
Formal Methods in System Design manuscript No.
(will be inserted by the editor)

Propagation Based Local Search
for Bit-Precise Reasoning

Aina Niemetz · Mathias Preiner ·
Armin Biere

Received: date / Accepted: date

Abstract Many applications of computer-aided verification require bit-precise
reasoning as provided by Satisfiability Modulo Theories (SMT) solvers for the
theory of quantifier-free fixed-size bit-vectors. The current state-of-the-art in solv-
ing bit-vector formulas in SMT relies on bit-blasting, where a given formula is
eagerly translated into propositional logic (SAT) and handed to an underlying
SAT solver. Bit-blasting is efficient in practice, but may not scale if the input
size can not be reduced sufficiently during preprocessing. A recent score-based
local search approach lifts stochastic local search (SLS) from the bit-level (SAT)
to the word-level (SMT) without bit-blasting and proved to be quite effective on
hard satisfiable instances, particularly in the context of symbolic execution. How-
ever, it still relies on brute-force randomization and restarts to achieve complete-
ness. Guided by a completeness proof, we simplified, extended and formalized our
propagation-based variant of this approach. We obtained a clean, simple and more
precise algorithm that does not rely on score-based local search techniques and
does not require brute-force randomization or restarts to achieve completeness.
It further yields substantial gain in performance. In this article, we present and
discuss our complete propagation based local search approach for bit-vector log-
ics in SMT in detail. We further provide an extended and extensive experimental
evaluation including an analysis of randomization effects.

Keywords Satisfiability Modulo Theories · Local Search · Bit-Vector Reasoning

Supported by Austrian Science Fund (FWF) under NFN Grant S11408-N23 (RiSE).

Aina Niemetz
Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria
E-mail: aina.niemetz@jku.at

Mathias Preiner
Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria
E-mail: mathias.preiner@jku.at

Armin Biere
Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria
E-mail: biere@jku.at

1 Introduction

A majority of applications in the field of hardware and software verification re-
quires bit-precise reasoning as provided by Satisfiability Modulo Theories (SMT)
solvers for the quantifier-free theory of fixed-size bit-vectors. In many of these
applications, e.g., (constrained random) test case generation [33, 38, 40] or white
box fuzz testing [19], a majority of the problems is satisfiable. For this kind of
problems, local search procedures are useful even though they do not allow to de-
termine unsatisfiability. Previous work [16,36] showed that local search approaches
for bit-vector logics in SMT are orthogonal to other approaches, which suggests
that they are in particular beneficial within a portfolio setting [36].

Current state-of-the-art SMT solvers for the quantifier-free theory of fixed-size
bit-vectors [4,13,14,31,34] employ the so-called bit-blasting approach (e.g., [28]),
where an input formula is eagerly translated to propositional logic (SAT) and
handed to an underlying SAT solver. While efficient in practice, bit-blasting ap-
proaches heavily rely on rewriting and other techniques [9,10,11,12,15,17,18,22,23]
to simplify the input during preprocessing and may not scale if the input size can
not be reduced sufficiently. In [16], Fröhlich et al. proposed to attack the prob-
lem from a different angle and presented a score-based local search approach for
bit-vector logics, which lifts stochastic local search (SLS) from the bit-level (SAT)
to the word-level (SMT) without bit-blasting. In previous years, and in particular
since the SAT challenge 2012 [2], a new generation of SLS for SAT solvers with
very simple architecture [3] achieved remarkable results not only in the random
but also in the combinatorial tracks of recent SAT competitions [1, 2, 7]. Previous
attempts to utilize SLS techniques in SMT by integrating an SLS SAT solver into
the DPLL(T)-framework of the SMT solver MathSAT [13] were not able to com-
pete with bit-blasting [21]. In contrast, the word-level local search approach in [16]
showed promising initial results. However, [16] does not fully exploit the word-level
structure but rather simulates bit-level local search by focusing on single bit flips.

Hence, in [36], we proposed a propagation-based extension of [16], which in-
troduced an additional strategy to propagate assignments from the outputs to the
inputs. This significantly improved performance. Our results further suggested that
these techniques may be beneficial in a sequential portfolio setting [39] in combina-
tion with bit-blasting. However, down-propagating assignments as presented in [36]
utilizes inverse value computation only, which can get stuck if no inverse value can
be found. In that case, [36] still falls back on score-based local search techniques
and requires brute-force randomization and restarts to achieve completeness, as
does [16]. Further, inverse value computation as presented in [36] is too restrictive
for some operators and focusing only on inverse values when down-propagating
assignments is incomplete and may inadvertently prune the search.

In this paper, guided by a formal completeness proof we present a simple,
precise and complete local search variant of the procedure proposed in [36]. Our
approach does not use score-based local search techniques as described in [16]
but relies on propagation of assignments only. It further does not require brute-
force randomization or restarts to achieve completeness. To determine propagation
paths, we extend the concept of controlling inputs to the word-level, which allows
to further prune the search. To propagate assignments down, we lift the concept
of “backtracing” of Automatic Test Pattern Generation (ATPG) [30], which goes
back to the PODEM algorithm [20], to the word-level. We further provide a for-

2

malization of backtracing for the bit-level and the word-level. Note that in contrast
to backtracing in ATPG, our algorithm works with complete assignments. Existing
algorithms for word-level ATPG [25, 26] are based on branch-bound, use neither
backtracing nor complete assignments, and in general lack formal treatment.

We implemented our techniques in our SMT solver Boolector [34] and show that
combining our propagation-based approach with bit-blasting within a sequential
portfolio setting is beneficial in terms of performance. We provide an extensive
experimental evaluation, including an analysis of randomization effects as a result
of different seeds for the random number generator, in particular in comparison
to the score-based local search approach in [16] as implemented in Boolector. Our
results show that our techniques yield a substantial gain in performance.

This article extends and revises work presented earlier in [35]. We provide a
more detailed description of the propagation-based local search approach intro-
duced in [35], including extensive examples illustrating the core concepts of our
approach. We further include a complete set of rules for determining assignments
during backtracing. Our previous experimental evaluation of a sequential portfolio
combination of our propagation-based technique with bit-blasting was a virtual
experiment. For this paper, we implemented such a sequential portfolio combi-
nation within Boolector and provide an extensive experimental evaluation of our
techniques. This evaluation includes an in-depth analysis of the performance of
our propagation-based local search approach compared to the score-based local
search approach presented in [16] and the evaluation of randomization effects of
both techniques, which were not included in previous work.

2 Overview

Our propagation-based local search procedure is based on propagating target as-
signments from the outputs to the inputs and does not need to rely on restarts or
brute-force randomization to achieve completeness. Local search procedures are in
general incomplete in the sense that they do not allow to determine unsatisfiabil-
ity. Hence, in the following, we restrict our notion of completeness to satisfiable
input problems and use it synonymously to the more established property of prob-
abilistically approximately complete (PAC) [24], which is commonly used in the AI
community to discuss completeness properties of local search algorithms. It fol-
lows the traditional notion of non-deterministic computation of Turing machines,
which entails that we treat probabilistic choices as non-deterministic choices [24].

The basic idea of our approach is illustrated in Fig. 1 and described more
precisely in pseudo code in Fig. 2. It is applied to propositional formulas (the
bit-level) and quantifier-free bit-vector formulas (the word-level) as follows.

Given a formula φ, we assume without loss of generality that φ is a directed
acyclic graph (DAG) with a single root r (the so-called root constraint or output
of φ). We use the letter σ to refer to complete but non-satisfying assignments to
all inputs and operators in φ. We further identify complete satisfying assignments
with the letter ω. Starting from a random but non-satisfying initial assignment σ1
with σ1(r) = 0, our goal is to reach a satisfying assignment ω with ω(r) = 1 by
iteratively changing the values of primary inputs. We identify ω(r) = 1 as the
target value of output r (line 3), denoted as 0 1 in Fig. 1, and propagate this
value along a path towards the primary inputs (lines 4-7). We also refer to this

3

σ1 σ2 σk ω

r

v1

0 1

r

v2

0 1

. . .
v1 7→x1 v2 7→x2

r

vk

0 1

r

1
vk 7→xk

Fig. 1: Basic idea of our propagation-based local search approach. Starting from an
unsatisfying assignment σ1, we force root r to assume its target value ω(r) = 1 and
iteratively propagate this information towards the inputs until we find a solution ω.

1 function sat (r, σ)
2 while σ(r) 6= 1 // while not satisfied
3 g := r, t := 1 // initialize path as root path
4 while ¬leaf (g) // while current node is an operator
5 n := child (σ, t, g) // select backtracing node
6 x := value (σ, t, g, n) // select backtracing value
7 g := n, t := x // backtracing step (propagation)
8 if ¬constant (g) // check if leaf is variable v = g
9 σ := update (σ, g, t) // apply move to variable v = g

10 return true // return with true if satisfied

Fig. 2: The core sat procedure in pseudo-code.

process as “backtracing” [20]. Recursively propagating target value ω(r) = 1 from
the output to the primary inputs yields a new value xi 6= σi(vi) for an input vi
(e.g., x1 for v1 in Fig. 1). By updating assignment σi on input vi to σi+1(vi) = xi
(e.g., σ2(v1) = x1 in Fig. 1) without changing the value of other primary inputs but
recomputing consistent values for inner nodes (lines 8-9), we move from σi to σi+1

and repeat this process until we reach a satisfying assignment, i.e., σi+1 = ω.

When down-propagating assignments, we identify path selection (line 5) and
selecting the value to propagate (line 6) as the only sources of non-determinism.
However, we aim to maximally reduce non-deterministic choices without sacri-
ficing completeness. Hence, on the bit-level, path selection prioritizes controlling
inputs w.r.t. the current assignment, a well-known concept from ATPG, while
value selection for a selected input is uniquely defined. On the word-level, we in-
troduce the corresponding new notion of essential inputs, which lifts the bit-level
concept of controlling inputs to the word-level, and restrict value selection to the
computation of what we refer to as consistent and inverse values.

As expected for local search, our propagation-based approach is not able to
determine unsatisfiability. Thus the algorithm in Fig. 2 does not terminate in
case that a given input formula is unsatisfiable. When determining satisfiability,
however, our propagation-based local search approach is complete (PAC), i.e.,
there exists a non-deterministic choice of moves that leads to a solution.

In the following, we first introduce and formalize our propagation-based ap-
proach on the bit-level and prove its completeness. We then lift it to the word-level,
and prove its completeness on the word-level. We further analyze randomization

4

effects as result of using different seeds for the random number generator and show
that our techniques yield substantial performance improvements, in particular in
combination with bit-blasting within a sequential portfolio setting.

3 Bit-Level

For the sake of simplicity and without loss of generality we consider a fixed Boolean
formula φ and restrict the set of Boolean operators to {∧,¬}. We interpret φ as a
single-rooted And-Inverter-Graph (AIG) [29], where an AIG is a DAG represented
as a 5-tuple (r,N,G, V,E).

The set of nodes N = G ∪ V contains the single root node r ∈ N, and is further
partitioned into a set of gates G and a set of primary inputs (or variables) V .
We require that the set of variables is non-empty, i.e., V 6= ∅, and assume that
the Boolean constants B = {0, 1}, i.e., {false, true}, do not occur in N . This
assumption is without loss of generality since every occurrence of true and false
as input to a gate g ∈ G can be eliminated through rewriting.

The set of gates G = A ∪ I consists of a set of and-gates A and a set of inverter -
gates I. We write g = n ∧m if g ∈ A, and g = ¬n if g ∈ I. We further refer to
the children of a node g ∈ G as its (gate) inputs (e.g., n or m). Let E = EA ∪EI
be the edge relation between nodes, with EA : A→ N2 and EI : I → N describing
edges from and- resp. inverter -gates to its input(s). We write E(g) = (n,m) for
g = n∧m and E(g) = n for g = ¬n and further introduce the notation g → n for
an edge between a gate g and one of its inputs n.

We define a complete assignment σ of the given fixed formula φ as a complete
function σ : N → B. Similarly, a partial assignment α of formula φ is defined as a
partial function α : N → B. We say that a complete assignment σ is consistent on
a gate g ∈ I with g = ¬n iff σ(g) = ¬σ(n), and consistent on a gate g ∈ A with
g = n ∧m iff σ(g) = σ(n) ∧ σ(m).

A complete assignment σ is globally consistent on φ (or just consistent) iff it
is consistent on all gates g ∈ G. An assignment σ is satisfying if it is consistent
(thus complete) and satisfies the root, i.e., σ(r) = 1. We use the letter ω to denote
a satisfying assignment. A formula φ is satisfiable if it has a satisfying assignment.
We use C to denote the set of consistent assignments, andW withW ⊆ C to denote
the set of satisfying assignments of formula φ.

Given two consistent assignments σ and σ′, we say that σ′ is obtained from σ by
flipping the (assignment of a) variable v ∈ V, written as σ

v−→ σ′, iff σ(v) = ¬σ′(v)
and σ(u) = σ′(u) for all u ∈ V \{v}. We also refer to flipping a variable as a
move. Note that σ′(g) for gates g ∈ G is defined implicitly due to consistency of
assignment σ′ after fixing the values for the primary inputs V .

Given a set of variables V that can be flipped non-deterministically, let S : C →
P(M) be a (local search) strategy that maps a consistent assignment to a set of
possible moves M = V . Note that in general, there exist different notions of
strategy, e.g., as in the context of game theory or synthesis. In the context of local
search, using the term “strategy” as defined above is well established, e.g., [24,37].
Further note that since a move corresponds to flipping a variable, the set of possible
moves M corresponds to the set of variables V and is redundant on the bit-level.
However, we use the same notation on the word-level whereM captures the set of

5

moves valid under a strategy as a set of input value pairs, since a word-level move
requires to additionally identify the new value of an input.

A move v ∈ V is valid under strategy S for assignment σ ∈ C if v ∈ S(σ).
Similarly, a sequence of moves µ = (v1, . . . , vk) ∈ V ∗ of length k = |µ| with
v1, . . . , vk ∈ V is valid under strategy S, iff there exists a sequence of consistent as-
signments (σ1, . . . , σk+1) ∈ C∗ such that σi

vi−→ σi+1 and vi ∈ S(σi) for 1 ≤ i ≤ k.
In this case, assignment σk+1 can be reached from assignment σ1 under strategy S
(with k moves), also written as σ1 →∗ σk+1.

Definition 1 (Complete Strategy) If formula φ is satisfiable, then a strategy S
is called complete iff for all consistent assignments σ ∈ C there exists a satisfying
assignment ω ∈ W such that ω can be reached from σ under S, i.e., σ →∗ ω.

Given an assignment σ ∈ C and a satisfiable assignment ω ∈ W, let ∆(σ, ω) =
{v ∈ V | σ(v) 6= ω(v)} be the set of variables with different values in σ and ω.
Thus, HD(σ, ω) = |∆(σ, ω)| is the Hamming Distance between σ and ω on V .

Definition 2 (Distance-Reducing Strategy) A strategy S is (non-deterministi-
cally) distance reducing, if for all assignments σ ∈ C\W there exists a satisfying

assignment ω ∈ W and a move σ
v−→ σ′ valid under S which reduces the Hamming

Distance. That is, move v ∈M is in ∆(σ, ω), thus HD(σ, ω)−HD(σ′, ω) = 1.

Obviously, any distance reducing strategy can reach a satisfying assignment
(though not necessarily ω) within at most HD(σ, ω) moves. This first observation
is the key argument in the completeness proofs for our propagation based strategies
(both on the bit-level and word-level).

Proposition 3 A distance reducing strategy is also complete.

In the following, our ultimate goal is to define a strategy that maximally re-
duces non-deterministic choices without sacrificing completeness. In the algorithm
shown in Fig. 2, path selection (selecting the backtracing node in line 5) and value
selection (selecting the backtracing value in line 6) while down-propagating assign-
ments constitute the only sources of non-determinism. As we will show later, in
contrast to value selection on the word-level, selecting a backtracing value on the
bit-level is uniquely defined. When selecting a backtracing node on the bit-level,
non-determinism can be reduced by utilizing the notion of controlling inputs from
ATPG [30], which is defined as follows.

Definition 4 (Controlling Input) Let node n ∈ N be an input of a gate g ∈ G,
i.e., g → n, and let σ be a complete assignment consistent on g. We say that
input n is controlling under σ if for all complete assignments σ′ consistent on g
with σ(n) = σ′(n) we have σ(g) = σ′(g).

In other words, gate input n is controlling if the assignment of g (i.e., its output
value) remains unchanged as long as the assignment of n does not change.

Given an assignment σ consistent on g ∈ G, we denote a target value t for
gate g as σ(g) t. On the bit-level, target value t is implicitly given through
assignment σ as t = ¬σ(g), i.e., t can not be reached as long as the controlling
inputs of g remain unchanged. On the word-level, t may be any value t 6= σ(g).

6

Example 5 Figure 3 shows all possible assignments σ consistent on a gate g ∈ G.
At the outputs we denote current assignment σ(g) and target value t as σ(g) t
with t = ¬σ(g), e.g., 0 1. At the inputs we show their assignment under σ. All
controlling inputs are indicated with an underline. Note that and-gate g = n ∧m
has no controlling inputs for σ(g) = 1.

¬

0 1

1

¬

1 0

0

∧

0 1

0 1

∧

0 1

1 0

∧

0 1

0 0

∧

1 0

1 1

Fig. 3: An inverter -gate and an and-gate and their controlling (underlined) inputs.
Given output values indicate the transition from current to target value.

We define a sequence of nodes π = (n1, . . . , nk) ∈ N+ as a path of length k
with k = |π| iff ni → ni+1 for 0 < i < k, also written as n1 → . . .→ nk. A path π
is rooted if n1 = r, and (fully) expanded if nk ∈ V . We refer to nk ∈ V as the
leaf of π in this case. As a restriction on φ, we require all nodes n ∈ N to be
reachable from the root r, i.e., there exists a path π such that π = (r, . . . , n). We
further require all paths to be acyclic, i.e., for all n ∈ N there exists no path
n→+ n. Note that as a consequence of representing φ as a DAG, this is the case
for any path in φ. Given a path π = (. . . , g) with gate g ∈ G and g → n, we say
that π.n = (. . . , g, n) is an extension of path π with node n.

Definition 6 (Path Selection) Given a complete assignment σ ∈ C and a path
π = (. . . , g) as above. Gate input n can be selected w.r.t. assignment σ to extend
path π to π.n if input n is controlling or if gate g has no controlling input.

Path selection based on the notion of controlling inputs as introduced above
exploits observability don’t cares as defined in the context of ATPG [30]. Similarly,
we adopt the ATPG idea of backtracing [20,30] as follows.

Definition 7 (Backtracing Step) Given a complete assignment σ ∈ C and a
gate g ∈ G with g → n. A backtracing step w.r.t. assignment σ selects gate input n
w.r.t. assignment σ as in Def. 6 and determines a backtracing value x for input n
as follows. If g = ¬n, then x = σ(g). Else, if g = n ∧m, then x = ¬σ(g).

As an important observation it turns out that performing a bit-level backtrac-
ing step always flips the value of the selected input under σ. For a selected input,
the backtracing value is therefore always unique. This can be checked easily by
considering all possible scenarios shown in Fig. 3.

Proposition 8 A backtracing step yields as backtracing value x = ¬σ(n).

Example 9 Consider g = n ∧m and the assignment σ = {g 7→ 0, n 7→ 0, m 7→ 1}
consistent on g as depicted in Fig. 3. Assume that t = ¬σ(g) = 1 is the target
value of g, i.e., σ(g) t with 0 1. We select n as the single controlling input
of g (underlined), which yields backtracing value x = ¬σ(n) = 1.

7

A trace τ = (π, α) is a rooted path π = (n1, . . . , nk) labelled with a partial
assignment α, where α is defined exactly on {n1, . . . , nk}. A trace (π, α) is (fully)
expanded, if π is a fully expanded path, i.e., node nk ∈ V is the leaf of π and τ .

Let σ ∈ C\W be a complete consistent but non-satisfying assignment. Then the
notion of extension is lifted from paths to traces as follows. Given a trace τ = (π, α)
with π = (. . . , g), g ∈ G and g → n. A backtracing (or propagation) step w.r.t. σ
and target value t = ¬σ(g) = α(g) yields backtracing value x = ¬σ(n) = α′(n)
and extends trace τ to τ ′ = (π′, α′) (also denoted as τ → τ ′) if path π′ = π.n is
an extension of π and α′(m) = α(m) for all nodes m in π.

We define the root trace ρ = ((r), {r 7→ 1}) as a trace that maps root r to
its target value ω(r) = 1. A propagation trace w.r.t. assignment σ is a (possibly
partial) trace τ that starts from the root trace ρ and is extended by propagation
steps w.r.t. assignment σ, denoted as ρ→∗ τ .

Note that given a path π and σ, partial assignment α is redundant on the
bit-level. However, we use the same notation on the word-level, where α captures
updates to σ along π, which (in contrast to the bit-level) are not uniquely defined.

Definition 10 (Propagation Strategy) Given a non-satisfying but consistent
assignment σ ∈ C\W, the set of valid moves P(σ) for σ under propagation strat-
egy P contains exactly the leafs of all expanded propagation traces w.r.t σ.

In the following, we present and prove the main Lemma of this paper, which
then immediately gives completeness of strategy P in Theorem 12. It is reused for
proving completeness of the extension of P to the word-level in Theorem 25.

Lemma 11 (Propagation Lemma) Given a non-satisfying but consistent as-
signment σ ∈ C\W, then for any satisfying assignment ω ∈ W, used as an oracle,
there exists a fully expanded propagation trace τ w.r.t. σ with leaf v ∈ ∆(σ, ω).

Proof The basic idea of our completeness proof is to inductively extend the root
trace ρ to traces τ = (π, α), i.e., ρ →∗ τ , through propagation steps, which all
satisfy the (key) invariant

α(n) = ω(n) 6= σ(n) for all nodes n in π. (1)

The root trace ρ = ((r), {r 7→ ω(r)}) obviously satisfies this invariant. Now,
let τ = (π, α) be a trace that satisfies the invariant but is not fully expanded,
i.e., π = (r, . . . , g) with g ∈ G and α(g) = ω(g) 6= σ(g). Since σ(g) 6= ω(g) it
follows that g has at least one input n with σ(n) 6= ω(n). If g has no controlling
input, then by Def. 6 it is allowed to select n as an input with σ(n) 6= ω(n).
Otherwise, input n is selected as any controlling input. In both cases we select
x = ω(n) 6= σ(n) as backtracing value using Prop. 8. Trace τ is now extended
by n with backtracing value x to τ ′, i.e., τ → τ ′, which in turn concludes the
inductive proof of Equation (1). Any fully expanded propagation trace τ = (π, α)
with leaf v ∈ V , as generated above, also satisfies the invariant in Equation (1).
Thus, we have α(v) = ω(v) 6= σ(v) with v ∈ ∆(σ, ω). ut

In essence, given assignment σ and ω as above, our propagation strategy prop-
agates target value ω(r) from root r towards the primary inputs, ultimately pro-
ducing a fully expanded propagation trace τ = (π, α). In case of non-deterministic

8

choices for extending the trace we use ω as an oracle to pick an input n with
σ(n) 6= ω(n), which can be selected according to Def. 6. The oracle allows us to
ensure that for all nodes n ∈ π, α(n) = ω(n), which yields α(v) = ω(v) 6= σ(v) and
consequently v ∈ ∆(σ, ω) for leaf v of τ . Thus, using Lemma 11, our propagation
strategy turns out to be distance reducing, and therefore, according to Prop. 3,
complete. Figure 4 illustrates the basic idea of our proof, which, in the following,
serves as a basis for lifting our approach from the bit-level to the word-level.

Theorem 12 Under the assumptions of the previous Lemma 11 we also get v ∈
P(σ) for leaf v. Thus, P is distance reducing and, as a consequence, complete.

4 Word-Level

In the following, we only consider bit-vector expressions of fixed bit-width w ∈ N.
We denote a bit-vector expression n of width w as n[w], but will omit the bit-width
if the context allows. We refer to the i-th bit of n[w] as n[i] with 1 ≤ i ≤ w and,
for the sake of simplicity, define bit indices as starting from 1 rather than 0. We
interpret n[1] as the least significant bit (LSB) and n[w] as the most significant bit
(MSB), and denote bit ranges over n from bit index j down to index i as n[j : i]. In
string representations of bit-vectors, we interpret the bit at the far left index as the
MSB and the bit at the far right index as the LSB. We further define ctz to be the
common function that counts the number of trailing zeroes of a given bit-vector,
i.e., the number of consecutive 0-bits starting from the LSB, e.g., ctz (0101) = 0
and ctz (111100) = 2. Similarly, clz is the common function to compute the number
of leading zeroes, i.e., the number of consecutive 0-bits starting from the MSB, e.g.,
clz (0101) = 1 and clz (111100) = 0.

σ1 σ2 σk ω

r

v1

0 1

σ1(r) = 0
σ1(v1) 6= ω(v1)
v1 = ω(v1)

π1

r

v2v1

0 1

. . .
v1 7→x1 v2 7→x2

σ2(r) = 0
σ2(v1) = ω(v1)
σ2(v2) 6= ω(v2)
v2 = ω(v2)

π2

r

vkv2v1 ...

0 1

σk(r) = 0
σk(v1) = ω(v1)
σk(v2) = ω(v2)

...
σk(vk) 6= ω(vk)
vk = ω(vk)

πk

r

vkv2v1

1

...

vk 7→xk

ω(r) = 1

HD(σ1, ω) > HD(σ2, ω)
HD(σ2, ω) > HD(σk, ω)

HD(σk, ω) > 0

Fig. 4: The basic idea of our completeness proof. Using a satisfying assignment ω
as an oracle, in each move σi → σi+1 we down-propagate target value x = ω(n) for
all nodes n in propagation path πi = (r, . . . , vi), which yields update xi = ω(vi) =
σi+1(vi) and thus reduces the hamming distance HD(σi, ω) > HD(σi+1, ω).

9

Bit-Width
Operator SMT-LIB Arity Output Input

[j : i] extract 1 j − i+ 1 w − − Extraction (1 ≤ i ≤ j ≤ w)

∼ bvnot 1 w w − − Bit-wise negation

& bvand 2 w w w − Bit-wise conjunction

= = 2 1 w w − Equality

< bvult 2 1 w w − Unsigned less than

<< bvshl 2 w w q − Logical shift left (w = 2q)

>> bvshr 2 w w q − Logical shift right (w = 2q)

+ bvadd 2 w w w − Addition

· bvmul 2 w w w − Multiplication

÷ bvudiv 2 w w w − Unsigned division

mod bvurem 2 w w w − Unsigned remainder

◦ concat 2 p+ q p q − Concatenation

if-then-else ite 3 w 1 w w Conditional

Table 1: The set of considered bit-vector operators (w, p, q, i, j ∈ N).

For the sake of simplicity and without loss of generality we consider a fixed
single-rooted quantifier-free bit-vector formula φ and interpret Boolean expres-
sions as bit-vector expressions of bit-width one. The set of bit-vector operators is
restricted to O = {&,∼,=, <,<<,>>,+, ·,÷,mod, ◦, [:], if-then-else} and inter-
preted according to Tab. 1. The selection of operators in O is rather arbitrary but
provides a good compromise between effective and efficient word-level rewriting
and compact encodings for bit-blasting approaches. It is complete, though, in the
sense that all operators defined in SMT-LIB [5] (in particular signed operators)
can be modeled in a compact way. Note that our methods are not restricted to
single-rootedness or this particular selection of operators, and can easily be lifted
to any other set of operators or the multi-rooted case.

We interpret formula φ as a single-rooted DAG represented as an 8-tuple
(r,N, κ,O, F, V,B,E). The set of nodes N = O ∪ V ∪B contains the single root
node r ∈ N of bit-width one, and is further partitioned into a set of operator
nodes O, a set of primary inputs (or bit-vector variables) V, and a set of bit-vector
constants B ⊆ B∗, which are denoted in either decimal or binary notation if the
context allows. The bit-width of a node is given by κ : N → N, thus κ(r) = 1.
Operator nodes are interpreted as bit-vector operators via F : O → O, which in
turn determines their arity and input and output bit-widths as defined in Tab. 1.
The edge relation between nodes is given as E = E1 ∪ E2 ∪ E3, with Ei : O → N i

describing the set of edges from unary, binary, and ternary operator nodes to its
input(s), respectively. We again use the notation o→ n for an edge between an
operator node o and one of its inputs n.

We only consider well-formed formulas, where the bit-widths of all operator
nodes and their inputs conform to the conditions imposed via interpretation F as
defined in Tab. 1. For instance, we denote a bit-vector addition node o with in-
puts n and m as o = n+m, where o ∈ O of arity 2 with F (o) = +, and therefore
κ(o) = κ(n) = κ(m). In the following, if more convenient we will use the func-
tional notation o = �(n1, . . . , nk) for operator node o ∈ O of arity k with inputs
n1, . . . , nk and F (o) = �, e.g., +(n,m). Note that the semantics of all opera-

10

tors in O correspond to their SMT-LIB counterparts listed in Tab. 1, with three
exceptions. Given a logical shift operation n<<m or n>>m, w.l.o.g. and as im-
plemented in our SMT solver Boolector [34], we restrict bit-width κ(n) to 2κ(m).
Further, as implemented by Boolector and other state-of-the-art SMT solvers, e.g.,
MathSAT [13] Yices [14] and Z3 [31], we define an unsigned division by zero to
return the greatest possible value rather than introducing uninterpreted functions,
i.e., x÷ 0 = ∼ 0. Similarly, x mod 0 = x.

A complete assignment σ of a given fixed φ is a complete function σ : N → B∗
with σ(n) ∈ Bκ(n), and a partial assignment is a partial function α : N → B∗ with
α(n) ∈ Bκ(n). Given an operator node o ∈ O with o = �(n1, . . . , nk) and � ∈ O,
a complete assignment σ is consistent on o if σ(o) = f(σ(n1), . . . , σ(nk)) where
f : Bκ(n1) × · · · × Bκ(nk) → Bκ(o) is determined by the semantics of operator � as
defined in the SMT-LIB standard [5] (with the exceptions discussed above).

A complete assignment is (globally) consistent on φ (or just consistent), iff
it is consistent on all bit-vector operator nodes o ∈ O and σ(b) = b for all bit-
vector constants b ∈ B. A satisfying assignment ω is a complete and consistent
assignment that satisfies the root, i.e., ω(r) = 1. In the following, we will again
use the letter C to denote the set of complete and consistent assignments, and the
letter W with W ⊆ C to denote the set of satisfying assignments of formula φ.

Given a bit-vector variable v ∈ V with κ(v) = w and assignments σ, σ′∈ C.
We adopt the notion of obtaining assignment σ′ from assignment σ by assigning
a new value x to variable v with x ∈ Bw and x 6= σ(v), written as σ

v 7→x−−−→ σ′,
which we refer to as a move. The set of word-level moves is thus defined as
M = {(v, x) | v ∈ V, x ∈ Bκ(v)}, and accordingly, a word-level propagation strat-
egy P is defined as a function S : C 7→ P(M), which maps a consistent assignment
to a set of moves. We lift propagation strategy P from the bit-level to the word-
level by first introducing our new notion of essential inputs, which lifts and extends
the bit-level notion of controlling inputs to the word-level.

Definition 13 (Essential Inputs) Let n ∈ N be an input of a bit-vector oper-
ator node o ∈ O, i.e., o→ n, and let σ be a complete assignment consistent on o.
Further, let t be the target value of o, i.e., σ(o) t, with t 6= σ(o). We say that n
is an essential input under σ w.r.t. target value t, if for all complete assignments σ′

consistent on o with σ(n) = σ′(n), we have σ′(o) 6= t.

In other words, an input n to an operator node o is essential w.r.t. some target
value t, if o can not assume t as long as the assignment of n does not change.
As an example, consider the bit-vector operators and their essential inputs under
some consistent assignment σ w.r.t. some target value t as depicted in Fig. 5.

Example 14 Consider the bit-vector operators {+, &, <<, ·, ÷, mod, ◦} of bit-
width 2 as depicted in Fig. 5. For an operator node o, at the outputs we denote
given assignment σ(o) and target value t as σ(o) t (e.g., 10 01). At the inputs
we show their assignment under σ. Essential inputs (under σ w.r.t. target value t)
are indicated with an underline.

(a) Given o := n + m with t = 10 and σ = {o 7→ 11, n 7→ 00, m 7→ 11 }.
Operator + has no essential inputs, independent from σ and t.

(b) Given o := n & m with t = 01 and σ = {o 7→ 10, n 7→ 10, m 7→ 11 }.
Input n is essential since t & σ(n) 6= t and thus, it is not possible to find a

11

value x for m such that σ(n) & x = t. Input m, however, is not essential since
t & σ(m) = t.

(c) Given o := n<<m with t = 10 and σ = {o 7→ 00, n 7→ 00, m 7→ 1}.
Input n is obviously essential, since shifting 00 can never result in the non-zero
target value t = 01. Input m, however, is not essential, since it is possible to
simply select, e.g., x = 01 for n such that t = 10 = x<<σ(m) = 01<< 1.

(d) Given o := n ·m with t = 10 and σ = {o 7→ 00, n 7→ 00, m 7→ 10}.
Input n is essential since t 6= 00 but σ(n) = 00, and thus, it is not possible to
find a value x for m such that σ(n) · x = t. Input m, however, is not essential
since we could pick, e.g., x = 01 for n to obtain t = 10 = x · σ(m) = 01 · 10.

(e) Given o := n÷m with t = 10 and σ = {o 7→ 01, n 7→ 01, m 7→ 01}.
Input n is essential since σ(n) < t, and thus, it is not possible to find a value x
for m such that σ(n)÷ x = t. Input m, however, is not essential, since we could
pick, e.g., x = 10 to obtain t = 10 = x · σ(m) = 10 · 01.

(f) Given o := n mod m with t = 10 and σ = {o 7→ 00, n 7→ 01, m 7→ 01}.
Since σ(n) = 01 < 10 = t, it is not possible to find a value x for m such that
σ(n) mod x = t. However, since σ(m) = 01 but t 6= 00, it is also not possible to
find a value x for n such that x mod σ(m) = t. Hence, both inputs are essential.

(g) Given o := n ◦m with t = 11 and σ = {o 7→ 01, n 7→ 0, m 7→ 1}.
Input n is essential since σ(n) 6= t[2 : 2], and thus, it is not possible to find a
value x for m such that σ(n) ◦ x = t. Input m, however, is not essential since
it already matches the corresponding slice of the target value.

+

11 10

00 11

(a)

&

10 01

10 11

(b)

<<

00 10

00 1

(c)

·

00 10

00 10

(d)

÷

01 10

01 01

(e)

mod

00 10

01 01

(f)

◦

01 11

0 1

(g)

Fig. 5: Bit-vector operator nodes and examples for essential (underlined) inputs.
Given output values indicate the transition from current to target value.

Note that bit-level expressions (AIGs) can be represented by bit-vectors of
bit-width one, which can be interpreted as word-level Boolean expressions. In this
sense, the notion of controlling inputs can also be applied to Boolean expressions
on the word-level.

Proposition 15 When applied to bit-level expressions, the notion of essential
inputs exactly matches the notion of controlling inputs.

Proof For applying the notion of essential inputs to bit-level expressions, consider
the operator set O = {¬,∧} = G and operator o ∈ G with o → n. Target value
t 6= σ(o) as in Def. 13 implies t = ¬σ(o) for operator o. This exactly matches
the implicit definition of the target value of a Boolean operator on the bit-level.
Now assume that input n is essential w.r.t. target value t. Then, if σ(n) = σ′(n),
by Def. 13 we have that σ′(o) 6= t, and therefore σ′(o) = ¬t = σ(o), which exactly

12

matches the notion of controlling inputs as in Def. 4. The other direction (applying
the notion of controlling inputs to word-level Boolean expressions exactly matches
the notion of essential inputs) works in the same way. ut

The definition of a (rooted and expanded) path as a sequence of nodes π =
(n1, . . . , nk) ∈ N∗ is lifted from the bit-level to the word-level in the natural way.
Corresponding restrictions and implications of Section 3 apply. The notions of path
selection and path extension are lifted to the word-level as follows.

Definition 16 (Path Extension) Given a path π = (. . . , o) with o ∈ O and
o→ n, we say that π.n = (. . . , o, n) is an extension of path π with node n.

Definition 17 (Path Selection) Given a complete consistent assignment σ ∈ C,
a path π = (. . . , o) as in Def. 16 above, and σ(o) t, i.e., t 6= σ(o), then input n
can be selected w.r.t. σ and target value t to extend π to π.n if n is essential or
if o has no essential input (in both cases essential under σ w.r.t. t).

∼

0 1

1

=

0 1

00 11

=

1 0

10 10

<

0 1

11 01

<

0 1

10 00

<

0 1

11 00

<

0 1

10 01

<

1 0

00 11

+

11 00

01 10

ite

00 01

1 00 10

ite

00 01

0 00 10

[1:1]

0 1

10

◦

00 10

0 0

◦

11 10

1 1

◦

01 10

0 1

&

10 01

10 11

&

01 10

11 01

&

00 11

10 01

&

11 00

11 11

·

00 10

00 10

·

10 11

11 10

·

00 01

10 10

·

01 11

11 11

÷

01 10

01 01

÷

01 11

11 10

÷

11 00

10 00

÷

01 11

01 01

mod

00 01

10 10

mod

00 10

10 01

mod

00 10

00 10

mod

00 01

10 10

<<

00 10

00 1

<<

10 01

01 1

<<

10 11

01 1

<<

10 00

10 0

>>

00 11

00 0

>>

00 01

01 1

>>

00 10

01 1

>>

00 01

01 1

Fig. 6: Examples for all combinations of essential (underlined) inputs for all bit-
vector operators in O. Underlined blue cases indicate that this input is a single
essential input. No input is essential for operators =, +, and if-then-else.

13

Figure 6 shows examples for all combinations of essential (underlined) and non-
essential inputs for all bit-vector operators in O. For an operator node o, an output
value σ(o) t indicates the desired transition from current assignment σ(o) to
target value t, and an input value shows its assignment under σ. Underlined blue
cases indicate that this input is a single essential input and will therefore always
be selected. Any other case (both inputs are essential or no input is essential)
represents a non-deterministic choice during path selection.

In contrast to value selection on the bit-level, where a backtracing step always
yields the flipped assignment of the selected input as backtracing value, on the
word-level, selecting a backtracing value is not uniquely defined but a source of
non-determinism. We consider three variants of value selection, under the following
assumptions. Let t be the target value of an operator node o ∈ O, and let σ ∈ C
be a complete assignment such that σ(o) 6= t. Further, assume that input n with
o→ n is selected w.r.t. target value t and σ as in Def. 17 above.

Definition 18 (Random Value) Any value x with κ(x) = κ(n) is called a
random value for input n.

Definition 19 (Consistent Value) A random value x is a consistent value for
input n w.r.t. target value t, if there is a complete assignment σ′ consistent on
operator node o with σ′(n) = x and σ′(o) = t.

In other words, a value is consistent for an input, if it allows to produce the
target value after changing values of other inputs if necessary. We compute a
consistent value as backtracing value x for input n as described in Tab. 2.

However, in some cases, restricting the notion of consistent values even further
may be beneficial. Consider the following motivating example.

Example 20 Consider a formula φ := 274177[65] · v = 18446744073709551617[65].
Computing x = 18446744073709551617[65] ÷ 274177[65] = 67280421310721[65] im-
mediately concludes with a satisfying assignment for φ.

The chances to select x = 67280421310721[65] if consistent values for the multi-
plication operator are chosen as described in Tab. 2 are arbitrarily small. Hence, we
also consider the notion of inverse values, which utilize the inverse of an operator.

Definition 21 (Inverse Value) A consistent value x is an inverse value for
input n w.r.t. target value t and assignment σ, if there exists a complete assign-
ment σ′ consistent on operator node o with σ′(n) = x, σ′(o) = t and σ′(m) = σ(m)
for all inputs m with o→ m and m 6= n.

In other words, a value is an inverse value for input n, if it allows to produce
the target value for an operator node without changing the assignment of its other
inputs. Consequently, an inverse value for input n is also consistent. We compute
an inverse value as backtracing value x for input n as described in Tab. 3-4.

Note that inverse value computation as initially presented in [36] is too restric-
tive for some operators, which is incomplete since it may inadvertently prune the
search. We therefore require that inverse value computation allows to generate all
possible values for all operators in O, which is the case for the rules for inverse
value computation as described in Tab. 3-4.

14

o := ∼ n Then x = ∼ t.

o := n = m Any value x is a consistent value for n.
o := m = n

o := n & m Let i be a bit index with 1 ≤ i ≤ κ(n). For all i, if t[i] = 1 then x[i] = 1,
o := m & n and else, x[i] is set arbitrarily.

o := n <m Any value x with x < ∼0 if t = 1 is a consistent value for n.

o := m < n Any value x with x 6= 0 if t = 1 is a consistent value for n.

o := n + m Any value x is a consistent value for n.
o := m + n

o := n ·m Any x with ctz (t) ≥ ctz(x) and x = 0 if t = 0 is a consistent value for n.
o := m · n

o := n÷m If t = ∼0 or t = 0, any value x with x < ∼0 if t = 0 is a consistent value
for n. In any other case, let y be a random value with y 6= 0 such that
y · t does not overflow. Then x = y · t.

o := m÷ n If t = ∼ 0, then x ∈ {0, 1} is a consistent value for n. Else, any value x
such that x · t does not overflow is a consistent value for n.

o := n mod m If t = ∼0 then x = ∼0, and a random x ≥ t, otherwise.

o := m mod n If t = ∼0 then x = 0, and a random x > t, otherwise.

o := n<<m Let s be a random value with 0 ≤ s ≤ ctz (t), and let w = κ(n). Then
x[i] = (t>>s)[i] for 1 ≤ i ≤ w − s, and all other bits x[i] set arbitrarily
for w − s < i ≤ w.

o := m<<n Any x with 0 ≤ x ≤ ctz (t) is a consistent value for n.

o := n<<m Let s be a random value with 0 ≤ s ≤ ctz (t), and let w = κ(n). Then
x[i] = (t>>s)[i] for 1 ≤ i ≤ w − s, and all other bits x[i] set arbitrarily
for w − s < i ≤ w.

o := m<<n Any x with 0 ≤ x ≤ ctz (t) is a consistent value for n.

o := n>>m Let s be a random value with 0 ≤ s ≤ clz (t), and let w = κ(n). Then
x[i] = (t<<s)[i] for s < i ≤ w, and all other bits x[i] set arbitrarily for
1 ≤ i ≤ s.

o := m>>n Any x with 0 ≤ x ≤ clz (t) is a consistent value for n.

o := n ◦m Let p = κ(n) and q = κ(m) and w = κ(o) = p+ q. Then x = t[w : q + 1]
is a consistent value for n.

o := m ◦ n Let p = κ(n) and q = κ(m) and w = κ(o) = p + q. Then x = t[q : 1] is a
consistent value for n.

o := n[j : i] Then a value x with x[k] = t[k + i− 1] for 1 ≤ k ≤ j − i+ 1 and all other
bits set arbitrarily is a consistent value for n.

o := if c then n else m
Any value x is a consistent value for n.o := if c then m else n

o := if n then m1 else m2

Table 2: Consistent value computation for all bit-vector operators in O, where t is
the target value of operator node o ∈ O, assignment σ ∈ C is a complete assignment
s.t. σ(o) 6= t, and input n with o→ n is selected w.r.t. t and σ as in Def. 17.

15

o := ∼ n Then x = ∼ t.

o := n = m
If t = 1, then x = σ(m). Else, any x 6= σ(m) is an inverse value for n.o := m = n

o := n & m Let i be a bit index with 1 ≤ i ≤ κ(n). If there is an i with t[i] = 1 and
o := m & n σ(m)[i] = 0, then there exists no inverse value for n. Otherwise, for all i,

if t[i] = 1 then x[i] = 1, or if t[i] = 0 and σ(m)[i] = 1 then x[i] = 0, and
else, x[i] is set arbitrarily.

o := n <m If t = 1 and σ(m) = 0, then there exists no inverse value. Else, any x with
t = x < σ(m) is an inverse value for n.

o := m < n If t = 1 and σ(m) = ∼0, then there exists no inverse value. Else, any x
with t = σ(m) < x is an inverse value for n.

o := n + m Then x = t− σ(m) = t+ (1 +∼σ(m)).
o := m + n

o := n ·m If t = σ(m) = 0, any x is an inverse value, but this contradicts assumption
o := m · n t 6= σ(o). If t 6= 0 and σ(m) = 0, or if σ(m) 6= 0 with ctz (t) < ctz (σ(m)),

there exists no inverse value. Otherwise, ctz (t) ≥ ctz (σ(m)) and σ(m) 6=
0. Let y = m>> ctz (σ(m)), thus y is odd. We compute y−1 as its multi-
plicative inverse modulo 2w, e.g., via the Extended Euclidean algorithm
(similar to word-level rewriting techniques that require solving for a vari-
able, e.g. [18]), and determine x as (t>> ctz (σ(m))) · y−1 except that all
bits in x[w : w − ctz (σ(m)) + 1] are set arbitrarily, with w = κ(n).

o := n÷m If t = ∼ 0 and σ(m) = 0, then any x is an inverse value, but this con-
tradicts assumption t 6= σ(o). If t = ∼0 and σ(m) 6∈ {0, 1}, or if t 6= ∼0
and σ(m) = 0, or if t · σ(m) produces an overflow, there exists no inverse
value for n. Else, if t = ∼ 0 and σ(m) = 1, then x = ∼ 0. In any other
case, any x with t = x÷ σ(m) is an inverse value.

o := m÷ n If t = σ(m) = 0, then any x is an inverse value, but this contradicts
assumption t 6= σ(o). If t = 0 and σ(m) = ∼ 0, or if m < t, then there
exists no inverse value for n. If t = σ(m) = ∼ 0, then x ∈ {0, 1}, and if
t = ∼0 and σ(m) 6= ∼0, then x = 0. Else, if t = 0 and σ(m) 6= ∼0, then
any random x > σ(m) is an inverse value. In any other case, any x with
t = σ(m)÷ x is an inverse value for n.

o := n mod m If σ(m) ≤ t, then there exists no inverse value. Else, we select a y 6= 0 such
that neither in the multiplication nor the addition operation of σ(m)·y+t
occurs an overflow. Then x = σ(m) · y + t is an inverse value for n.

o := m mod n If σ(m) < t, or if t 6= 0 and t = σ(m)− 1, or if σ(m)− t ≤ t, then there
exists no inverse value for n. Else, if σ(m) = t, then x = 0 or any x > t
is an inverse value for n. In any other case, any x = (σ(m)− t)÷ y with
y > 0 such that (σ(m)− t) mod y = 0 is an inverse value for n.

o := n<<m If σ(m) = 0, then any x is an inverse value. Else, if ctz (t) ≥ ctz (m), then
x = t>>σ(m) with all bits in x[w : w − σ(m) + 1] with w = κ(n) set
arbitrarily. In any other case, there exists no inverse value for n.

o := m<<n If t = σ(m) = 0, then any x is an inverse value, but this contradicts
assumption t 6= σ(o). If ctz (m) ≤ ctz (t), if t = 0, any x ≥ ctz (t)− ctz (m)
is an inverse value for n, and else, x = ctz (t)−ctz (m) is an inverse value if
the remaining shifted bits in t match with the corresponding bits in σ(m),
i.e., if t[w : x+ 1] = σ(m)[w − x : 1] with w = κ(n) = κ(o). In any other
case, there exists no inverse value for n.

Table 3: Inverse value computation for ∼, =, &, <, +, ·, ÷, mod and <<, where t
is the target value of operator node o ∈ O, σ ∈ C is a complete assignment
s.t. σ(o) 6= t, and input n with o→ n is selected w.r.t. t and σ as in Def. 17.

16

o := n>>m If σ(m) = 0, then any x is an inverse value. Else, if clz (t) ≥ clz (m) then
x = t<<σ(m) with all bits in x[σ(m) : 1] set arbitrarily. In any other case,
there exists no inverse value for n.

o := m>>n If t = σ(m) = 0, then any x is an inverse value, but this contradicts as-
sumption t 6= σ(o). If clz (m) ≥ clz (t), if t = 0, then any x ≥ clz (t)−clz (m)
is an inverse value for n, and else, x = clz (t)− clz (m) is an inverse value, if
the remaining shifted bits in t match with the corresponding bits in σ(m),
i.e., if t[w − x : 1] = σ(m)[w : x + 1] with w = κ(m) = κ(o). In any other
case, there exists no inverse value for n.

o := n ◦m Then any consistent value x is an inverse value for n.o := m ◦ n

o := n[j : i] Then any consistent value x is an inverse value for n.

o := if c then n else m
Then x = t.o := if c then m else n

o := if n then m1 else m2 Then x = ∼σ(n)

Table 4: Inverse value computation for >>, ◦, [:] and if-then-else, where t is the
target value of operator node o ∈ O, σ ∈ C is a complete assignment s.t. σ(o) 6= t,
and input n with o→ n is selected w.r.t. t and σ as in Def. 17.

Definition 22 (Backtracing Step) Let σ ∈ C be a complete consistent assign-
ment. Given an operator node o ∈ O with o→ n and a target value t 6= σ(o), then
a backtracing step selects input n of operator node o w.r.t. σ as in Def. 17 and
selects a backtracing value x for n as a consistent (and optionally inverse) value
w.r.t. σ and t if such a value exists, and a random value otherwise.

Note that it is not always possible to find an inverse value for input n, e.g.,
o := n & m with σ = {o 7→ 00, n 7→ 00,m 7→ 00} and t = 01. Further, even for
operators that allow to always produce inverse values, e.g., operator +, doing so
may lead to inadvertently pruning the search space, see Ex. 23 below.

Example 23 Consider formula φ := v + v + 2[2] = 0[2] with root r := p2 = 0[2],
where p2 := v + p1 and p1 := v + 2[2], and a complete consistent assignment
σ1 = {v 7→ 00, p1 7→ 10, p2 7→ 10, r 7→ 0}, as shown in Fig. 7a. Let t = 1 be the
target value of root r, i.e., our goal is to find a value for bit-vector variable v such
that p2 = 00, and thus, formula φ is satisfied. Assume that as in Fig. 7a-b, only
inverse values are selected for + operators during propagation. Down propagating
target values along the path indicated by blue arrows in Fig. 7a, the move v 7→
10 = α1(v) is generated, which consequently yields assignment σ2 = {v 7→ 10,
p1 7→ 00, p2 7→ 10, r 7→ 0} as indicated in Fig. 7b. Selecting the other possible
propagation path, the same move is produced. Thus, σ2 is independent of which
of the two paths is selected. Since σ2(r) 6= t, target value t is again propagated
down, which generates move v 7→ 00 = α2(v), again independently of which path
is selected. With this, we move back to the initial assignment σ1. Consequently,
a satisfying assignment, e.g., ω(v) = 01 or ω′(v) = 11, can not be reached by
only selecting inverse values. However, selecting a consistent but non-inverse value
for p1 as, e.g., in Fig. 7c, generates move v 7→ 01 = α′1(v), which yields a satisfying
assignment ω = {v 7→ 01, p1 7→ 11, p2 7→ 00, r 7→ 1}.

17

v 7→ 10

v 7→ 00

ω
v 7→ 01

=

+ 00

+

v 10

0 1

10 00

10 00

00 10

σ1 α1

a)

in
v

in
v

in
v

=

+ 00

+

v 10

0 1

10 00

00 10

10 00

σ2 α2

b)

in
v

in
v

in
v

=

+ 00

+

v 10

0 1

10 00

10 11

00 01

σ1 α′1

c)

in
v

co
n

in
v

Fig. 7: Example illustrating the necessity of choosing between random and inverse
values when down propagating assignments (backtracing). The output values in-
dicate the (desired) transition from current to target value. Other values indicate
the transition from current value to the inverse (inv) or consistent (con) value
yielded by down propagating the target output value.

As shown in Ex. 23, a propagation strategy using only inverse values without
further randomization is incomplete. Hence, when performing a backtracing step,
we in general select some consistent non-inverse value, if no inverse value exists,
and otherwise non-deterministically choose between consistent (but not necessarily
inverse) and inverse values. Since all operators in O are surjective for our selected
semantics (i.e., they can produce any target value, e.g., ∼0 mod 0 = ∼0), it is not
necessary to select inconsistent random values. For other sets of operators, how-
ever, this might be necessary. For the sake of completeness we therefore included
the selection of random values in the formal definition of backtracing steps.

Note that since on the bit-level the backtracing value for a selected input is
uniquely determined (see Prop. 8), the issue of value selection is specific to the
word-level. Further, when interpreting AIGs as word-level expressions, the notion
of backtracing steps on the bit-level as in Def. 7 exactly matches the word-level
notion as in Def. 22 using Prop. 15. As a side note, the problem of value selection
during word-level backtracing and subsequent word-level propagation is similar to
the problem of making a theory decision (“model assignment”) and propagating
this decision in MCSat [27,32].

The word-level propagation strategy P is defined in exactly the same way as for
the bit-level (see Def. 10) except that the word-level notion of backtracing based
on essential inputs and consistent and inverse value selection (Def. 22) replaces bit-
level backtracing based on controlling inputs (Def. 7), and the set of valid moves
P(σ) contains not only the leafs of all expanded propagation traces but also their
updated assignments, i.e., (v, α(v)) for a leaf v. Further important concepts defined
on the bit-level in Section 3 can be extended naturally to the word-level. These
concepts include (expanded) paths and traces, leafs, and trace extension. We omit
formal definitions accordingly.

18

Proposition 8, which is substantial for the bit-level proof of Lemma 11, does
not directly apply on the word-level due to the more sophisticated selection of
backtracing values. We lift Prop. 8 to the word-level as follows.

Proposition 24 Let σ ∈ C be a complete consistent assignment, and let ω be
a satisfying assignment ω ∈ W. Given operator node o ∈ O with o → n and
target value t = ω(o) 6= σ(o), i.e., σ(o) t, then there exists a backtracing step
w.r.t. assignment σ and target value t, which selects input n and backtracing value
x = ω(n) 6= σ(n).

Proof First, assume that operator node o has an essential input w.r.t. assign-
ment σ. Then we select an arbitrary essential input n of o. Since target value
t = ω(o) 6= σ(o), we get σ(n) 6= ω(n) by contraposition of Def. 13. Similarly, if o
has no essential inputs, then we select n as an arbitrary input with σ(n) 6= ω(n),
which has to exist since ω(o) 6= σ(o). In both cases, we can select x = ω(n) 6= σ(n)
as backtracing value, which is consistent for operator node o w.r.t. assignment σ
and target value t since ω is consistent. Picking a random value as backtracing
value, which is the last case in Def. 22, can not occur under the given assumptions
since, as already discussed, ω is consistent on o. ut

Using Prop. 24 instead of Prop. 8, the bit-level proof of Lemma 11 can then
be lifted to the word-level by replacing every occurrence of gate g with operator
node o, and the notion of “controlling” input with “essential” input.

Theorem 25 Theorem 12 and Lemma 11 also apply on the word-level, and thus,
propagation strategy P is also complete on the word-level.

Note that even though Prop. 24 would allow us to restrict the selection of
consistent and inverse backtracing values to be different from the current input
node value, i.e., x 6= σ(n), we do not enforce this property. Restricting value
selection to a value x 6= σ(n) interferes with path selection, in particular in the case
where an input node is selected for which the current value is the only consistent
or inverse value. We leave the exploration of this optimization to future work.

5 Experimental Evaluation

We implemented our propagation strategy within our SMT solver Boolector [34]
and consider the following configurations.

(1) Bb The core Boolector engine, which implements a bit-blasting approach.
This configuration is identical to the version that entered the QF BV track of
the SMT competition 2016 and uses (internal) version bbc of our SAT solver
Lingeling [8] as back end solver.

(2) Bsls The score-based local search approach of [16] as implemented in Boolec-
tor [36], with random walks enabled. This approach lifts stochastic local search
for SAT to the word-level and iteratively moves from a non-satisfying towards
a satisfying assignment by flipping single bits or incrementing, decrementing
and (bit-wise) negating the values of the primary inputs. Moves are in general
selected as the best (improving) moves according to some score function, and

19

if no such move exists, a random value is chosen. If random walks are enabled,
with a certain probability some random (and not necessarily the best) move is
performed. This configuration mainly corresponds to the default configuration
of [16] as implemented in Z3 [31] except for the score definition, which differs
due to implementation issues (as described in [36]).

(3) Paig The bit-level configuration of our propagation-based approach, which
operates on the AIG representation of a given input as bit-blasted by Boolector.

(4) Pw The word-level configuration of our propagation-based approach which
directly operates on the given bit-vector formula, with inverse values prioritized
over consistent values during backtracing with a probability of 99 to 1.

Note that the choice of rewriting and other simplification techniques applied prior
to the actual decision procedure may considerably influence its performance. In
order to provide the same basis for comparison and avoid skewed results due to
differences in the rewriting and simplification techniques applied by Z3 [31] versus
Boolector, we do not compare our propagation-based approach against the original
implementation of [16] in Z3 but against our implementation of [16] in Boolector
(configuration Bsls). All configurations of Boolector apply the same set of rewriting
and simplification techniques in the same order.

Since [35] and in particular for the SMT competition 2016, we improved sev-
eral core components of Boolector, which affects all the configurations above. The
default configurations of Paig and Pw therefore show major improvements in com-
parison to [35]. In comparison to [36], the default configuration of Bsls, however,
seems to perform worse. This is solely due to minor changes within the score-based
local search engine of Boolector that affect the random number generator (RNG).
We will show that the difference in the number of solved instances compared to [36]
lies within the expected variance caused by randomization effects. Note that where
not otherwise noted, in the default configuration of all local search configurations
Bsls, Paig and Pw we will use a seed of value 0 for the RNG.

We compiled a set of in total 16436 benchmarks1 and included all benchmarks
with status sat or unknown in the QF BV category of the SMT-LIB [6] benchmark
library except those proved by Bb to be unsatisfiable within a time limit of 1200
seconds. We further excluded all benchmarks solved by Boolector via rewriting
only. Note that our benchmark set is the same set we already used in [36] and [35].
Previously, all benchmarks in the Sage2 family that used non-SMT-LIBv2 compli-
ant operators had to be explicitly excluded from the set above. However, since the
SMT competition 2016, these benchmarks have been removed from SMT-LIB.

All experiments were performed on a cluster with 30 nodes of 2.83 GHz Intel
Core 2 Quad machines with 8 GB of memory using Ubuntu 14.04.3 LTS. Each
run is limited to use 7 GB of main memory. In terms of runtime we consider CPU
time only. In case of a time out or memory out, the time limit is used as runtime.

Note that the results in [16] indicate that there still exists a considerable gap be-
tween the performance of state-of-the-art bit-blasting and word-level local search.
However, the latter significantly outperforms bit-blasting on several instances. We
therefore evaluated our local search configurations with regard to an application

1 All experimental data of this evaluation can be found at http://fmv.jku.at/fmsd16.

20

http://fmv.jku.at/fmsd16

within a sequential portfolio setting and apply a limit of 1 and 10 seconds for the
local search configurations, and a limit of 1200 seconds for the bit-blasting and
the sequential portfolio configurations.

We evaluated our propagation-based strategy in comparison to the score-based
local search approach in [16], in particular in terms of robustness with respect to
randomization effects. We run a batch of 21 runs of each configuration Pw, Paig
and Bsls with different seeds for the RNG of Boolector (one with default seed 0 and
20 with different random seeds) with a time limit of 10 seconds. Table 5 summarizes
the results of configurations Bb, Bsls, Paig and Pw with a time limit of 10 seconds
and default seed 0 for the local search configurations. As further illustrated in Fig. 8
and 9, overall, our word-level propagation strategy Pw clearly outperforms our bit-
level propagation strategy Paig and the score-based local search approach Bsls.

Figure 9 shows the results of Pw, Paig and Bsls over all 21 runs with different
seeds in terms of number of solved instances and runtime as box-and-whiskers plots
with the results of the runs with default seed 0 indicated with a red diamond. As a
measure for robustness we use the standard deviation (SD) and the inter-quartile
range (IQR), i.e., the distance between the lower quartile and the upper quartile, of
the results of all 21 runs with different seeds, where lower values indicate a higher
level of robustness. In terms of number of solved instances, for configuration Pw
(SD: 17.88, IQR: 27) both the SD and the IQR is less than half of the SD and
the IQR of Bsls (SD: 44.9, IQR: 60) and less than a third of the SD and IQR of
Paig (SD: 62.6, IQR: 82). These results suggest that compared to Paig, both Pw
and Bsls profit from directly working on the word-level, and overall, our word-level
propagation-based strategy is indeed more robust with respect to randomization
effects than the score-based local search approach of [16].

Even though overall Pw outperforms Paig and Bsls on some benchmarks in the
families sage, Sage2 and stp samples, in comparison to Bsls (457 instances) and
Paig (38 instances) configuration Pw seems to struggle. As an interesting observa-
tion, when bit-blasting the benchmarks in question, for the majority of benchmarks
more than 50% of the bit-vector expressions contain bits that have been simpli-
fied to the Boolean constants {0, 1} on the bit-level. Our bit-level strategy Paig
operates on the bit-blasted AIG layer where all constant bits are eliminated via
rewriting, and therefore always propagates target values that can actually be as-
sumed. Our word-level strategy Pw, however, does not know which bits can be
simplified to constant bits and may therefore determine and propagate target val-
ues that can never be assumed. Configuration Bsls, on the other hand, also does
not have any explicit information on constant bits but considers them implicitly
when exploring the neighborhood prior to performing a move since any neighbor
with constant bits not matching their value will not result in score improvement.

In an additional experiment, we evaluated the models of the 457 benchmarks
on which Pw seems to have a disadvantage over Bsls and identified an interesting
pattern. For more than 80% (374 instances) out of all 457 instances the assignment
of more than 50% of the inputs was 0, and for 80% (293 instances) out of these
instances, for more than 30% of the non-zero inputs only one bit was set to 1.
Hence, since Bsls starts with an initial assignment where all inputs are set to 0,
for this kind of benchmarks its focus on single bit flips allows to quickly move
the initial assignment towards a satisfying assignment. For more than 60% of all
457 instances, Bsls required less than 50 moves (in comparison, the maximum

21

Bsls Runtime [s]

P
w

R

u
n

ti
m

e
 [

s
]

0.01 0.1 1 10

0
.0

1
0
.1

1
1
0

 10x faster: 1769 (10.8%)

 100x faster: 694 (4.2%)

1000x faster: 27 (0.2%)

(a) Bsls vs. Pw

Paig Runtime [s]

P
w

R

u
n

ti
m

e
 [

s
]

0.01 0.1 1 10

0
.0

1
0
.1

1
1
0

 10x faster: 1149 (7.0%)

 100x faster: 879 (5.3%)

1000x faster: 343 (2.1%)

(b) Paig vs. Pw

Bb Runtime [s]

P
w

R

u
n

ti
m

e
 [

s
]

0.01 0.1 1 10

0
.0

1
0
.1

1
1
0

 10x faster: 1487 (9.0%)

 100x faster: 927 (5.6%)

1000x faster: 236 (1.4%)

(c) Bb vs. Pw

Fig. 8: Configurations Bsls, Paig and Bb versus Pw with a time limit of 10 seconds.

6800

6900

7000

7100

7200

7300

7400

7500

7600

7700

7800

7900

8000

8100

8200

P
w

P
a

ig

B
s

ls

solved

solved

7407

7436

7456

7496

7560

 Bsls

83900

84900

85900

86900

87900

88900

89900

90900

91900

92900

93900

94900

95900

96900

97900

98900

99900

P
w

P
a

ig

B
s

ls

CPU Time [s]

CPU Time [s]

93467.87

93616.22

93780.32

94143.74

93058.29

 Bsls

solved

8074

8099

8113

8126

8146

8094

 Pw

solved

6830

6891

6924

6973

7073

6945

 Paig

CPU Time [s]

83943.44

84128.98

84232.00

84290.29

84476.87

84372.04

 Pw

CPU Time [s]

98036.70

99008.95

99263.67

99798.45

98714.11

 Paig

Fig. 9: Number of solved instances and runtime over 21 runs (with different seeds)
of configurations Pw, Paig and Bsls with a time limit of 10 seconds.

22

6750

6850

6950

7050

7150

7250

7350

7450

7550

7650

7750

7850

7950

8050

8150

8250
P

w
P

w
−

1
B

s
ls

B
s

ls
−

1

solved

solved

8074

8099

8113

8126

8146

8094

 Pw

solved

8182

8205

8220

8247

8229

 Pw−1

83500

84500

85500

86500

87500

88500

89500

90500

91500

92500

93500

94500

95500

96500

97500

98500

99500

100500

P
w

P
w

−
1

B
s

ls
B

s
ls

−
1

CPU Time [s]

CPU Time [s]

83943.44

84128.98

84232.00

84290.29

84476.87

84372.04

 Pw

CPU Time [s]

83530.47

83722.54

83829.60

83911.90

84066.05

83730.04

 Pw−1

solved

7407

7436

7456

7496

7560

 Bsls

solved

6787

6824

6850

6946

6874

 Bsls−1

CPU Time [s]

93467.87

93616.22

93780.32

94143.74

93058.29

 Bsls

CPU Time [s]

99611.47

99983.34

100068.01

100192.23

100636.86

100167.48

 Bsls−1

Fig. 10: Number of solved instances and runtime over 21 runs (with different seeds)
of configurations Pw, Pw-1, Bsls and Bsls-1 with a time limit of 10 seconds.

number of moves for all solved instances is 3086). Configuration Pw starts with
the same initial assignment as Bsls, however, as mentioned above, the fact that the
majority of these 457 benchmarks contains a considerable amount of expressions
with constant bits seems to handicap Pw. These results suggest that for this set of
benchmarks the strategy of Bsls is advantageous over Pw and in particular profits
from an initial assignment where all inputs are set to 0. Hence, in an additional
experiment we introduce configurations Bsls-1 and Pw-1 where we initialized the
inputs with all bits set to 1 rather than 0. Figure 10 shows the performance of
Bsls-1 and Pw-1 in comparison to Bsls and Pw over 21 runs with different seeds
(again, one with default seed 0 and 20 with different random seeds) with a time
limit of 10 seconds. Table 6 further summarizes the results of Bsls, Bsls-1, Pw and
Pw-1 with default seed 0. Overall, configuration Bsls obviously profits considerably
from initializing the inputs with 0 since in comparison to Bsls the number of solved
instances of Bsls-1 drops by almost 10%. In particular on the set of 457 benchmarks
where Bsls had an advantage over our propagation-based strategy Pw, initializing
the inputs with 1 resulted in Bsls-1 only solving 42 instances (9.2%) within a time
limit of 10 seconds. Our propagation-based strategy, on the other hand, is much
more robust than Bsls with respect to the input initialization value and seems to
overall even profit from initializing the inputs with 1 rather than 0.

Figure 8c shows the performance of our propagation-based configuration Pw
compared to our bit-blasting configuration Bb with a time limit of 10 seconds. As
summarized in Table 5, even though there exists a considerable gap in the number
of solved instances between Bb and Pw (within 10 seconds, Bb solves almost 2000

23

Bb Bsls Paig Pw

Family Solved Time [s] Solved Time [s] Solved Time [s] Solved Time [s]

asp (376) 48 3526.2 0 3760.0 0 3760.0 0 3760.0

bench ab (223) 223 0.2 223 0.0 223 0.0 223 0.0

bmc (22) 20 58.5 10 122.2 11 134.3 13 116.3

brummayerbiere (26) 5 228.2 25 13.5 12 184.8 26 17.5

calypto (13) 4 92.4 4 91.1 2 110.2 5 93.3

check2 (1) 1 0.0 1 0.0 1 0.0 1 0.0

crafted (1) 1 0.0 1 0.0 1 0.0 1 0.0

dwp formulas (103) 103 0.4 103 0.0 103 0.0 103 0.0

fft (19) 4 159.2 0 190.0 0 190.0 1 180.5

float (126) 21 1124.9 0 1260.0 0 1260.0 27 1033.7

gulwani (6) 5 28.3 1 51.0 0 60.0 0 60.0

mcm (155) 14 1477.1 5 1523.1 5 1528.0 12 1440.2

pspace (21) 0 210.0 21 17.3 0 210.0 21 1.6

rubik (3) 1 23.1 0 30.0 0 30.0 0 30.0

RWS (20) 14 84.5 0 200.0 0 200.0 0 200.0

sage (6236) 6236 2602.9 5287 11117.4 4623 17036.3 5099 11615.9

Sage2 (6981) 1564 60634.3 613 64540.2 289 67648.1 526 64762.5

spear (1675) 1395 10587.1 1145 6848.8 1516 3516.0 1668 205.2

stp (1) 0 10.0 0 10.0 0 10.0 0 10.0

stp samples (149) 149 4.4 120 523.4 129 217.9 104 546.5

tacas07 (3) 3 11.5 2 10.2 2 11.3 2 10.2

uclid (262) 261 741.1 2 2610.1 28 2467.0 262 148.6

VS3 (10) 0 100.0 0 100.0 0 100.0 0 100.0

wienand (4) 0 40.0 0 40.0 0 40.0 0 40.0

total (16436) 10072 81744.5 7560 93058.3 6945 98714.1 8094 84372.0

Table 5: Bit-blasting configuration Bb and the local search configurations Bsls,
Paig and Pw with a time limit of 10 seconds grouped by benchmark families.

Bsls Bsls-1 Pw Pw-1

Family Solved Time [s] Solved Time [s] Solved Time [s] Solved Time [s]

asp (376) 0 3783.0 0 3786.0 0 3785.7 0 3785.2

bench ab (223) 223 0.0 223 0.2 223 0.0 223 0.0

bmc (22) 10 122.8 10 121.9 13 116.9 12 117.6

brummayerbiere (26) 25 13.6 26 0.1 26 17.5 26 0.1

calypto (13) 4 91.4 3 100.5 5 93.7 5 89.8

check2 (1) 1 0.0 1 0.0 1 0.0 1 0.0

crafted (1) 1 0.0 1 0.0 1 0.0 1 0.0

dwp formulas (103) 103 0.0 103 0.1 103 0.0 103 0.0

fft (19) 0 191.1 0 191.3 1 181.4 1 185.5

float (126) 0 1267.4 0 1267.5 27 1039.6 25 1064.8

gulwani (6) 1 51.3 0 60.5 0 60.3 0 60.4

mcm (155) 5 1531.8 3 1557.2 12 1448.6 12 1451.4

pspace (21) 21 17.3 21 0.9 21 1.6 21 0.0

rubik (3) 0 30.2 0 30.2 0 30.2 0 30.2

RWS (20) 0 201.2 0 201.0 0 201.0 0 201.1

sage (6236) 5287 11171.3 4910 14372.0 5099 11683.0 5096 11741.4

Sage2 (6981) 610 64912.0 619 65320.8 526 65149.0 667 63926.9

spear (1675) 1145 6879.4 895 9220.5 1668 205.7 1668 213.1

stp (1) 0 10.1 0 10.1 0 10.1 0 10.1

stp samples (149) 120 525.2 36 1175.2 104 548.9 104 554.3

tacas07 (3) 2 10.3 2 10.4 2 10.2 2 10.3

uclid (262) 2 2625.3 21 2600.2 262 148.6 262 147.0

VS3 (10) 0 100.5 0 100.7 0 100.5 0 100.7

wienand (4) 0 40.2 0 40.3 0 40.2 0 40.3

totals 7560 93575.4 6874 100167.5 8094 84872.6 8229 83730.0

Table 6: Configurations Bsls and Pw versus Bsls-1 and Pw-1 with a time limit of
10 seconds grouped by benchmark families.

24

instances more than Pw), on 2650 benchmarks, Pw outperforms Bb by at least a
factor of 10. In an additional experiment, we evaluated Pw with a time limit of 1200
seconds, which increases the number of solved instances compared to a time limit
of 10 seconds by 7% (571 instances). These results suggest a combination of both
configurations within a sequential portfolio setting [39], where our propagation-
based strategy is run for a certain amount of time prior to invoking the bit-blasting
engine. However, in practice, the number of propagation steps performed is a more
reliable metric than the actual runtime of Pw within a sequential portfolio setting.
In the following, we distinguish two sequential portfolio configurations.

(1) Bb+Pw-virtual-Xs A virtual sequential portfolio combination of Pw and
Bb, where we assume that Pw is run exactly X seconds prior to invoking Bb.

(2) Bb+Pw-X The sequential portfolio combination of Pw and Bb as imple-
mented in Boolector, where configuration Pw is run with a limit of X propaga-
tion steps prior to invoking Bb. Note that this configuration won the QF BV
division of the main track of the SMT competition 2016 with X=1000=1k.

Figure 11 illustrates the performance of a virtual sequential portfolio combination
Bb+Pw-virtual-1s in comparison to the bit-blasting configuration Bb with a time
limit of 1200 seconds, where we assume that configuration Pw is run for one sec-
ond before falling back to the bit-blasting engine. Overall, configuration Bb+Pw-
virtual-1s solves 63 instances more than Bb, and further outperforms Bb in terms
of runtime by at least a factor of 10 on almost 2400 benchmarks.

Figure 12 shows the performance of the sequential portfolio combinations
Bb+Pw-1k, Bb+Pw-10k, Bb+Pw-50k and Bb+Pw-100k in comparison to con-
figuration Bb with a time limit of 1200 seconds, where Pw is run with a limit
of 1 000, 10 000, 50 000 and 100 000 propagation steps before invoking the bit-
blasting engine. With a limit of 1k propagation steps, configuration Bb+Pw-1k
already solves 41 instances more than Bb. It further outperforms Bb in terms of
runtime by at least a factor of 10 on more than 2400 benchmarks. Increasing the
propagation step limit for configuration Pw to 10k, 50k and 100k further increases
performance in term of runtime, with 2601 (Bb+Pw-10k), 2649 (Bb+Pw-50k) and
2657 (Bb+Pw-100k) instances solved by at least a factor of 10 faster than with con-
figuration Bb. In terms of number of solved instances, configuration Bb+Pw-10k
shows the best performance with a plus of 52 instances compared to Bb. Config-
urations Bb+Pw-50k and Bb+Pw-10k still solve 50 and 45 more instances than
Bb, but lose instances compared to Bb+Pw-10k due to the increasing overhead
introduced for those instances not solved within the given propagation step limit.

In an additional experiment with configurations Bb+Pw-1k and Bb+Pw-10k,
we compiled a set of 21172 unsatisfiable benchmarks containing all QF BV bench-
marks in SMT-LIB with status unsat and determined the overhead introduced by
Pw. With a total of 1237 seconds for configuration Bb+Pw-1k, the overhead for
the unsatisfiable instances is negligible compared to the performance gain of al-
most 102k seconds on the satisfiable instances. For configuration Bb+Pw-10k, the
overhead for the unsatisfiable instances is larger by a factor of 10 (10316 seconds),
which is still an order of magnitude less than the performance gain of more than
116k seconds on the satisfiable instances.

Table 7 summarizes the results of configurations Bb, Bb+Pw-virtual-1s and
Bb+Pw-10k, and gives a more detailed overview by benchmark family with a

25

Bb Runtime [s]

B
b
+

P
w

−
v
ir

tu
a
l−

1
s

R
u
n
ti
m

e
 [
s
]

0.01 0.1 1 10 100 1000

0
.0

1
0

.1
1

1
0

1
0

0
1

0
0

0

 10x faster: 1372 (8.3%)

 100x faster: 908 (5.5%)

1000x faster: 370 (2.3%)

Fig. 11: Bb versus a virtual sequential portfolio configuration Bb+Pw-virtual-1s
with a time limit of 1200 seconds.

Bb Runtime [s]

B
b
+

P
w

−
1
k

R

u
n
ti
m

e
 [
s
]

0.01 0.1 1 10 100 1000

0
.0

1
0

.1
1

1
0

1
0

0
1

0
0

0

 10x faster: 1285 (7.8%)

 100x faster: 837 (5.1%)

1000x faster: 315 (1.9%)

Bb Runtime [s]

B
b
+

P
w

−
1
0
k

R

u
n
ti
m

e
 [
s
]

0.01 0.1 1 10 100 1000

0
.0

1
0

.1
1

1
0

1
0

0
1

0
0

0

 10x faster: 1392 (8.5%)

 100x faster: 872 (5.3%)

1000x faster: 337 (2.1%)

Bb Runtime [s]

B
b
+

P
w

−
5
0
k

R

u
n
ti
m

e
 [
s
]

0.01 0.1 1 10 100 1000

0
.0

1
0

.1
1

1
0

1
0

0
1

0
0

0

 10x faster: 1393 (8.5%)

 100x faster: 892 (5.4%)

1000x faster: 364 (2.2%)

Bb Runtime [s]

B
b
+

P
w

−
1
0
0
k

R

u
n
ti
m

e
 [
s
]

0.01 0.1 1 10 100 1000

0
.0

1
0

.1
1

1
0

1
0

0
1

0
0

0

 10x faster: 1397 (8.5%)

 100x faster: 890 (5.4%)

1000x faster: 370 (2.3%)

Fig. 12: Bb versus our sequential portfolio configurations Bb+Pw-1k, Bb+Pw-10k,
Bb+Pw-50k and Bb+Pw-100k with a time limit of 1200 seconds.

26

Bb Bb+Pw-10k Bb+Pw-virtual-1s

Family Solved Time [s] Solved Time [s] Solved Time [s]

asp (376) 289 150600.3 287 155312.1 289 150889.3

bench ab (223) 223 0.2 223 0.0 223 0.0

bmc (22) 22 63.6 22 83.8 22 71.6

brummayerbiere (26) 17 1759.8 26 46.7 26 97.9

calypto (13) 5 10423.7 5 10420.9 5 10423.5

check2 (1) 1 0.0 1 0.0 1 0.0

crafted (1) 1 0.0 1 0.0 1 0.0

dwp formulas (103) 103 0.4 103 0.0 103 0.0

fft (19) 5 16924.2 5 16923.7 5 16928.6

float (126) 94 56417.8 94 56276.3 94 55497.3

gulwani (6) 6 47.6 6 48.3 6 53.6

mcm (155) 51 138276.6 51 138368.8 51 138273.6

pspace (21) 21 1964.5 21 1.6 21 1.6

rubik (3) 3 433.9 3 422.6 3 436.9

RWS (20) 18 3635.8 18 3649.8 18 3653.8

sage (6236) 6236 2602.9 6236 2492.5 6236 3622.2

Sage2 (6981) 5898 1853304.4 5940 1752833.2 5949 1738901.0

spear (1675) 1672 16202.9 1675 282.4 1675 278.3

stp (1) 1 18.9 1 20.9 1 19.9

stp samples (149) 149 4.4 149 10.7 149 75.4

tacas07 (3) 3 11.5 3 6.2 3 6.0

uclid (262) 262 741.3 262 168.7 262 228.4

VS3 (10) 2 9859.6 2 9859.8 2 9861.6

wienand (4) 0 4800.0 0 4800.0 0 4800.0

total (16436) 15082 2268094.4 15134 2152029.2 15145 2134120.5

Table 7: Bit-blasting configuration Bb and sequential portfolio configurations
Bb+Pw-10k and Bb+Pw-virtual-1s with a time limit of 1200 seconds.

time limit of 1200 seconds. As shown in Fig. 12, a propagation step limit of 100k
(Bb+Pw-100k) almost corresponds to virtually limiting the runtime of Pw to
1 second (Bb+Pw-virtual-1s), in particular when considering the number of in-
stances solved by at least a factor of 10 faster than Bb. A propagation limit of
10 000 (Bb+Pw-10k), however, yields the best results in terms of number of solved
instances and the overall runtime.

Figure 13 shows the influence on randomization effects of our propagation-
based strategy Pw in terms of the number of solved instances when introducing
different levels of non-determinism during value selection and different path selec-
tion strategies over 21 runs with different seeds and a time limit of 10 seconds. In
terms of value selection, the default configuration of Pw prioritizes inverse values
over consistent values during backtracing with a probability of 99:1. As illustrated
in Fig. 13a, decreasing this ratio, i.e., increasing the probability to choose consis-
tent values over inverse values, increases the level of non-determinism of our back-
tracing algorithm, and as a consequence, the variance in terms of performance.
The default ratio of 99:1 has a SD of 17.9 and decreasing the ratio of inverse to
consistent values to 50:50 and 0:100 (consistent values only), the standard devia-
tion increases to 23.5 and 38.9. When decreasing the level of non-determinism by
increasing the ratio of inverse to consistent values to 100:0 (inverse values only), on
the other hand, the SD drops to 14.1. Overall, as shown in Fig. 13a, a higher proba-
bility to choose inverse over consistent values also increases performance. However,
as shown in Section 4, using inverse values only (ratio 100:0) is incomplete.

27

6500

6600

6700

6800

6900

7000

7100

7200

7300

7400

7500

7600

7700

7800

7900

8000

8100

D
e
fa

u
lt

0
:1

0
0

5
0
:5

0
1
0
0
:0

8074

8099

8113

8126

8146

8094

Default

6526

6624
6630

6648

6672

0:100

7772

7789

7822

7827

7851

7819

50:50

8003

8014

8026

8031

8067

8022

100:0

(a) Value Selection

8020

8070

8120

D
e

fa
u

lt

C
o

n
tr

o
ll

in
g

R
a

n
d

o
m

8074

8099

8113

8126

8146

8094

 Default

8053

8062

8072

8082

8100

8059

 Controlling

8026

8051
8054

8066

8082

8046

 Random

(b) Path Selection

Fig. 13: Number of solved instances over 21 runs of configuration Pw with different
levels of non-determinism during value selection (13a) and different path selection
strategies (13b) and a time limit of 10 seconds.

In terms of path selection, not prioritizing inputs but choosing randomly cor-
responds to a maximum level of non-determinism. Prioritizing controlling in-
puts for Boolean operators already decreases non-determinism during path se-
lection. However, utilizing essential inputs for all word-level operators decreases
non-determinism even further. Figure 13b shows the influence of decreasing the
level of non-determinism during path selection in terms of the number of solved
instances over 21 runs with different seeds and a time limit of 10 seconds. By
default, Pw prioritizes essential inputs for all word-level operators. Utilizing only
controlling inputs of Boolean operators already decreases performance, and not
prioritizing inputs but choosing randomly decreases performance even further.
Prioritizing essential inputs for all word-level operators yields the best results.

6 Conclusion

In this paper, we presented our complete propagation-based local search strategy
for the theory of quantifier-free fixed-size bit-vectors, which we previously pre-
sented in [35], in more detail.

We defined a complete set of rules for determining backtracing values when
propagating assignments towards the primary inputs and provided extensive ex-
amples to illustrate the core concepts of our approach. We further provided a more
extensive experimental evaluation, including an analysis of randomization effects

28

caused by using different seeds for the random number generator. Motivated by the
experimental results in [35], which showed the potential of a sequential portfolio
combination of our propagation-based strategy and a state-of-the-art bit-blasting
approach, we implemented this combination in our SMT solver Boolector. Our
results confirm a considerable gain in performance.

Our procedure was evaluated on problems in the theory of quantifier-free bit-
vectors in SMT. However, it is not restricted to bit-vector logics. Applying our
strategy to other logics is probably the most intriguing direction for future work.

When combined with bit-blasting, our propagation-based techniques may learn
properties of the input formula that might be useful for the bit-blasting engine.
We leave learning and passing these properties to the bit-blasting engine to future
work. Further, extending our propagation-based techniques by introducing strate-
gies for conflict detection and resolution during backtracing as well as lemma gen-
eration to obtain an algorithm that is able to also prove unsatisfiability is another
challenge for future work. A possible direction would be incorporating techniques
from the MCSat for bit-vectors approach presented in [41].

Finally, we would like to thank Andreas Fröhlich and the reviewers for help-
ful comments, and Holger Hoos for fruitful discussions on the relation between
non-deterministic completeness and the notion of probabilistically approximately
complete (PAC).

References

1. Balint, A., Belov, A., Heule, M.J.H., Järvisalo, M. (eds.): SAT Competition 2013, Dept. of
Computer Science Series of Publications B, vol. B-2013-1. University of Helsinki (2013)

2. Balint, A., Belov, A., Järvisalo, M., Sinz, C.: Overview and analysis of the SAT challenge
2012 solver competition. Artif. Intell. 223, 120–155 (2015)

3. Balint, A., Schöning, U.: Choosing probability distributions for stochastic local search and
the role of make versus break. In: SAT, Lecture Notes in Computer Science, vol. 7317,
pp. 16–29. Springer (2012)

4. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T., Reynolds, A.,
Tinelli, C.: CVC4. In: CAV, Lecture Notes in Computer Science, vol. 6806, pp. 171–177.
Springer (2011)

5. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.5. Tech. rep.,
Dept. of Computer Science, The University of Iowa (2015). Available at www.SMT-LIB.org

6. Barrett, C., Stump, A., Tinelli, C.: SMT-LIB. www.SMT-LIB.org (2010)
7. Belov, A., Heule, M.J.H., Järvisalo, M. (eds.): SAT Competition 2014, Dept. of Computer

Science Series of Publications B, vol. B-2014-2. University of Helsinki (2014)
8. Biere, A.: Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT Compe-

tition 2016. In: SAT Competition 2016 – Solver and Benchmark Descriptions, Dept. of
Computer Science Series of Publications B, vol. B-2016-1, pp. 44–45. University of Helsinki
(2016)

9. Brummayer, R.: Efficient SMT solving for bit-vectors and the extensional theory of arrays.
Ph.D. thesis, Johannes Kepler University Linz (2009)

10. Bruttomesso, R.: RTL verification: from SAT to SMT(BV). Ph.D. thesis, University of
Trento (2008)

11. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Hanna, Z., Nadel, A., Palti, A.,
Sebastiani, R.: A lazy and layered smt(BV) solver for hard industrial verification problems.
In: CAV, Lecture Notes in Computer Science, vol. 4590, pp. 547–560. Springer (2007)

12. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The opensmt solver. In: TACAS,
Lecture Notes in Computer Science, vol. 6015, pp. 150–153. Springer (2010)

13. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathsat5 SMT solver. In:
TACAS, Lecture Notes in Computer Science, vol. 7795, pp. 93–107. Springer (2013)

14. Dutertre, B.: Yices 2.2. In: CAV, Lecture Notes in Computer Science, vol. 8559, pp.
737–744. Springer (2014)

29

15. Franzen, A.: Efficient solving of the satisfiability modulo bit-vectors problem and some
extensions to SMT. Ph.D. thesis, University of Trento (2010)

16. Fröhlich, A., Biere, A., Wintersteiger, C.M., Hamadi, Y.: Stochastic local search for satis-
fiability modulo theories. In: B. Bonet, S. Koenig (eds.) Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pp.
1136–1143. AAAI Press (2015)

17. Ganesh, V.: Decision procedures for bit-vectors, arrays and integers. Ph.D. thesis, Stanford
University (2007)

18. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: CAV, Lecture
Notes in Computer Science, vol. 4590, pp. 519–531. Springer (2007)

19. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In: NDSS.
The Internet Society (2008)

20. Goel, P.: An implicit enumeration algorithm to generate tests for combinational logic
circuits. IEEE Transactions on Computers 30(3), 215–222 (1981)

21. Griggio, A., Phan, Q., Sebastiani, R., Tomasi, S.: Stochastic local search for SMT: com-
bining theory solvers with walksat. In: FroCoS, Lecture Notes in Computer Science, vol.
6989, pp. 163–178. Springer (2011)

22. Hadarean, L., Bansal, K., Jovanovic, D., Barrett, C., Tinelli, C.: A tale of two solvers:
Eager and lazy approaches to bit-vectors. In: CAV, Lecture Notes in Computer Science,
vol. 8559, pp. 680–695. Springer (2014)

23. Hansen, T.A.: A constraint solver and its application to machine code test generation.
Ph.D. thesis, University of Melbourne (2012)

24. Hoos, H.H.: On the run-time behaviour of stochastic local search algorithms for SAT. In:
AAAI/IAAI, pp. 661–666. AAAI Press / The MIT Press (1999)

25. Huang, C., Cheng, K.: Assertion checking by combined word-level ATPG and modular
arithmetic constraint-solving techniques. In: DAC, pp. 118–123 (2000)

26. Iyer, M.A.: Race: A word-level atpg-based constraints solver system for smart random
simulation. In: ITC, pp. 299–308. IEEE Computer Society (2003)

27. Jovanović, D., Barrett, C., de Moura, L.: The design and implementation of the model con-
structing satisfiability calculus. In: Formal Methods in Computer-Aided Design, FMCAD
2013, Portland, OR, USA, October 20-23, 2013, pp. 173–180. IEEE (2013)

28. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View. Texts
in Theoretical Computer Science. An EATCS Series. Springer (2008)

29. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust boolean reasoning for equiv-
alence checking and functional property verification. IEEE Trans. on CAD of Integrated
Circuits and Systems 21(12), 1377–1394 (2002)

30. Kunz, W., Stoffel, D.: Reasoning in Boolean Networks: Logic Synthesis and Verification
Using Testing Techniques. Kluwer Academic Publishers, Norwell, MA, USA (1997)

31. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS, Lecture Notes in
Computer Science, vol. 4963, pp. 337–340. Springer (2008)

32. de Moura, L.M., Jovanovic, D.: A model-constructing satisfiability calculus. In: VMCAI,
Lecture Notes in Computer Science, vol. 7737, pp. 1–12. Springer (2013)

33. Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., Marcus, E., Shurek, G.: Constraint-
based random stimuli generation for hardware verification. AI Magazine 28(3), 13–30
(2007)

34. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. JSAT 9, 53–58 (2015)
35. Niemetz, A., Preiner, M., Biere, A.: Precise and complete propagation based local search

for satisfiability modulo theories. In: CAV (1), Lecture Notes in Computer Science, vol.
9779, pp. 199–217. Springer (2016)

36. Niemetz, A., Preiner, M., Biere, A., Fröhlich, A.: Improving local search for bit-vector
logics in SMT with path propagation. In: DIFTS@FMCAD, pp. 1–10 (2015)

37. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: AAAI,
pp. 337–343. AAAI Press / The MIT Press (1994)

38. Tillmann, N., Schulte, W.: Parameterized unit tests. In: ESEC/SIGSOFT FSE, pp. 253–
262. ACM (2005)

39. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm
selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)

40. Yuan, J., Pixley, C., Aziz, A.: Constraint-based verification. Springer (2006)
41. Zeljic, A., Wintersteiger, C.M., Rümmer, P.: Deciding bit-vector formulas with mcsat. In:

SAT, Lecture Notes in Computer Science, vol. 9710, pp. 249–266. Springer (2016)

30

