call of the inprocessing procedure. Therefore,
we applied the tuner in Algorithm 9 on the previous kernels to maximally increase the num-
ber of blocks that are scheduled for execution on the available SMs. This led to an overall
reduction in the running time of the inprocessing procedure by 2%.
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12 Experimental evaluation

12.1 Setup

We implemented the proposed algorithms in our solver ParaFROST5 with CUDA C++
version 11.0 [39]. Besides the implementations of our new GPU algorithms, we involved
a CPU-only version of ParaFROST (called ParaFROST (noGPU)) for the solving of
problems. Additionally, we compare to CaDiCaL and Kissat [8] solvers developed by the
third author.

To find benchmarks with potential for simplifications on the GPU (i.e. having sufficient
amount of redundant variables and clauses), we have selected all formulas that are larger
than 5 MB from the 2013–2021 SAT competitions, excluding redundancies (repeated for-
mulas across competitions). That is, a total of 641 distinct formulas were selected which
encode around 80+ different real-world applications, with various logical properties. For
reproducibility, the benchmark suite can be downloaded from [40].

We evaluated all GPU experiments on the compute nodes of the Lisa GPU cluster.6 Each
problem was analysed in isolation on a separate computing node, with a time-out of 3600s.
Each computing node has an Intel Xeon Gold 6130 CPU running at a base clock speed of 2.1
GHz with 96 GB of system memory, is equipped with an NVIDIA Titan RTX GPU, and runs
on Debian Linux operating system. This GPU has 72 SMs (64 cores each), 24 GB global
memory and 48 KB shared memory. It operates at a base clock of 1.3 GHz.

The sequential solvers are executed on the compute nodes of a different cluster called
DAS-5 [3] to dedicate our computing hours on Lisa cluster only to the GPU experiments.
Each node of DAS-5 had an Intel Xeon E5-2630 CPU (2.4 GHz) with 64 GB of memory.
The proofs generated by the GPU solver are verified separately by the drat-trim tool
[63] on DAS-5, with a time-out of 20,000s. It is worth mentioning that the CPU time of a
single-threaded task is around 10% faster on DAS-5 compared to Lisa.

With this information, we adhere to four out of five principles laid out in the SATmanifesto
(version 1) [10]:

1. Benchmarks should be available for research purposes.
2. Solvers should be available in binary form for research purposes.
3. A recent generic benchmark set (e.g. competition benchmarks) should be chosen among

those of the last 3 years.
4. Experimental results should include a comparison with the state of the art.
5. Details on the experimental conditions should be provided (e.g. hardware, OS).

As for the third principle, we refrained from using a single benchmarks set from a particular
year, as most of the included benchmarks are very small in size for the GPU to work with
(i.e. only few variables and clauses can be removed).

12.2 SAT-simplification speedup

The first part of our experiments discusses the speedup obtained by the GPU algorithms for
applying GC, BVE, funTab, and proof generation compared to their previous implemen-
tations in SIGmA [44, 45] or sequential counterparts in ParaFROST (noGPU). For these

5 Available from: https://github.com/muhos/ParaFROST.
6 This work was carried out on the Dutch national e-infrastructure with the support of SURF Cooperative.
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Fig. 5 Parallel GC versus sequential speedup
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Fig. 6 Three-phase BVE versus atomic version speedup

experiments, we set μ and phases initially to 32 resp. 5. Preprocessing is only enabled to
measure the speedup.

Figure 5 gives the speedup of running parallel GC against a sequential version on the
host. For almost all cases, Algorithm 1 achieved a high acceleration when executed on the
device with a maximum speed up of 72.6× and an average of 35×. Figure 6 reveals how
fast the 3-phase parallel BVE is compared to a version using more atomic instructions. On
average, the new algorithm is 1.5× faster than the old BVIPE algorithm [44]. In addition,
we get reproducible results.

Figure 7 evaluates the funTabmethod in Algorithm 6 against the sequential counterpart.
Note the logarithmic scale on the y-axis. Cases with zero runtime are ignored. Clearly, the
GPU achieved a remarkable speedup in finding general gate definitions compared to the
CPU with a maximum of 342× and an average of 11.33×. Likewise, as shown by Fig. 8,
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Fig. 7 Parallel funTab versus sequential speedup
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Fig. 8 Parallel proof generation versus sequential speedup

the acceleration of proof generation on the GPU is significant, with a maximum speedup of
186× and 12× on average.

12.3 SAT solving performance

The second part of experiments provides a thorough assessment of our CPU/GPU solver,
the CPU-only version, CaDiCaL, and Kissat on SAT solving with inprocessing turned
on. To gain advantage of the GPU resources, preprocessing in ParaFROST is enabled by
default while disabled in CaDiCaL and Kissat solvers. We could enable preprocessing in
other solvers but we preferred to leave their default options untouched. The timeout is set to
3,600s for all experiments.
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Fig. 9 ParaFROST versus CaDiCaL with(out) proof emission

Fig. 10 ParaFROST versus Kissat with(out) irregular-gate reasoning

Figure 9 demonstrates the runtime results for all solvers with(out) proof emission over the
benchmark suite. The keyword certified means the proof generation is enabled in the solver
instance. Data are sorted w.r.t. the x-axis. The simplification time accounts data transfers in
ParaFROST. Overall, ParaFROST (evenwith proof enabled) dominates over ParaFROST
(noGPU) and CaDiCaL. Keep in mind that ParaFROST and ParaFROST (noGPU) has
the sameCDCL engine. Thus,ParaFROST is faster due to theGPU accelerated inprocessing.

Figure 10 compares ParaFROST to Kissat with(out) irregular gate reasoning. As indi-
cated by the green and the blue lines, finding such gates has a noticeable impact on both
ParaFROST andKissatmore than ParaFROST (noGPU). Recall that the parallel funTab
had a considerable speedup compared to its sequential counterpart (see Fig. 7), which explains
why funTab is not as competitive in ParaFROST (noGPU) as for ParaFROST. On the
other hand, Kissat uses a very different method than funTab to find general definitions. It
calls a simple built-in solver called Kitten which is responsible for solving and extracting
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Fig. 11 Time spent on simplifications

Fig. 12 Percentage of simplification time to runtime

the clausal core from variable environments scheduled for elimination. Further, as expected,
Kissat is more efficient than both CaDiCaL and ParaFROST. The reason for the solving
discrepancies is that ParaFROST CDCL heuristics (run on the host) is based on CaDiCaL

which is not up-to-date as Kissat. We expect ParaFROST to compete with Kissat if the
same heuristics implemented in the latter is used.

Figures 11 and 12 show simplification time and its percentage of the total run time,
respectively. Clearly, the ParaFROST solver outperforms the sequential solvers due to the
parallel acceleration. Figure12 tells us that ParaFROST keeps the workload in the majority
of cases in the region between 0 and 20% as the elimination methods are scheduled on a
bulk of mutually independent variables in parallel. In CaDiCaL and Kissat, variables and
clauses are simplified sequentially, which takes more time.

Figure 13 reflects the overall efficiency of parallel inprocessing on variables and clauses
with(out) funTab on solved formulas with successful clause reductions. Data are sorted in
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Fig. 13 Reduction efficiency with(out) irregular-gate reasoning

descending order. Reductions can remove up to 97% and 80% of the variables and clauses,
respectively.

Figure 14 gives the heat-map distribution of the time spent on verification and the mem-
ory consumed by the proofs generated by ParaFROST [41] and CaDiCaL. All proofs are
successfully verified via drat-trim tool. The verification times are reperesented by the col-
ormap and are sorted in descending order w.r.t. the unsatisfiable instances solved. Figure14a
reveals that drat-trim takes more time to verify ParaFROST proofs which appears by
the hotspot on the left side of x-axis (ranges between 1.5 × 104 and 1.75 × 104). That is
foreseen as the deleted lemmas in Algorithm 6 are not saved to the proof in order to avoid
GPUmemory exhaustion. On the other hand, CaDiCaL proofs as demonstrated by Plot 14b
take less time to verify (e.g. 0.75 × 104 to 1 × 104) due to the saving of all deleted lemmas
in BVE which helps drat-trim to cut down the resolution steps. Also, proofs generated
by ParaFROST for the formulas 30–40 consume slightly more memory than CaDiCaL

owning to the extra resolvents and deleted lemmas produced by the funTab method and
ERE, respectively. Those methods are not implemented in CaDiCaL.

Tables 1 zooms into the impact of applying the funTab method in BVE on solving
a sample of 30 formulas using ParaFROST and ParaFROST (noFun), respectively. The
letters V and C refer to Variables and Clauses, respectively. The keywords org and rem
denote original and removed, respectively. Removed clauses include both ORIGINAL and
LEARNT types. Bold entries in the V’s and C’s columns indicate that more variables and
clauses are removed by enabling funTab in ParaFROST. For example, funTab allowed
ParaFROST to remove 4,682,382 variables in the formula T96.1.1 compared to 4,672,738
by the configuration without funTab. That is 9,644 extra variables are eliminated as a side
effect of funTab. Additionally, ParaFROST solvedmany cases faster than p (noFun) within
the time limit (3,600s). For instance, the formulaHCP-446-105 was solved by ParaFROST
with funTab in just 907.21 s, while it took 1,020.07 s to solve for ParaFROST without
funTab.
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Fig. 14 Heatmap showing the time-memory distribution of DRAT proof

13 Related work

A simple GCmonitor for GPU term rewriting has been proposed by [62]. The monitor tracks
deleted terms and stores their indices in a list. New terms can be added at those indices. The
first author extended the former work by a stream GC similar to the one described in this
article but much more simpler [61]. The authors in [1, 36] investigated the challenges for
offloading garbage collectors to an Accelerated Processing Unit (APU) [56] introduced a
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promising alternative for stream compaction [11] via parallel defragmentation onGPUs. Our
GC, on the other hand, is tailored to SAT solving, which allows it to be simple yet efficient.

Regarding inprocessing, [27] introduced certain rules to determine how and when inpro-
cessing techniques can be applied. [5] presented Lingeling, the first solver with the ability of
finding general gate definitions using a BDD-based approach. The works in [7, 8, 20] intro-
duced a SAT-based variant of mining gate definitions by calling an embedded SAT solver
named Kitten as independent component of Kissat. The GPU-based variant presented in
this article was inspired by [5, 7].

Acceleration of the DPLL SAT solving algorithm on a GPU has been done in [50], where
some parts of the search were performed on a GPU and the remainder is handled by the
CPU. Incomplete approaches are more amenable to be executed entirely on a GPU, e.g., an
approach using metaheuristic algorithms [68]. Recently, [52] used the GPUs to determine
the usefulness of a learnt clause for parallel Portfolio-based solvers. Nonetheless, we are the
first to work on certified CDCL solvers with GPU accelerated inprocessing.

14 Conclusion

Wehave presented compact data structures tailored for SAT inprocessing and variousways to
do GPU memory management. Our solver ParaFROST achieved substantial gains through
GPU-accelerated inprocessing compared to its sequential version and the state-of-the-art
solver CaDiCaL. With the improvements made to the BVE procedure, the usage of atomic
operations has been considerably reducedwhich lead to an average speedupof 1.5× compared
to the atomic version. Owing to funTab reasoning, more logical gates can be detected and
removed with an average speedup of 11.33× compared to the sequential counterpart.

We proposed the first parallel GC and proof generation on the GPU for SAT applications
with average accelerations of 35× and 11×, respectively. The garbage collector helped
reduce the GPU memory consumption while stimulating coalesced memory access. The
proof generator allowed ParaFROST to validate all the SAT simplifications running on the
GPU besides the CDCL search, giving high credibility to our solver and its applicability in
critical tools such as model checkers.

Regarding future work, we aim to adopt the inprocessing techniques and the memory
management concerning the former to amulti-GPU setupwith robust load balancing.Another
direction is to use ParaFROST in a Portfolio-based parallel SAT solving and exploit the
GPU capabilities in managing the shared clause database as recently introduced by [52].
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