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a b s t r a c t

Propositional model enumeration, or All-SAT, is the task to record all models of a
propositional formula. It is a key task in software and hardware verification, system
engineering, and predicate abstraction, to mention a few. It also provides a means to
convert a CNF formula into DNF, which is relevant in circuit design. While in some
applications enumerating models multiple times causes no harm, in others avoiding
repetitions is crucial. We therefore present two model enumeration algorithms which
adopt dual reasoning in order to shorten the found models. The first method enumerates
pairwise contradicting models. Repetitions are avoided by the use of so-called blocking
clauses for which we provide a dual encoding. In our second approach we relax
the uniqueness constraint. We present an adaptation of the standard conflict-driven
clause learning procedure to support model enumeration without blocking clauses. Our
procedures are expressed by means of a calculus and proofs of correctness are provided.

© 2024 Published by Elsevier B.V.

1. Introduction

The satisfiability problem of propositional logic (SAT) consists in determining whether for a propositional formula
here exists an assignment to its variables which evaluates the formula to true and which we call satisfying assignment
r model. For proving that a formula is satisfiable, it is sufficient to provide one single model. However, sometimes
etermining satisfiability is not sufficient but all models are required. Propositional model enumeration (All-SAT)1 is the task
f enumerating (all) satisfying assignments of a propositional formula. It is a key task in, e. g., bounded and unbounded
odel checking [5,26,32,33,58,59], image computation [21,22,29,57], system engineering [62], predicate abstraction [28],
nd lazy Satisfiability Modulo Theories [55].
Model enumeration also provides a means to convert a formula in Conjunctive Normal Form (CNF) into a logically

quivalent formula in Disjunctive Normal Form (DNF) composed of the models of the CNF formula. This conversion is
sed in, e. g., circuit design [35] and has also been studied from a computational complexity point of view [34,66], and in
he worst case it is exponential in the size of the original formula due to its exponential blowup. If the models found are

✩ The first author’s contribution was mostly carried out at the LIT Correct and Secure Systems Lab and the Institute for Formal Models and
Verification, Johannes Kepler University Linz, Linz, Austria.
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1 For the sake of readability, we use the term All-SAT also if not all models are required since in principle such an algorithm could always be
extended to determine all models.
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pairwise contradicting, the resulting DNF is a Disjoint Sum-of-Product (DSOP) formula, which is relevant in circuit design
[4,37], and whose models can be enumerated in polynomial time in the number of its disjuncts [40] by simply returning
them, as they represent implicants of the formula. If the models found are not pairwise contradicting, the resulting formula
is still a DNF but does not support polytime model counting. Our model enumeration algorithm basically executes a
CNF-to-DNF conversion and, from this point of view, it can be interpreted as a knowledge compilation algorithm.

The aim of knowledge compilation is to transform a formula into another language2 on which certain operations can
be executed in polynomial time [10,12]. This can be done, for instance, by recording the trace of an exhaustive search

[24,27,46], and the target language in these approaches is the deterministic Decomposable Normal Form (d-DNNF),3
which was applied, for instance, in planning [50]. In contrast, in our work we record the models of the input formula, and
the resulting formula is in d-DNNF only if the detected models are pairwise contradicting.

Enumerating models requires to process the search space exhaustively and is therefore a harder task than determining
satisfiability. However, since state-of-the-art SAT solvers are successfully applied in industrial applications, it seems
natural to use them as a basis for model enumeration. Modern SAT solvers implement conflict-driven clause learning (CDCL)
[31,45,60] with non-chronological backtracking.4 If a CDCL-based SAT solver is extended to support model enumeration,
adequate measures need be taken to avoid enumerating models multiple times as demonstrated by the following small
example.

Example 1 (Multiple Model Enumeration). Consider the propositional formula

F = (a ∨ c)  
C1

∧ (a ∨ ¬c)  
C2

∧ (b ∨ d)  
C3

∧ (b ∨ ¬d)  
C4

which is defined over the set of variables V = {a, b, c, d}. Its total models5 are given by models(F ) = {a b c d, a b c ¬d,
b¬c d, a b¬c ¬d}. These models may be represented by a b, i. e., they are given by all total extensions of a b.
Let our model enumerator be based on CDCL with non-chronological backtracking. Assume we first decide a, i. e., assign

the value true, and then b. This (partial) assignment a b is a model of F . As in our previous work on propositional model
ounting [40], we flip the second decision literal, i. e., assign b the value false, in order to explore the second branch, upon
hich the literal d is forced to true in order to satisfy clause C3. The resulting assignment a¬b d now falsifies clause C4,

. e., sets all its literal to false. Conflict analysis yields the unit clause C5 = (b), which is added to F . The enumerator then
acktracks to decision level zero, i. e., unassigns d, b and a, and propagates b with reason C5. No literal is enforced by the
ssignment b, and a decision need be taken. If we choose a, F is satisfied. The model found is b a, which is the one we
ad found earlier.

Multiple model enumeration in Example 1 is caused by the fact that after conflict analysis the same satisfying
ssignment is repeated, albeit in reverse order. More generally, the same satisfying assignment might be found again if
he enumerator backtracks past a flipped decision literal. Avoiding enumerating models multiple times is crucial in, e. g.,
eighted model counting (WMC) [11,15,17,54] and Bayesian inference [2], which require enumerating the models in order
o compute their weight or probability. Another example is weighted model integration (WMI) [42,43] which generalizes
MC for hybrid domains. In some applications, repeating models might lead to inefficiency and harm scalability [62]. In

he context of model counting but also relevant in model enumeration, Bayardo and Pehoushek [3] identified the need
or good learning similarly to its learning counterpart in CDCL, and various measures have therefore been proposed to
void the multiple enumeration of models.
One possibility is to rule out a model which was already found by adding a blocking clause to the formula [32,38,44]

hich in essence is the negation of the model or the decision literals in the model to be blocked [44]. Whenever a
atisfying assignment is repeated, the clause blocking it is falsified, and thus this model is not enumerated again. As
oon as all models are found and the relevant blocking clauses added, the formula becomes unsatisfiable. However, there
ight be an exponential number of models and adding a blocking clause for each of them might result in a significant
egative impact on the enumerator performance. In these cases, multiple model enumeration need be prevented by other
easures. Toda and Soh [63] address this issue by adopting a variant of conflict analysis which is inspired by Gebser et al.

20] and is exempt from blocking clauses.
The use of blocking clauses can also be avoided by adopting the Davis–Putnam–Logemann–Loveland (DPLL) algorithm

13]. In DPLL, after a conflict or a model the last decision literal is flipped causing the solver to find only pairwise
ontradicting models. This idea was applied in the context of model counting by Birnbaum and Lozinskii [7] but can
eadily be adapted to support model enumeration. Chronological backtracking in Grumberg et al. [21] and in part in

2 A language in this context refers to one of the various forms a formula can be expressed in, e. g., CNF and DNF denote the languages we are
mostly interested in this article.
3 A formula is in d-DNNF, if (1) the sets of variables of the conjuncts of each conjunction are pairwise disjoint, and (2) the disjuncts of each

disjunction are pairwise contradicting [12]. Whereas in its original definition a d-DNNF formula is defined as a directed acyclic graph (DAG), in this
work we refer to its representation made of conjunctions, disjunctions, negations, variables, and truth values.
4 Also referred to as backjumping in the literature.
5 In total models all variables occur.
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Gebser et al. [20] ensures that the search space is traversed in a systematic manner similarly to DPLL, and that the use
of blocking clauses can be avoided. An apparent drawback of DPLL-based solvers, however, is that they might spend a
significant amount of time in regions of the search space having no satisfying assignments, since — unlike CDCL-based
solvers — they lack the possibility to escape those regions early.

This last issue can be addressed by the use of chronological CDCL introduced by Nadel and Ryvchin [39,47]. Chronologi-
al CDCL combines the power of conflict-driven clause learning with chronological backtracking. Specifically, after finding
model, the last open (left) decision literal is flipped in order to process neighboring regions of the search space, while in
ase of a conflict the solver is able to escape solution-less regions early. In our earlier work [40], we developed a calculus
or propositional model counting based on chronological CDCL and provided a proof of its correctness. We took a model
numeration approach making our method readily applicable in the context of model enumeration without repetition.
owever, while finding short models is crucial in, e. g., weighted model integration [42,43], only total models are detected
s is usual in CDCL-based SAT solvers. The reason for this is a simple one.
To detect when a partial assignment6 is a model of the input formula, the SAT solver would have to carry out

satisfiability checks before every decision, as done by Birnbaum and Lozinskii [7]. These satisfiability checks are expensive,
and assigning the remaining variables instead is more efficient, computationally. If all variables are assigned and no conflict
has occurred, the SAT solver knows to have found a model. This makes sense in SAT solving. Model enumeration, however,
is a harder task, and therefore more expensive methods might pay off.

One such method is dual reasoning [6,38]. Our dual model counter Dualiza7 takes as input the formula under
onsideration together with its negation. The basic idea is to execute CDCL on both formulae simultaneously maintaining
ne single trail. Whenever a conflict in the negated formula occurs, the current (partial) assignment is a model of the
ormula. Although developed for model counting, its adaptation for model enumeration is straightforward.

Another idea enabling the detection of short models was to check whether all total extensions of the current (partial)
ssignment evaluate the input formula to true before taking a decision, i. e., whether the current assignment logically
ntails the input formula [41,56].
Partial assignments evaluating the input formula to true represent sets of total models of the input formula. However,

hese sets might not be disjoint as is demonstrated by the following example.

xample 2 (Short Redundant Models). Let F = (a ∧ b) ∨ (a ∧ c) be a propositional formula defined over variables
= {a, b, c}. Notice that F is not in CNF and significantly differs from the one in our previous example. Its total models

re models(F ) = {a b c, a b¬c, a¬b c}. These models may also be represented by the two partial models a b and a c . The
ormer represents a b c and a b¬c , whereas the latter represents a b c and a¬b c . Notice that a b c occurs twice.

Partial assignments evaluating the input formula to true result in blocking clauses which are shorter than the ones
locking one single total model. Adding short blocking clauses has a twofold effect. First, a larger portion of the search
pace is ruled out. Second, fewer blocking clauses need be added which mitigates their negative impact on solver
erformance. Also, short blocking clauses generally propagate more eagerly than long ones. The need for shrinking or
inimizing models has been pointed out by Bayardo and Pehoushek [3] and addressed further [1,26,52]. Notice that with
locking clauses CDCL can be used as in SAT solving, while in the absence of blocking clauses it need be adapted.
The reason is as follows. If a CDCL-based SAT solver encounters a conflict, it analyzes it and learns a clause8 in order to

revent the solver from repeating the same assignment which caused the conflict. This clause is determined by traversing
he trail in reverse assignment order and resolving the reasons of the literals on the trail, starting with the conflicting
lause, until the resolvent contains one single literal at the maximum decision level. If a model is found, the last decision
iteral is flipped in order to explore another branch of the search space. This leads to issues if this literal is encountered in
ater conflict analysis and no blocking clause was added, since in this case it is neither a decision literal nor a propagated
iteral.

To address this issue, Grumberg et al. [21] introduce sub-levels for flipped decision literals treating them similarly
o decision literals in future conflict analysis. Similarly to Gebser et al. [20], Toda and Soh [63] limit the level to which
he solver is allowed to backtrack. These measures also ensure that enumerating overlapping partial models is avoided.
owever, in applications where repetitions cause no harm, the power of finding even shorter models representing larger,
lbeit not disjoint, sets of models, can be exploited. Shorter models are also obtained in the case of model enumeration
nder projection.
If not all variables are relevant in an application, we project the models of the input formula onto the relevant variables,

r, otherwise stated, we existentially quantify the irrelevant variables. Projection occurs in, e. g., model checking [58,59],
mage computation [21,22], quantifier elimination [9,67], and predicate abstraction [28]. The breadth of these applications
ighlights the relevance of projection in practice.

6 In a partial assignment not all variables occur.
7 https://github.com/arminbiere/dualiza
8 We say that a clause is learned if it is added to the formula.
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Our contributions. In this article we address the task of enumerating short projected models with and without repetition.
We start by presenting a CDCL-based algorithm for the case where only pairwise contradicting, i. e., irredundant, models
re sought. Multiple model enumeration is prevented by the addition of blocking clauses to the input formula, and dual
easoning is adopted for shrinking total models. To ensure correctness of the latter, we introduce the concept of dual
locking clauses which provides a solution to an issue identified in our earlier work [38]. Dual reasoning in model shrinking
nables us to obtain short models, and CDCL lets us exploit the strengths of state-of-the-art SAT solvers. Short models
esult in short blocking clauses with the potential to reduce their number and to rule out a larger portion of the search
pace. We express our algorithm by means of a formal calculus and provide a correctness proof. A generalization of our
lgorithm to the case where partial satisfying assignments are found and shrunken is presented. This generalization makes
ense as we do not guarantee that our model shrinking method gives us the minimal model. We discuss the appropriate
hanges to our algorithm, calculus, proof, and its generalization.
We then introduce a relaxed version of our algorithm for enumerating non-contradicting, i. e., redundant, models. This

ethod is exempt of blocking clauses, and consequently decision literals which were flipped after a model lack a reason.
o fix this issue, we introduce an adaptation of CDCL for SAT to All-SAT. We discuss the changes to our previous algorithm
eeded in order to support redundant model enumeration.
This article builds on our work presented at the 23rd International Conference on Theory and Applications of

atisfiability Testing (SAT) 2020 [41]. It also uses concepts introduced by Sebastiani [56] as well as presented at the
econd Young Scientist’s International Workshop on Trends in Information Processing (YSIP2) 2017 [6] and the 30th
nternational Conference on Tools with Artificial Intelligence (ICTAI) 2018 [38], the 22nd International Conference on
heory and Applications of Satisfiability Testing (SAT) 2019 [39], and the 5th Global Conference on Artificial Intelligence
GCAI) 2019 [40].

tructure of the paper. In Section 2, we introduce our notation and basic concepts. Dual reasoning is applied for shrinking
odels in Section 3, and an according dual encoding of blocking clauses is introduced in Section 4. After presenting our
lgorithm for projected model enumeration without repetition in Section 5 and providing a formalization and correctness
roof and a generalization to the detection of partial models in Section 6, we turn our attention to projected model
numeration with repetition. We adapt CDCL for SAT to support conflict analysis in the context of model enumeration
ithout the use of blocking clauses in Section 7 and discuss the changes to our method needed to support multiple model
numeration in Section 8, before we conclude in Section 10.

. Preliminaries

In this section we provide the concepts and notation on which our presentation relies: propositional satisfiability (SAT)
nd incremental SAT solving, projection, and the dual representation of a formula, which constitutes the basis for dual
easoning.

.1. Propositional satisfiability (SAT)

The set containing the Boolean constants 0 (false) and 1 (true) is denoted with B = {0, 1}. Let V be a set of propositional
or Boolean) variables. A literal is either a variable v ∈ V or its negation ¬v. We write ℓ to denote the complement of
assuming ℓ = ¬ℓ and ¬ℓ = ℓ. The variable of a literal ℓ is obtained by V (ℓ). This notation is extended to formulae,
lauses, cubes, and sets of literals.
Most SAT solvers work on formulae in Conjunctive Normal Form (CNF) which are conjunctions of clauses, which are

isjunctions of literals. These SAT solvers implement efficient algorithms tailored for CNFs, such as unit propagation,
hich will be presented below. In contrast, a formula in Disjunctive Normal Form (DNF) is a disjunction of cubes which
re conjunctions of literals. We interpret formulae as sets of clauses and write C ∈ F to refer to a clause C occurring in
he formula F . Accordingly, we interpret clauses and cubes as sets of literals. The empty CNF formula and the empty cube
re denoted by 1, while the empty DNF formula and the empty clause are represented by 0.
A total assignment σ : V ↦→ Bmaps V to the truth values 0 and 1. It can be applied to a formula F over a set of variables V

o obtain the value of F under σ , denoted by σ (F ) ∈ B, also written F |σ . A sequence I = ℓ1, . . . , ℓn with mutually exclusive
variables (V (ℓi) ̸= V (ℓj) for i ̸= j) is called a trail. If their variable sets are disjoint, trails and literals may be concatenated,
denoted I = I ′ I ′′ and I = I ′ ℓ I ′′. Consider as an example a set of variables V = {a, b, c, d, e, f , g, h} and let I ′ = a¬b¬c ,
I ′′ = e f ¬g h, and ℓ = ¬d be two trails and a literal, respectively. Now V (I ′) = {a, b, c}, V (I ′′) = {e, f , g, h}, and V (ℓ) = d.
Since V (I ′) ∩ V (I ′′) = ∅ and V (ℓ) ̸∈ V (I ′) ∪ V (I ′′), they can be concatenated obtaining, e. g., I = I ′ I ′′ = a¬b¬c e f ¬g h
and I = I ′ ℓ I ′′ = a¬b¬c ¬d e f ¬g h. We treat trails as conjunctions or sets of literals and write ℓ ∈ I if ℓ is contained
in I . Trails can also be interpreted as partial assignments with I(ℓ) = 1 iff ℓ ∈ I . Similarly, I(ℓ) = 0 iff ¬ℓ ∈ I , and I(ℓ) is
ndefined iff V (ℓ) ̸∈ V (I). The unassigned variables in V are denoted by V − I and the empty trail by ε.
We call residual of F under I , denoted F |I , the formula I(F ) obtained by assigning the variables in F their truth value.

f F is in CNF, this amounts to removing from F all clauses containing a literal ℓ ∈ I and removing from the remaining
lauses all occurrences of ¬ℓ. For instance, given a formula F = (a ∨ b) ∧ (¬a ∨ b ∨ c) with V (F ) = {a, b, c} and I = a,
|I = (b ∨ c). If F |I = 1, we say that I satisfies F or that I is a model of F . If all variables are assigned, we call I a total
odel of F . Following the distinction highlighted by Sebastiani [56], if I is a partial assignment, we say that I evaluates
415
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Fig. 1. Davis–Putnam–Logemann–Loveland (DPLL) Algorithm. The main loop starts with exhaustive unit propagation. If a conflict occurs, the most
ecent decision is flipped. If there are no decisions left on the trail, the execution terminates returning UNSAT. If no conflict occurs and there are
till unassigned variables, a decision is taken. Otherwise, the execution terminates returning SAT.

to 1, written I ⊢ F , if F |I = 1, and that I logically entails F , written I |H F , or that I is a partial model of F , if all total
assignments extending I satisfy F . Notice that I ⊢ F implies that I |H F but not vice versa: e. g., if F def

= (a ∧ b) ∨ (a ∧ ¬b)
and I def

= a, then I |H F but I ̸⊢ F , because F |I = (b ∨ ¬b) ̸= 1. If F is in CNF without valid clauses, i. e., without clauses
containing contradicting literals, then I ⊢ F iff F |I = 1. We say that I evaluates F to 0 or that I is a counter-model of F , iff
F |I = 0. If F is in CNF, its residual under I contains the empty clause, 0 ∈ F |I .

2.2. The Davis–Putnam–Logemann–Loveland (DPLL) algorithm

The satisfiability of a propositional formula F over a set of variables V can be determined by the Davis–Putnam–
Logemann–Loveland (DPLL) algorithm [13,14] depicted in Fig. 1.9 Its main ingredient is the trail I which is iteratively
extended by a literal ℓ which is either propagated or decided. In the former case, there exists a clause C ∈ F containing ℓ

in which all literals except ℓ evaluate to false under the current (partial) assignment I . The literal ℓ is called unit literal
r unit and C a unit clause. In order to satisfy C , and thus F , the literal ℓ need be assigned the value true. After being
ropagated, the literal ℓ becomes a propagation literal, and C is called its reason. If after the propagation of ℓ a clause D ∈ F
ecomes false, this clause is returned to indicate that a conflict occurred. The corresponding rule is the unit propagation
ule (function PropagateUnits). Notice that F |I may contain multiple reasons for a unit literal, and by speaking of ‘‘its’’
eason we refer to the one chosen in the current execution. If a literal is decided, its value is chosen according to some
euristic by a decision, and it is called decision literal. We annotate decision literals on the trail by a superscript, e. g., ℓd,
enoting open ‘‘left’’ branches (Decide). If a decision literal ℓd is flipped, its complement ℓ opens a ‘‘right’’ branch. The set
onsisting of all decision literals on the trail I is obtained by decs(I) = {ℓ | ℓd ∈ I}.

9 As it is common practice in the SAT community, we do not consider the pure-literal rule from the original DPLL procedure because it is
considered ineffective.
416
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In the main loop of the function DPLL, first exhaustive unit propagation is carried out (line 3). If it does not return
the empty clause, a conflict has occurred. If there is no decision literal left on the trail, both the left and right branch of
all decisions have been explored. The trail I cannot be extended to a satisfying assignment of F and the execution stops
returning UNSAT (lines 4–6). Otherwise, the literals assigned after the most recent decision ℓd are removed from I and ℓd

s flipped (line 8). If exhaustive unit propagation returns the empty clause, no conflict has occurred and there is no unit
iteral in F |I . If not all variables are assigned a value, a decision need be taken (lines 10–11). Otherwise, the execution
erminates returning SAT (line 13).

.3. Conflict-Driven Clause Learning (CDCL)

The DPLL algorithm lacks the possibility to escape early from solution-less regions of the search space. Conflict-
riven clause learning (CDCL) enables the solver to learn a clause representing the reason for the current conflict and
o accordingly undo multiple decisions in one step. The trail is now partitioned into blocks, called decision levels, which
xtend from a decision literal to the last literal preceding the next decision.
The decision level function δ : V ↦→ N assigns and alters decision levels. The decision level of a variable v ∈ V is

btained by δ(v). If v is unassigned, we have δ(v) = ∞. We extend δ accordingly to determine the decision level of
literals ℓ, non-empty clauses C , and non-empty trails I , by defining δ(ℓ) = δ(V (ℓ)), δ(C) = max{δ(ℓ) | ℓ ∈ C}, and
(I) = max{δ(ℓ) | ℓ ∈ I} = #{ℓ | ℓd ∈ I}. The decision level of the trail I therefore corresponds to the number of decision
iterals on I , and if I contains only propagated literals, then δ(I) = 0. The subsequence of I consisting of all literals with
ecision level smaller or equal to n, is denoted by I⩽n. Accordingly, we define δ(L) = max{δ(ℓ) | ℓ ∈ L} for a non-empty set
f literals L. If v is unassigned, we have δ(v) = ∞, and δ(0) = δ(ε) = δ(∅) for the empty clause, the empty sequence and
he empty set of literals. Whenever a variable is assigned or unassigned, the decision level function δ is updated. If V (ℓ)
s assigned at decision level d, we write δ[ ℓ ↦→ d ]. If all variables in the set of variables V are assigned decision level ∞,
e write δ[ V ↦→ ∞] or δ ≡ ∞ as a shortcut. Similarly, if all literals occurring on the trail I are unassigned, i. e., removed

rom I , their decision level is assigned ∞, and we write δ[ I ↦→ ∞] = δ[ V (I) ↦→ ∞]. The function δ is left-associative,
. e., δ[ I ↦→ ∞][ ℓ ↦→ d ] first unassigns all variables on I and then assigns literal ℓ at decision level d.

Literals occurring before the first decision are assigned exclusively by unit propagation at decision level zero. A
ropagated literal is annotated with its reason, as in ℓC , and assigned at the current decision level δ(I). The trail can be
epresented graphically by the implication graph which is defined as follows. Decision literals are represented as nodes on
he left and annotated with their decision level. Propagated literals are internal nodes with one incoming arc originating
rom each node representing a literal in their reason. A conflict is represented by the special node κ whose incoming arcs
re annotated with the conflicting clause.

xample 3 (Trail and Implication Graph). Consider the formula

F = (¬a ∨ b)  
C1

∧ (¬c ∨ d)  
C2

∧ (¬b ∨ ¬c ∨ ¬d)  
C3

over the set of variables V = {a, b, c, d}. Assume we first decide a, then propagate b with reason C1 followed by deciding
c and propagating d with reason C2. Under this assignment, the clause C3 is falsified. The current trail is given by

I = ad bC1 cd dC2

where δ(a) = δ(b) = 1, δ(c) = δ(d) = 2, and decs(I) = {a, b}. The corresponding implication graph is

a@1 b

c@2 d κ

C1

C2

C3

C3

C3

As in DPLL, the CDCL algorithm, see Fig. 2, executes a main loop until either a satisfying assignment has been found
or all possible assignments have been checked without finding one. It starts with exhaustive unit propagation (line 4 and
function PropagateUnits). If a conflict occurs, we call the clause whose literals are set to false under I conflicting clause. If
he trail I contains no decision literal, i. e., its decision level is zero, the execution terminates returning UNSAT (lines 6–7).
therwise, conflict analysis is executed and backtracking occurs (line 9). If no conflict occurs and there are unassigned
ariables, a decision is taken (line 12), where the new decision literal is assigned to the decision level of I . Otherwise, the
xecution terminates returning SAT (line 14).
Conflict analysis is described by procedure AnalyzeConflict. Suppose the current trail I falsifies the clause C ∈ F .

he basic idea is to compute a clause, let us say D, containing the negated assignments responsible for the conflict. By
dding D to F , this assignment is blocked. Moreover, backtracking to the second highest decision level in D results in D
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r

Fig. 2. CDCL-based satisfiability algorithm. In the main loop, first exhaustive unit propagation is executed. If a conflict at decision level zero occurs,
the execution terminates returning UNSAT. Otherwise, the conflict is analyzed, a clause blocking the assignment responsible for the conflict is learned
and backjumping occurs. If no conflict occurred and all variables are assigned, the execution terminates returning SAT, otherwise a decision is taken.

becoming unit, and its literal with highest decision level is propagated. A main ingredient of the clause learning algorithm
is resolution [53]. Given two clauses (A∨ ℓ) and (B∨ ¬ℓ), where A and B are disjunctions of literals and ℓ is a literal, their
esolvent (A ∨ ℓ) ⊗ℓ (B ∨ ¬ℓ) = (A ∨ B) is obtained by resolving them on ℓ. The clause D is determined by a sequence of
resolution steps which can be read off either the implication graph or the trail. First, the conflicting clause is resolved with
the reason of one of its literals. This procedure is repeated with the reason of one literal in the resolvent and continued
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until the resolvent contains one single literal at conflict level, which is the decision level of the conflicting clause. In the
implication graph, we start with the conflict node κ and follow the edges in reverse direction to determine the next literal
to resolve on. Considering the trail, we start with the conflicting clause and choose the most recent propagated literal for
resolution.

Example 4 (Trail-Based Conflict-Driven Clause Learning). Consider the situation in Example 3. The conflicting clause is
C3 = (¬b ∨ ¬c ∨ ¬d) with δ(C3) = 2 and I = ad bC1 cd dC2 . The most recent unit literal is d with reason C2. We resolve C3
with C2 on d and obtain C3 ⊗d C2 = (¬b ∨ ¬c ∨ ¬d) ⊗d (¬c ∨ d) = (¬b ∨ ¬c).10 Now δ(¬b) = 1 ̸= 2 = δ(d) = δ(C3), and
the clause (¬b ∨ ¬c) is learned.

Following the trail in reverse assignment order gives us a deterministic sequence of resolution steps. In contrast, when
determining the clause to be learned based on the implication graph, this choice need not be deterministic.

Example 5 (Implication-Graph-Based Conflict-Driven Clause Learning). Consider the implication graph given in Example 3
for clause learning. The choice of the clauses to resolve need not be deterministic. For instance, we can resolve C3 either
on d with C2 or on b with C1. If we choose C1, the resolvent (¬a∨¬c∨¬d) contains two literals at conflict level, namely ¬c
and ¬d, and a second resolution step is needed, whereas by resolving C3 with C2 on d first, see Example 4, one resolution
step is saved.

2.4. Incremental SAT solving

The basic idea of incremental SAT solving is to exploit the progress made during the search process if similar formulae
need be solved. So, instead of the learned clauses to be discarded, they are retained between the single SAT calls.

Hooker [23] presented the idea of incremental SAT solving in the context of knowledge-based reasoning. Eén and
Sörensson [16] introduced the concept of assumptions for incremental SAT solving which fits our needs best. Assumptions
can be viewed as unit clauses added to the formula. They basically represent a (partial) assignment whose literals remain
set to true during the solving process. In particular, backtracking does not occur past any assumed literal.

2.5. Projection

We are interested in enumerating the models of a propositional formula projected onto a subset of its variables. To
this end we partition the set of variables V = X ∪ Y into the set of relevant variables X and the set of irrelevant variables
Y and write F (X ∪ Y ) to express that F depends on the variables in X ∪ Y . Accordingly, we decompose the assignment
σ = σX ∪ σY into its relevant part σX : X ↦→ B and its irrelevant part σY : Y ↦→ B following the convention introduced
in our earlier work on dual projected model counting [38]. The main idea of projection onto the relevant variables is to
existentially quantify the irrelevant variables. The models of F (X ∪ Y ) projected onto X are therefore

models(∃ Y . F (X, Y )) = {τ : X → B | exists σ : X ∪ Y → B with
σ
(
F (X, Y )

)
= 1 and τ = σX },

and enumerating all models of F without projection is therefore the special case where Y = ∅. The projection of the trail
I onto the set of variables X is denoted by π (I, X) and π (F (X, Y ), X) ≡ ∃ Y [ F (X, Y ) ].

Example 6 (Projected Models). Consider again the formula F in Example 1. Its unprojected models are given bymodels(F ) =

{a b c d, a b c ¬d, a b¬c d, a b¬c ¬d}. Its models projected onto X = {a, c} are a c and a¬c .

In order to benefit from the efficient methods SAT solvers execute on CNF formulae, we transform an arbitrary formula
F (X, Y ) into CNF by, e. g., the Tseitin transformation [64].11 By this transformation, auxiliary variables, also referred to as
Tseitin or internal variables, are introduced. The Tseitin transformation is satisfiability-preserving, i. e., a satisfiable formula
s not turned into an unsatisfiable one and, similarly, an unsatisfiable formula is not turned into a satisfiable one. The
seitin variables, which we denote by S, are defined in terms of the variables in X ∪ Y , which we call input variables. As a
onsequence, for each total assignment to the variables in X ∪ Y there exists one single assignment to the variables in S
uch that the resulting assignment is a model of F , and therefore the model count is preserved. Due to the introduction
f the Tseitin variables, the resulting formula P(X, Y , S) = Tseitin(F (X, Y )) is not logically equivalent to F (X, Y ), i. e.,

models(F ) ̸= models(P), and the Tseitin transformation is not equivalence-preserving. However, the models of P(X, Y , S)
projected onto the input variables are exactly the models of F (X, Y ), and

∃ S [ P(X, Y , S) ] ≡ F (X, Y ). (1)

10 After applying a factorization step, i. e., removing one ¬c from the resolvent (¬b ∨ ¬c ∨ ¬c).
11 It turns out that in the context of dual projected model enumeration also the Plaisted–Greenbaum transformation [51] might be used although
in general it does not preserve the model count.
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The models of F projected onto X are accordingly given by

models(∃ Y , S [ P(X, Y , S) ]) = models(∃ Y [ F (X, Y ) ]). (2)

2.6. Dual representation of a formula

We make use of the dual representation of a formula introduced in our earlier work [38]. Let F (X, Y ) and P(X, Y , S)
be defined as in Section 2.5, and let N(X, Y , T ) = Tseitin(¬F (X, Y )) be a CNF representation of ¬F , where T denotes the
set of Tseitin variables introduced by the transformation, i. e.,

∃ T [N(X, Y , T ) ] ≡ ¬F (X, Y ). (3)

The formulae P(X, Y , S) and N(X, Y , T ) are a dual representation12 of F (X, Y ).

Example 7 (Dual Formula Representation). Let F (X, Y ) = (a ∧ ¬b) ∨ (¬a ∧ b) be defined over X = {a} and Y = {b} and
suppose ¬F (X, Y ) = (a∧b)∨ (¬a∧¬b). A dual representation of F (X, Y ) consists of the Tseitin transformations of F (X, Y )
and its negation, P(X, Y , S) = (¬s1 ∨ a) ∧ (¬s1 ∨ ¬b) ∧ (s1 ∨ ¬a ∨ b) ∧ (¬s2 ∨ ¬a) ∧ (¬s2 ∨ b)(s2 ∨ a ∨ ¬b) ∧ (s1 ∨ s2) and
N(X, Y , T ) = (¬t1 ∨ a)∧ (¬t1 ∨ b)∧ (t1 ∨ ¬a∨ ¬b)∧ (¬t2 ∨ ¬a)∧ (¬t2 ∨ ¬b)∧ (t2 ∨ a∨ b)∧ (t1 ∨ t2), respectively, where
S = {s1, s2} and T = {t1, t2}.

For the sake of readability, we also may write F , P , and N . Notice that this representation is not unique in general.
Besides that, P(X, Y , S) and N(X, Y , T ) share the set of input variables X ∪ Y , and S ∩ T = ∅, and

∃ S [ P(X, Y , S) ] ≡ ¬∃T [N(X, Y , T ) ] , (4)

In an earlier work [38] we showed that during the enumeration process a generalization of the following always holds
assuming we first decide variables in X and then variables in Y ∪ S but never variables in T :

( ¬∃ T [N(X, Y , T )|I ] ) |H ( ∃ S [ P(X, Y , S)|I ] ) (5)

where I is a trail over variables in X ∪ Y ∪ S ∪ T . Obviously, also

( ∃ S [ P(X, Y , S)|I ] ) |H ( ¬∃ T [N(X, Y , T )|I ] ) , (6)

saying that whenever I can be extended to a model of P , all extensions of it falsify N . This property is a basic ingredient
of our dual model shrinking method.

3. Dual reasoning for model shrinking

In a previous work, we adopted dual reasoning for obtaining partial models [38]. Basically, we executed CDCL
on the formula under consideration and its negation simultaneously exploiting the fact that CDCL is biased towards
detecting conflicts. Our experiments showed that dual reasoning detects short models. However, processing two formulae
simultaneously turned out to be computationally expensive.

In another work [41] we propose, before taking a decision, to check whether the current (partial) assignment logically
entails the formula under consideration. We present four flavors of the entailment check, some of which use a SAT oracle
and rely on dual reasoning.

The method introduced in this work, instead, exploits the effectiveness of dual reasoning in detecting short partial
models while avoiding both processing two formulae simultaneously and oracle calls, which might be computationally
expensive. In essence, we let the enumerator find total models and shrink them by means of dual reasoning.

Assume our task is to determine the models of a formula F (X, Y ) over the set of relevant variables X and irrelevant
variables Y projected onto X , and let P(X, Y , S) and N(X, Y , T ) be CNF representations of F and ¬F , respectively, as
introduced in Section 2. Obviously, Eq. (2)–Eq. (6) hold. Suppose standard CDCL is executed on P . We denote with I
the trail which ranges over variables in X ∪ Y ∪ S ∪ T , where S and T are the Tseitin variables occurring in P and N ,
respectively.

Now assume a total model I of P is found. A second SAT solver is incrementally invoked on π (I, X ∪ Y ) ∧ N . Since
π (I, X ∪ Y ) |H F and all variables in X ∪ Y are assigned, due to Eq. (6), a conflict in N occurs by propagating variables in T
only. If conflict analysis is carried out as described in Section 2.3, the learned clause ¬I⋆ contains only negated assumption
literals.13 On the one hand, ¬I⋆ represents a cause for the conflict in N . On the other hand, due to Eq. (5), its negation
I⋆ represents a (partial) model of F . More precisely, I⋆ represents all total models of F projected onto X ∪ Y in which the
variables in X ∪ Y not occurring in I⋆ may assume any truth value.

12 Referred to as combined formula pair of F (X, Y ) in our previous work [38].
13 See also the work by Niemetz et al. [48].
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Example 8 (Model Shrinking by Dual Reasoning). Let F = (a∨b)∧(c∨d) be a propositional formula over the set of variables
= {a, b, c, d}. Without loss of generalization, suppose we want to enumerate the models of F projected onto V . Assume
total model I = ad bd cd dd has been found. We call a second SAT solver on N ∧ I , where

N = (¬t1 ∨ ¬a)  
C1

∧ (¬t1 ∨ ¬b)  
C2

∧ (a ∨ b ∨ t1)  
C3

∧

(¬t2 ∨ ¬c)  
C4

∧ (¬t2 ∨ ¬d)  
C6

∧ (c ∨ d ∨ t2)  
C6

∧

(t1 ∨ t2)  
C7

is the Tseitin encoding of ¬F = (¬a ∧ ¬b) ∨ (¬c ∧ ¬d) with Tseitin variables T = {t1, t2}. The clauses C1 to C3 encode
t1 ↔ (¬a ∧ ¬b)), the clauses C4 to C6 encode (t2 ↔ (¬c ∧ ¬d)), and C7 encodes (t1 ∨ t2).

The literals on I are considered assumed variables, annotated by, e. g., aa, and I = aa ba ca da. After propagating ¬t1
ith reason C1 and ¬t2 with reason C4, the clause C7 becomes empty. The current trail is I ′ = aa ba ca da ¬t1C1 ¬t2C4 . We
esolve C7 with C4 to obtain the clause (t1 ∨ ¬c) which we then resolve with C1. The resolvent is (¬c ∨ ¬a) containing
nly assumed literals which have no reason in I ′, and thus cannot be resolved further. Below on the left hand side, the
mplication graph is visualized, and the corresponding resolution steps are depicted on the right hand side.

a

b

c

d

¬t1

¬t2

κ

C1

C4

C7

C7

(t1 ∨ t2) (¬t2 ∨ ¬c)

(t1 ∨ ¬c) (¬t1 ∨ ¬a)

(¬c ∨ ¬a)

The negation of the clause (¬c ∨ ¬a), c a, is a counter-model of ¬F and hence a model of F . In this case, it is also
minimal w. r. t. the number of literals.

Note: The gain obtained by model shrinking is twofold. On the one hand, it enables the (implicit) exploration of multiple
models in one pass: e. g., in Example 8, the model c a represents four total models, namely, a b c d, a b c ¬d, a¬b c d, and
¬b c ¬d. On the other hand, short models result in short blocking clauses ruling out a larger part of the search space, as
entioned earlier.

. Dual encoding of blocking clauses

Recall that in our dual model shrinking approach we rely on Eq. (4). If a blocking clause is added to P and N is not
pdated accordingly, then P and N do not represent the negation of each other anymore, and Eq. (4) ceases to hold. This
ight lead to multiple model enumerations in the further search, if dual model shrinking is applied. This issue can be

emediated by adding the shrunken models disjunctively to N . The basic idea is the following. If a trail I satisfies a formula
, then it falsifies its negation ¬F , i. e., F ∧ ¬I ≡ 0 and ¬(¬F ∧ ¬I) = ¬F ∨ I ≡ 1. To retain ¬F in CNF and ensure Eq. (4),
e propose the following dual encoding of the blocking clauses.
We denote with Tseitin() the function which takes as argument an arbitrary propositional formula and returns its

seitin transformation. For the sake of readability, we write F , P , and N as well as their indexed variants instead of
(X ∪ Y ), P(X ∪ Y ∪ S) and N(X ∪ Y ∪ T ). We define

P0 = Tseitin(F ) (7)

N0 = t0 ∧ Tseitin(t0 ↔ ¬F ). (8)

Let I1 be a trail such that I1 evaluates F to true, i. e., I1 ⊢ F . A second SAT solver SAT is called on π (I1, X ∪ Y ) ∧ N0, and
conflict is obtained as argued above. Assume SAT returns the assignment I⋆1 ⩽ I1 such that SAT (π (I⋆1, X ∪ Y ),N0) =

NSAT. Then ¬π (I⋆1, X) is added to P0 obtaining P1 = P0 ∧ ¬π (I⋆1, X). To ensure Eq. (4), we define N1 = (t0 ∨ t1) ∧

seitin (t0 ↔ ¬F) ∧ Tseitin(t1 ↔ π (I⋆1, X)), and we apply this encoding inductively as follows. At the nth step, we have

Pn = P0 ∧

n⋀
i=1

¬π (I⋆i , X) (9)

Nn = (t0 ∨

n⋁
i=1

ti) ∧ Tseitin(t0 ↔ ¬F ) ∧

n⋀
i=1

Tseitin(ti ↔ π (I⋆i , X)) (10)

here the underlined parts denote the additions to P and N .
0 0

421



S. Möhle, R. Sebastiani and A. Biere Discrete Applied Mathematics 361 (2025) 412–439
Let In+1 be a trail evaluating Pn to true, i. e., In+1 ⊢ Pn. We invoke SAT on π (In+1, X ∪ Y ) ∧ Nn leading to a conflict as
described above. Assume SAT returns I⋆n+1 ⩽ In+1, such that SAT (π (I⋆n+1, X ∪ Y ),Nn) = UNSAT. We add ¬π (I⋆n+1, X) to Pn
and update Nn accordingly. Now we have14

Pn+1 = Pn ∧ ¬π (I⋆n+1, X) (11)

Nn+1 = Nn \ {(t0 ∨

n⋁
i=1

ti)} ∧ (t0 ∨

n+1⋁
i=1

ti) ∧ Tseitin(tn+1 ↔ π (I⋆n+1, X)) (12)

where Ii+1 ⊢ Pi for 0 ⩽ i ⩽ n
and I⋆i+1 ⩽ Ii+1 is s. t. SAT (π (I⋆i+1, X ∪ Y ),Ni) = UNSAT.

Proposition 1. Let F (X, Y ) be an arbitrary propositional formula over the relevant variables X and the irrelevant variables
Y . Let F and ¬F be encoded into CNFs P0 and N0, respectively, according to Eqs. (7) and (8). If for all models found blocking
clauses are added to P0 and N0 according to Eqs. (9) and (10), then only pairwise contradicting models are found, i. e., π (I⋆i , X)
and π (I⋆j , X) are pairwise contradicting for every i ̸= j.

Proof. By construction, Nn ≡ ¬F ∨
⋁n

i=1 π (I⋆i , X ∪ Y ) and, given a shrunken model I⋆n+1 of Pn, π (I⋆n+1, X ∪ Y ) ∧ Nn ≡ 0.
Furthermore, π (I⋆n+1, X ∪ Y ) ∧ ¬F ≡ 0. We have

0 ≡ π (I⋆n+1, X ∪ Y ) ∧ (¬F ∨

n⋁
i=1

π (I⋆i , X ∪ Y ))

= (π (I⋆n+1, X ∪ Y ) ∧ ¬F ) ∨ (π (I⋆n+1, X ∪ Y ) ∧

n⋁
i=1

π (I⋆i , X ∪ Y ))

≡ (π (I⋆n+1, X ∪ Y ) ∧

n⋁
i=1

π (I⋆i , X ∪ Y ))

≡ (π (I⋆n+1, X) ∧

n⋁
i=1

π (I⋆i , X)),

since I⋆i contains only relevant variables. Hence, π (I⋆n+1, X) ∧ π (I⋆i , X) ≡ 0 for i = 1, . . . , n. □

Note: Eq. (4) always holds:

∃S [ Pi(X, Y , S) ] ≡ ¬∃T [Ni(X, Y , T ) ] for all 0 ⩽ i ⩽ n + 1.

Consequently, also Eqs. (5) and (6) hold:

( ¬∃ T [Ni(X, Y , T )|I ] ) |H ( ∃ S [ Pi(X, Y , S)|I ] ) for all 0 ⩽ i ⩽ n + 1

( ∃ S [ Pi(X, Y , S)|I ] ) |H ( ¬∃ T [Ni(X, Y , T )|I ] ) for all 0 ⩽ i ⩽ n + 1
However, for our usage we may use the implication in the forward direction only and write ti → π (I⋆i , X) and
tn+1 → π (I⋆n+1, X) in Eqs. (10) and (12) without compromising correctness for the following reason: the formula Ni
is called always under Ii+1 which falsifies all I⋆k for 0 ⩽ k ⩽ i. Hence, π (I⋆i , X) → ti is always true.

Example 9 (Dual Blocking Clauses). We clarify the proposed encoding by a small example and show that it prevents
multiple model counts. Let our example be F = x1 ∨ (x2 ∧ x3) and assume we have found the model I⋆1 = x1. Then

P1 = (¬s1 ∨ x2) ∧ (¬s1 ∨ x3) ∧ (s1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ s1) ∧ (¬x1)

and

N1 = (¬t1 ∨ ¬x1)  
C1

∧ (¬t1 ∨ ¬x2)  
C2

∧ (t0 ∨ x1 ∨ x2)  
C3

∧

(¬t2 ∨ ¬x1)  
C4

∧ (¬t2 ∨ ¬x3)  
C5

∧ (t2 ∨ x2 ∨ x3)  
C6

∧

(t1 ∨ t2 ∨ t3)  
C7

∧ (¬t3 ∨ x1)  
C8

∧ (t3 ∨ ¬x1)  
C9

14 Notice that here, with a little abuse of notation, by ‘‘N \ {C}’’ we refer to the formula resulting from dropping clause C from formula N .
n n
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where the unit clause (¬x1), the literal t3 in C7 as well as the clauses C8 and C9, all emphasized in blue, denote the
corresponding additions to P0 and N0. If now we find a total model I2 = ¬x1 x2 x3, we obtain a conflict in N1 by unit
propagating variables t1, t3, and t3 only. The conflicting clause is (t1 ∨ t2 ∨ t3). The implication graph is depicted below on
the left hand side, the corresponding resolution steps for conflict analysis below on the right hand side.

¬x1

x2

x3

¬t3

¬t1

¬t2

κ

C8

C2

C5

C7

C7

C7

(t1 ∨ t2 ∨ t3) (¬t2 ∨ ¬x3)

(t1 ∨ t3 ∨ ¬x3) (¬t1 ∨ ¬x2)

(t3 ∨ ¬x3 ∨ ¬x2) (¬t3 ∨ x1)

(¬x3 ∨ ¬x2 ∨ x1)

Conflict analysis returns the clause (¬x3 ∨ ¬x2 ∨ x1), which, after being added to P , blocks the model ¬x1 x2 x3, which
does not overlap with the previously found model x1.

5. Projected model enumeration without repetition

We are given a propositional formula F (X, Y ) over the set of relevant variables X and the set of irrelevant variables
Y , and our task is to enumerate its models projected onto the variables in X . Let P(X, Y , S) and N(X, Y , T ) be a dual
representation of F according to Section 2. Obviously, Eq. (2)–Eq. (6) hold. Now we call a CDCL-based SAT solver on P .
Whenever it finds a total model I of P , it is shrunken by dual reasoning obtaining I⋆ which also satisfies P . The decision
level of I⋆ might be significantly smaller than the one of I , and backtracking to decision level b = δ(¬π (I⋆, X))−1 mimics
non-chronological backtracking in CDCL. Notice that I⋆ is used solely for determining the backtracking level. The blocking
clause added to P consists of all decisions with decision level smaller or equal to b+1 and propagates after backtracking.

In Fig. 3, we consider the case with permanent learning of the blocking clauses. Let the first SAT solver execute standard
CDCL on P and let I denote its trail. Obviously it finds only total models of P . Due to Eq. (2), these models satisfy F , too.
Now assume a (total) model I of P is found. A second SAT solver SAT is incrementally invoked on π (I, X ∪ Y ) ∧ N with
the aim to shrink I obtaining I⋆ as described in Section 3.

Let b denote the decision level of π (¬I⋆, X) and ℓ be the literal in π (¬I⋆, X) with decision level b. We now add the
clause π (¬decs(I⋆), X) to P and backtrack to decision level b−1. Notice that π (¬decs(I⋆), X) acts in P as a blocking clause
and must not be deleted anytime which might blow up P and slow down the first SAT solver. Moreover, the dual encoding
of the blocking clause according to Section 4 ensures Eq. (4) on which our method relies.

In Section 5.1, we present the main function EnumerateIrredundant. Unit propagation (Section 5.2) and the schema for
conflict analysis (Section 5.3) are the same as in CDCL for SAT.

5.1. Main algorithm

The function EnumerateIrredundant in Fig. 3 describes the main algorithm. (Black rows 1–18 and 27–28 represent
standard CDCL with projection returning a model if the formula under consideration is satisfiable and the empty clause
otherwise, blue rows 19–26 the rest of the algorithm.)

Initially, the trail I is empty, the target DNF M is 0, and all variables are unassigned, i. e., assigned decision level ∞.
Unit propagation is executed until either a conflict occurs or all variables are assigned a value (line 7).

If a conflict occurs at decision level zero, the search space has been processed exhaustively, and the enumeration
terminates (lines 8–11). If a conflict occurs at a decision level higher than zero, conflict analysis is executed (line 13).

If no conflict occurs and all variables are assigned, a total model has been found (line 15). If no relevant decisions
are left on the trail I , the relevant search space has been processed exhaustively, the found model is output and the
search terminates (lines 17–18). If I contains a relevant decision, the found model is shrunken (line 20) by means of dual
reasoning as described in Section 3. It is blocked, and the last relevant decision literal is flipped (lines 22–26). If no conflict
occurs and not all variables are assigned, a decision is taken (line 28), where the variables in X are prioritized over the
variables in Y ∪ S to avoid enumerating models which only differ in irrelevant and Tseitin variables.

5.2. Unit propagation

Unit propagation is described by the function PropagateUnits in Fig. 4. It takes as input the formula F , the trail I , and
the decision level function δ. If a clause C ∈ F is unit under I , its unit literal ℓ is propagated, i. e., I is extended by ℓ (line
2). Propagated literals are assigned at the current decision level (line 3) as is usual in modern CDCL-based SAT solvers.
If the resulting trail falsifies some clause D ∈ F , this clause is returned (lines 4–5). Otherwise the function returns the
empty clause 0 (line 6).
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Fig. 3. Irredundant model enumeration. The black lines 1–18 and 27–28 describe CDCL returning a model if one is found and the empty clause
otherwise. Notice that for decisions, variables in X are prioritized over variables in (Y ∪ S) to avoid multiple enumeration of projected models.
imilarly, in line 17 it suffices to check whether no relevant decision literals are left on the trail. The blue part, i.e., lines 19–26, represents the
xtension to model enumeration. A second SAT solver is called incrementally on N assuming the literals on π (I, X ∪ Y ). A conflict occurs by unit
ropagation only, and π (I⋆, X ∪ Y ) is a (partial) model of F . It is encoded as a dual blocking clause, and P and N are updated accordingly.

.3. Conflict analysis

Conflict analysis is described by the function AnalyzeConflict in Fig. 4. It takes as input the formula F , the trail I , the
conflicting clause C , and the decision level function δ. A clause D is learned as described in Section 7 and added to F
(lines 1–2). The second highest decision level j in D is determined (lines 3–4), and the enumerator backtracks (non-
chronologically) to decision level j. Backtracking involves unassigning all literals with decision level higher than j (lines
5–7). After backtracking, the clause D becomes unit with unit literal ℓ, which is propagated and assigned decision level j
lines 8–9).
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Fig. 4. The function PropagateUnits implements unit propagation in F . The unit literal ℓ is assigned the decision level of I . If some clause D ∈ F
ontaining the complement of ℓ becomes falsified, PropagateUnits returns D. Otherwise it returns the empty clause 0 indicating that no conflict has
occurred. The function AnalyzeConflict is called whenever a clause C ∈ F becomes empty under the current assignment. It learns a clause D starting
with the conflicting clause C . The solver then backtracks to the second highest decision level j in D upon which D becomes unit with unit literal ℓ,
nd propagates ℓ.

. Formalizing projected irredundant model enumeration

In this section, we provide a formalization of our algorithm presented in Section 5. Let F (X, Y ) be a formula defined onto
he set of relevant (input) variables X and the set of irrelevant (input) variables Y , and assume our task is to enumerate
ts models projected onto X .

Our formalization works on a dual representation of F , given by P(X, Y , S) and N(X, Y , T ), as introduced in Section 2.6.
So, P(X, Y , S) and N(X, Y , T ) are defined over the same sets of relevant variables X and irrelevant variables Y as well
as the disjoint sets of variables S and T , respectively, which are defined in terms of the variables in X ∪ Y . Recall that
Eq. (2)–Eq. (6) hold. We start by sketching the enumeration process. After presenting our calculus, we show its working
by means of an example before providing a correctness proof.

The process works as follows. Let I denote the current trail. Unit propagation is carried out as long as P|I contains a
unit literal (rule Unit). If all variables in X ∪ Y ∪ S are assigned and no conflict has occurred, a total model of P has been
found. In case there is no decision left on I , its projection onto X is enumerated, and we are done (End1). Otherwise, the
model I is shrunken and blocked by means of the dual blocking clause encoding (Back1). If a conflict occurred and there
is no decision left on I , the process terminates (End0). Otherwise, conflict analysis is carried out and backtracking occurs
(Back0). If after executing exhaustive unit propagation there are still unassigned variables in X ∪Y ∪ S, a decision need be
taken. We are interested in the models projected onto X . To avoid detecting models which differ only in variables Y ∪ S,
we first decide variables in X (DecX), before deciding variables in Y ∪ S (DecYS).

6.1. Calculus

We formalize the algorithm presented in Section 5 as a state transition system with transition relation ⇝EnumIrred.
Non-terminal states are described by tuples (P, N, M, I, δ). The third element, M , is a DSOP formula over variables in X .
The fourth element, I , denotes the trail defined over variables in X ∪ Y ∪ S ∪ T , and δ denotes the decision level function.
The initial state is (P0, N0, 0, ε, δ0), where P0 and N0 denote the initial CNF representations of F and ¬F , respectively,
ε denotes the empty trail, and δ0 ≡ ∞. The terminal state is given by a DSOP formula M , which is equivalent to the
projection of P onto X . The transition relation ⇝EnumIrred is the union of transition relations ⇝R, where R is either End1,
End0, Unit, Back1, Back0, DecX, or DecYS. The rules are listed in Fig. 5.

End1. All variables are assigned and no conflict in P occurred, hence the trail I is a total model of P . It contains no
relevant decision indicating that the relevant search space has been processed exhaustively. The model projected onto X
is added to M , and the search terminates. It is sufficient to check for relevant decisions, since flipping an irrelevant one
would result in detecting redundant models projected onto X . However, due to the addition of blocking clauses, a conflict
would occur, and checking for relevant decisions essentially saves work.
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Fig. 5. Rules for projected model enumeration without repetition. States are represented as tuples (P, N, M, I, δ). The formulae P(X, Y , S) and
(X, Y , T ) are a dual representation of the formula F (X .Y ) whose models projected onto X are sought. These models are recorded in the initially
mpty DNF M . The last two elements, I and δ, denote the current trail and decision level function, respectively. If a model is found or a conflict
ncountered and the search space has been processed exhaustively, the search terminates (rules End1 and End0). Otherwise, either the model is
hrunken and a dual blocking clause is added (rules Back1) or conflict analysis is executed followed by non-chronological backtracking (rule Back0).
f the residual of P under the current trail I J contains a unit literal, it is propagated (rule Unit). If none of the mentioned preconditions are met, a
ecision is taken. Relevant variables are prioritized (rule DecX) over irrelevant and internal ones (rule DecYS).

End0. A conflict at decision level zero has occurred indicating that the search space has been processed exhaustively.
he search terminates leaving M unaltered. We need to make sure no decision is left on the trail, which in particular
ncludes the irrelevant ones. The reason is that after flipping any decision — in particular also irrelevant and internal ones
the resulting trail might be extended to a model of P .
Unit. No conflict in P occurred, and a clause in P is unit under I . Its unit literal ℓ is propagated and assigned the current

ecision level.
Back1. All variables are assigned, no conflict in P occurred, and the trail I is a total model of P . It is shrunken as

escribed in Section 3 obtaining I⋆. The projection m of I⋆ onto X is added to M . The clause B consisting of the negated
ecision literals of m is added as a blocking clause to P . Its negation ¬B is added disjunctively to N , which is transformed
ack into CNF by means of the Tseitin transformation.15 The solver backtracks to the second highest decision level in B
nd propagates ℓ at the current decision level, i. e., basically flips the relevant decision literal with highest decision level.
Back0. The current trail falsifies a clause in P at a decision level greater than zero indicating that the search space has

ot yet been processed exhaustively. Conflict analysis returns a clause D implied by P , which is added to P and marked
s redundant. The solver backtracks to the second highest decision level j in D. The learned clause D becomes unit and its
nit literal ℓ is propagated at decision level j. In contrast to End1, every decision literal need be flipped, which particularly
pplies to irrelevant and internal decision literals.

15 Notice that although not stated explicitly in favor of simplifying the presentation, the dual blocking clause encoding introduced in Section 4
may be used (see lines 22–23 of algorithm EnumerateIrredundant in Fig. 3).
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Fig. 6. Execution trace for F = (a ∨ c) ∧ (a ∨ ¬c) ∧ (b ∨ d) ∧ (b ∨ ¬d) defined over the set of relevant variables X = {a, c} and the set of irrelevant
ariables Y = {b, d} (see also Examples 1 and 6).

DecX. No conflict has occurred, the residual of P under I contains no units, and there is an unassigned relevant literal
. The current decision level is incremented to d, the literal ℓ is decided and assigned to decision level d.
DecYS. No conflict has occurred, and the residual of P under I contains no units. All relevant literals are assigned, and

here is an unassigned irrelevant or internal literal ℓ. The current decision level is incremented to d, ℓ is decided and
ssigned decision level d.

.2. Example

The working of our calculus is shown by means of an example. Consider again Examples 1 and 6. We have

F = (a ∨ c)  
C1

∧ (a ∨ ¬c)  
C2

∧ (b ∨ d)  
C3

∧ (b ∨ ¬d)  
C4

and assume the set of relevant variables is X = {a, c} and the set of irrelevant variables is Y = {b, d}. The formula F is
already in CNF, therefore we define P0 = F and accordingly S0 = ∅. For its negation

¬F = (¬a ∧ ¬c) ∨ (¬a ∧ c) ∨ (¬b ∧ ¬d) ∨ (¬b ∧ d)

we define

N0 = (¬t1 ∨ ¬a)  
D1

∧ (¬t1 ∨ ¬c)  
D2

∧ (a ∨ c ∨ t1)  
D3

∧

(¬t2 ∨ ¬a)  
D4

∧ (¬t2 ∨ c)  
D5

∧ (a ∨ ¬c ∨ t2)  
D6

∧

(¬t3 ∨ ¬b)  
D7

∧ (¬t3 ∨ ¬d)  
D8

∧ (b ∨ d ∨ t3)  
D9

∧

(¬t4 ∨ ¬b)  
D10

∧ (¬t4 ∨ d)  
D11

∧ (b ∨ ¬d ∨ t4)  
D12

∧

(t1 ∨ t2 ∨ t3 ∨ t4)  
D13

with the set of internal variables T0 = {t1, t2, t3, t4}. Assume a lexicographic ordering of the input variables, i. e.,
≻lex b ≻lex c ≻lex d, and assume we choose the decision variable according to this ordering. The execution steps

re depicted in Fig. 6.
Step 0: The initial state is given by the empty trail ε, the CNF formulae P0 and N0, and the empty DNF formula 0.
Step 1: The formula P0 contains no units and there are unassigned relevant variables. The preconditions of rule DecX

re met, and decision a is taken.
Step 2: No conflict occurred, P0|I contains no units, and there are unassigned relevant variables. The preconditions of

ule DecX are met, and c is decided.
Step 3: No conflict occurred, and P0|I contains no units. All relevant variables are assigned and there are unassigned

rrelevant variables. The preconditions of rule DecYS are met, and decision b is taken. Notice that I already satisfies P0,
ut the solver is not able to detect this fact.
Step 4: Again, the preconditions of rule DecYS are met, and decision d is taken.
Step 5: No conflict occurred and all variables are assigned, hence I is a model of P0. It is shrunken following the

rocedure described in Section 3. We call a SAT solver on N ∧ I assuming the literals on I . A conflict in N occurs by
0 0
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propagation of variables in T0, and conflict analysis provides us with the shrunken model a b of F . The resulting implication
graph and trail are as follows:

a

c

b

d

¬t2

¬t1

¬t3

¬t4

κ

D1

D4

D7

D11

D13

D13

D13

D13

I = aa ca ba da ¬t1D1 ¬t2D4 ¬t3D7 ¬t4D10

The conflicting clause is D13. For conflict analysis, we resolve D13 with D10 and the resolvent with D7 followed by
esolution with D4 and D1. The obtained clause (¬b∨¬a) contains only assumed literals. The assumptions c and d do not
articipate in the conflict and therefore do not occur in the resulting clause. Below, the resolution steps are visualized.

(t1 ∨ t2 ∨ t3 ∨ t4) (¬t4 ∨ ¬b)

(t1 ∨ t2 ∨ t3 ∨ ¬b) (¬t3 ∨ ¬b)

(t1 ∨ t2 ∨ ¬b) (¬t2 ∨ ¬a)

(t1 ∨ ¬b ∨ ¬a) (¬t1 ∨ ¬a)

(¬b ∨ ¬a)

The negation of (¬b ∨ ¬a) is I⋆ = a b ⩽ I we are looking for. The first model is m1 = π (I⋆, X) = a and accordingly
1 = M0 ∨ m1. Furthermore, we have B1 = ¬decs(m1) = (¬a), hence

P1 = P0 ∧ (¬a)
B1

and

N1 =N0 ∨ (a)
¬B1

=N0 \ {(
4⋁

j=1

tj)} ∧ (
5⋁

j=1

tj) ∧ (t5 ↔ a)

= (
12⋀
i=1

Di) ∧ (¬t5 ∨ a)  
D14

∧ (¬a ∨ t5)  
D15

∧ (t1 ∨ t2 ∨ t3 ∨ t4 ∨ t5)  
D16

where D14 ∧ D15 = (t5 ↔ a) is the Tseitin transformation of m1. The clause ¬B1 is added disjunctively to N0. To retain N
n CNF, ¬B1 is encoded as (t5 ↔ ¬B1), t5 is added to D13 resulting in D16 and T1 = T0 ∪{t5} = {t1, t2, t3, t4, t5} as described
n Section 4. The clause B1 acts in P as blocking clause. The solver backtracks to decision level zero and propagates ¬a
ith reason B1.
Step 6: The formula P1|I contains two units, C1|I = (c) and C2|I = (¬c). The literal c is propagated with reason C1.
Step 7: The trail falsifies C2 and the current decision level is zero. The preconditions of rule End0 are met and the

earch terminates without altering M = a, which represents exactly the models of F projected onto X , namely a c and
¬c.

.3. Proofs

Our proofs are based on the ones provided for our work addressing chronological CDCL for model counting [40], which
n turn rely on the proof of correctness we provided for chronological CDCL [39]. The method presented here mainly differs
rom the former in the following aspects: The total models found are shrunken by means of dual reasoning. It adopts
on-chronological CDCL instead of chronological CDCL and accordingly makes use of blocking clauses, which affects the
rdering of the literals on the trail. In fact, unlike in chronological CDCL, the literals on the trail are ordered in ascending
rder with respect to their decision level, which simplifies not only the rules but also the proofs. Projection in turn adds
omplexity to some invariants. In some aspects our proofs are similar to or essentially the same as those in our former
roofs [39,40]. However, they are fully worked out to keep them self-contained.
In order to prove the correctness of our method, we make use of the invariants listed in Fig. 7. Invariant InvDualPN in

ssence is Eq. (4). It ensures that the shrunken model is again a model of P projected onto the input variables, stating that
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Fig. 7. Invariants for projected model enumeration without repetition.

and N projected onto the input variables X ∪Y are each other’s negation. Intuitively, Invariant InvDualPN holds because
he found models are blocked in P and added to its negation N . Invariants InvDecs and InvImplIrred equal Invariants
(2) and (3) in our proofs of correctness of chronological CDCL [39] and model counting by means of chronological CDCL
[40]. Invariant InvImplIrred differs from the latter in that we need not consider the negation of the DNF M explicitly. The
negation of M is exactly the conjunction of the blocking clauses associated with the found models, and these are added
to P . Invariant InvImplIrred is needed to show that the literal propagated after backtracking is implied by the resulting
trail. Its reason is either a blocking clause (rule Back1) or a clause learned by means of conflict analysis (rule Back0).

Our proof is split into several parts. We start by showing that the invariants listed in Fig. 7 hold in non-terminal states
(Section 6.3.1). Then we prove that our procedure always makes progress (Section 6.3.2) before showing its termination
(Section 6.3.3). We conclude the proof by showing that every total model is found exactly once and that all total models
are detected, i. e., that upon termination M ≡ π (P, X) holds (Section 6.3.4).

6.3.1. Invariants in non-terminal states

Proposition 2. Invariants InvDualPN, InvDecs, InvDSOP, and InvImplIrred hold in non-terminal states.

Proof. The proof is carried out by induction over the number of rule applications. Assuming Invariants InvDualPN to
InvImplIrred hold in a non-terminal state (P, N, M, I, δ), we show that they are met after the transition to another
non-terminal state for all rules.

Unit
Invariant InvDualPN : Neither P nor N are altered, hence Invariant InvDualPN holds after the application of rule Unit.
Invariant InvDecs: The trail I is extended by a literal ℓ. We need to show that ℓ is not a decision literal. Only the case

where a > 0 need be considered, since at decision level zero all literals are propagated. There exists a clause C ∈ P s. t.
C |I = {ℓ}. Now, a = δ(I), i. e., there is already a literal k ̸= ℓ on I with δ(k) = a. From this it follows that ℓ is not a decision
literal. The decisions remain unchanged, and Invariant InvDecs holds after applying rule Unit.

Invariant InvImplIrred : Due to C |I = {ℓ}, we have P ∧ decs⩽n(I) |H ¬(C \ {ℓ}). Since C ∈ P , also P ∧ decs⩽n(I) |H C .
odus ponens gives us P ∧decs⩽n(I) |H I⩽n. Hence, P ∧decs⩽n(Iℓ) |H Iℓ⩽n, and Invariant InvImplIrred holds after executing

ule Unit.
Invariant InvDSOP : Due to the premise, M is a DSOP. It is not altered by rule Unit and after its application is therefore

till a DSOP.
Back1
Invariant InvDualPN : We have ∃ S [ P(X, Y , S) ] ≡ ¬∃ T [N(X, Y , T ) ] and we need to show ∃ S [ (P ∧ B)(X, Y , S) ] ≡

¬∃ T [O(X, Y , T ) ], where B = ¬decs(m) and O = Tseitin(N ∨ ¬B) and m = π (I⋆, X) is a model of P projected
nto X . Since we have that ∃ T [O(X, Y , T ) ] ≡ ∃ T [ (N ∨ ¬B)(X, Y , T ) ] and furthermore ¬∃ T [ (N ∨ ¬B)(X, Y , T ) ] ≡

∀ T [ (¬N ∧ B)(X, Y , T ) ], we reformulate the claim as ∃ S [ (P ∧ B)(X, Y , S) ] ≡ ∀ T [(¬N ∧ B)(X, Y , T ) ]. Together with
∃ S [ P(X, Y , S) ] ≡ ∀ T [ ¬(N(X, Y , T ))] and observing that B contains no variable in S ∪ T , the claim holds.

Invariant InvDecs: We show that the decisions remaining on the trail are unaffected and that no new decision is taken,
i. e., ℓ in the post state is not a decision. It is sufficient to consider the case where δ(I) > 0. Now, J = I⩽b by the definition
of J , and the decisions on J are not affected by rule Back1. We have δ(B \ {ℓ}) = b = δ(J) and δ(B) = b + 1. Since relevant
decisions are prioritized, also B = ¬decs⩽b+1(π (I, X)) = ¬decs⩽b+1(I). By the induction hypothesis, there exists exactly
one decision literal for each decision level and in particular in B. Since ℓ ∈ B, we have ¬ℓ ∈ decs(I). Precisely, ¬ℓ ∈ K ,
and ¬ℓ is unassigned upon backtracking. Due to the definition of B, there exists a literal k ∈ B where k ̸= ℓ such that
(k) = b, i. e., k ∈ J , hence k precedes ℓ on the resulting trail. By the definition of the blocks on the trail, ℓ is not a decision
iteral. Since the decisions on J are unaffected, as argued above, Invariant InvDecs is met.

Invariant InvImplIrred : We need to show that P ∧ decs⩽n(J ℓ) |H (J ℓ)⩽n for all n. First notice that the decision levels of
he literals in J do not change by applying rule Back1. Only the decision level of the variable of ℓ is decremented from b+1
o b. It also stops being a decision. Since δ(J ℓ) = b, we can assume n ⩽ b. Observe that P ∧ decs⩽n(J ℓ) ≡ P ∧ decs⩽n(J),
ince ℓ is not a decision in J ℓ and I⩽b = J and thus I⩽n = J⩽n by definition. Now the induction hypothesis is applied
nd we get P ∧ decs (J ℓ) |H I . Again using I = J this almost closes the proof except that we are left to prove
⩽n ⩽n ⩽n ⩽n
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P ∧ decs⩽b(J ℓ) |H ℓ as ℓ has decision level b in J ℓ after applying the rule and thus ℓ disappears in the proof obligation
for n < b. To see this notice that P ∧ ¬B |H I⩽b+1 using again the induction hypothesis for n = b + 1, and recalling that
relevant decisions are prioritized, i. e., I⩽b+1 contains only relevant decisions, and ¬B = decs(π (I⋆, X)) = decs⩽b+1(I). This
gives P∧¬decs⩽b(J)∧¬ℓ |H I⩽b+1 and thus P∧¬decs⩽b(J)∧¬I⩽b+1 |H ℓ by conditional contraposition. Therefore, Invariant
InvImplIrred holds.

Invariant InvDSOP : We assume that M is a DSOP and need to show that M ∨ m is also a DSOP. Due to the use of the
ual blocking clause encoding, Proposition 1 holds, and Invariant InvDSOP is met after executing Back1.
Back0
Invariant InvDualPN : We have ∃ S [ P(X, Y , S) ] ≡ ¬∃ T [N(X, Y , T ) ] , and we need to show that ∃ S [ (P∧D)(X, Y , S) ] ≡

∃ T [N(X, Y , T ) ] . By the premise, P |H D, hence P ∧ D ≡ P . Now ∃ S [ (P ∧ D)(X, Y , S) ] ≡ ∃ S [ P(X, Y , S) ] ≡

∃ T [N(X, Y , T ) ] , and Invariant InvDualPN holds.
Invariant InvDecs: We have J ⩽ I , hence the decisions on J remain unaltered. Now we show that ℓ is not a decision

iteral. As in the proof for rule Unit, it is sufficient to consider the case where j > 0. There exists a clause D where P |H D
uch that δ(D) > 0 and a literal ℓ ∈ D for which ℓ|K = 0 and ¬ℓ ∈ K , hence ℓ is unassigned during backtracking.
urthermore, there exists a literal k ∈ D where k ̸= ℓ and such that δ(k) = j which precedes ℓ on the trail J ℓ. Therefore,
ollowing the argument in rule Unit, the literal ℓ is not a decision literal. Since the decisions remain unchanged, Invariant
nvDecs holds after applying rule Back0.

Invariant InvImplIrred : Let n be arbitrary but fixed. Before executing rule Back0, we have P ∧decs⩽n(I) |H I⩽n. We need
o show that P ∧ decs⩽n(J ℓ) |H (J ℓ)⩽n. Now, I = J K and J < I , i. e., P ∧ decs⩽n(J) |H J⩽n. From j = δ(D \ {ℓ}) = δ(J)
e get D|J = {ℓ}. On the one hand, P ∧ decs⩽n(J) |H ¬(D \ {ℓ}), and on the other hand P ∧ decs⩽n(J) |H D. Therefore, by
odus ponens, P ∧ decs⩽n(J) |H ℓ. Since ℓ is not a decision literal, as shown above, P ∧ decs⩽n(J) ≡ P ∧ decs⩽n(J ℓ) and
∧ decs⩽n(J ℓ) |H J ℓ, and Invariant InvImplIrred holds after applying rule Back0.
Invariant InvDSOP : The DSOP M remains unaltered, and Invariant InvDSOP still holds after executing rule Back0.
DecX
Invariant InvDualPN : Both P and N remain unaltered, hence Invariant InvDualPN still holds after executing rule DecX.
Invariant InvDecs: The literal ℓ is a decision literal by definition. It is assigned decision level d = δ(I) + 1. Since

ℓ ∈ decs(I ℓ), we have δ(decs(I ℓ)) = {1, . . . , d}, and Invariant InvDecs holds after applying rule DecX.
Invariant InvImplIrred : Le n be arbitrary but fixed. Since ℓ is a decision literal, we have P∧decs⩽n(I ℓ) ≡ P∧decs⩽n(I)∧

|H I⩽n ∧ ℓ ≡ (I ℓ)⩽n. Hence, Invariant InvImplIrred holds after applying rule DecX.
Invariant InvDSOP : The DSOP M remains unaltered by rule DecX, hence after applying rule DecX Invariant InvDSOP

till holds .
DecYS.
The proofs of Invariants InvDualPN, InvDecs, InvDSOP, and InvDSOP are identical to the ones for rule DecX. □

.3.2. Progress
Our method cannot get caught in an endless loop, as shown next.

roposition 3. EnumerateIrredundant always makes progress, i. e., in every non-terminal state a rule is applicable.

roof. The proof is executed by induction over the number of rule applications. We show that in any non-terminal state
P, N, M, I, δ) a rule is applicable.

Assume all variables are assigned and no conflict has occurred. If no relevant decision is left on the trail I , rule End1
can be applied. Otherwise, we execute an incremental SAT call SAT(N, π (I, X ∪ Y )). Since all input variables are assigned,
e obtain a conflict by propagating internal variables only. Conflict analysis gives us the subsequence I⋆ of π (I, X ∪ Y )

consisting of the literals involved in the conflict, which is a model of F . Since we are interested in the models of F projected
onto X , we choose B = ¬decs(π (I⋆, X)). Now, δ(B) = b+ 1, and due to Invariant InvDecs, B contains exactly one decision
literal ℓ such that δ(ℓ) = b + 1 and therefore δ(B \ {ℓ}) = b. We choose J and K such that I = J K and b = δ(J) and in
particular ℓ|K = 0. After backtracking to decision level b, we have I⩽b = J where B|J = {ℓ}. All preconditions of rule Back1
are met.

If instead a conflict has occurred, there exists a clause C ∈ P such that C |I = 0. If δ(C) = 0, rule End0 is applicable.
Otherwise, by Invariant InvImplIrred we have P ∧ decs⩽δ(I)(I) ≡ P ∧ decs⩽δ(I)(I) ∧ I⩽δ(I) |H I⩽δ(I). Since I(P) ≡ 0, also

∧ decs⩽δ(I)(I) ∧ I⩽δ(I) ≡ P ∧ decs⩽δ(I)(I) ≡ 0. If we choose D = ¬decs(I) we obtain P ∧ ¬D ∧ I⩽δ(I) ≡ 0, thus P |H D.
lause D contains only decision literals and δ(D) = δ(I). From Invariant InvDecs we know that D contains exactly one
ecision literal for each decision level in {1, . . . , δ(I)}. We choose ℓ ∈ D such that δ(ℓ) = δ(I). Then the asserting level is
iven by j = δ(D \ {ℓ}). Without loss of generalization we assume the trail to be of the form I = J K where δ(J) = j. After
acktracking to decision level j, the trail is equal to J . Since D|J = {ℓ}, all conditions of rule Back0 hold.
If P|I ̸∈ {0, 1}, there are unassigned variables in X ∪ Y ∪ S. If there exists a clause C ∈ P where C |I = {ℓ}, the

reconditions of rule Unit are met. If instead units(F |I ) = ∅, there exists a literal ℓ with V (ℓ) ∈ X ∪ Y ∪ S and δ(ℓ) = ∞. If
ot all relevant variables are assigned, the preconditions of rule DecX are satisfied. Otherwise, rule DecYS is applicable.
All possible cases are covered by this argument. Hence, in every non-terminal state a rule is applicable, i. e.,

numerateIrredundant always makes progress. □
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Fig. 8. Transitions of states mapped to lists according to Eq. (14). The initial state is depicted above the horizontal rule, the resulting state below. The
two end rules lead to the minimal element ε representing the final state. Rule Unit replaces an unassigned variable (denoted by 2) by a propagated
one (denoted by 0) and leaves the rest unchanged. Rules Back1 and Back0 replace a decision literal (denoted by 1) by a propagated one. Finally, the
two decision rules replace an unassigned literal by a decision. Clearly, w. r. t. the lexicographic order, the states decrease by a rule application.

6.3.3. Termination

Proposition 4. EnumerateIrredundant terminates.

Proof. In our proof we follow the argument by Nieuwenhuis et al. [49] and Marić and Janičić [30], or more precisely the
one by Blanchette et al. [8].

We need to show that from the initial state (P, N, 0, ε, δ0) a final state M is reached in a finite number of steps, i. e.,
o infinite sequence of rule applications is generated. Otherwise stated, we need to prove that the relation ⇝EnumIrred is

well-founded. To this end, we define a well-founded relation ≻EnumIrred such that any transition s ⇝EnumIrred s′ from a state
s to a state s′ implies s ≻EnumIrred s′.

In accordance with Blanchette et al. [8] but adopting the notation introduced by Fleury [18], we map states to lists.
Using the abstract representation of the assignment trail I by Nieuwenhuis et al. [49], we write

I = I0 ℓ1 I1 ℓ2 I2 . . . ℓm Im where {ℓ1, . . . , ℓm} = decs(I). (13)

The state (P, N, M, I, δ) is then mapped to

[ 0, . . . , 0  
|I0|

, 1, 0, . . . , 0  
|I1|

, 1, 0, . . . , 0  
|I2|

, 1, . . . , 1, 0, . . . , 0  
|Im|

, 2, . . . , 2  
|V |−|I|

] (14)

where V = X ∪ Y ∪ S. In this representation, the order of the literals on I is reflected. Propagated literals are denoted
by 0, decisions are denoted by 1. Unassigned variables are represented by 2 and are moved to the end. The final state M
is represented by ε. The state containing the trail I in Eq. (13) is mapped to the list in Eq. (14). The first |I0| entries
represent the literals propagated at decision level zero, the 1 at position |I0| + 1 represents the decision literal ℓ1,
and so on for all decision levels on I . The last |V | − |I| entries denote the unassigned variables. Notice that we are
not interested in the variable assignment itself but in its structure, i. e., the number of propagated literals per decision
level and the number of unassigned variables. Furthermore, the states are encoded into lists of the same length. This
representation induces a lexicographic order >lex on the states. We therefore define ≻EnumIrred as the restriction of >lex to
{[ v1, . . . , v|V |] | vi ∈ {0, 1, 2} for 1 ⩽ i ⩽ |V |}. Accordingly, we have that s ≻EnumIrred s′, if s >lex s′.

In Fig. 8, the state transitions for the rules are visualized. In this representation, the unspecified elements occurring
prior to the first digit are not altered by the application of the rule. We show that s ≻EnumIrred s′ for each rule, where s
and s′ encode the state before and after applying the corresponding rule, respectively, and end states are encoded by ε.

End1. The state s′ is mapped to ε which is the minimal element with respect to >lex, hence s ≻EnumIrred s′ trivially holds.
he representation of the state may contain both 0’s and 1’s but no 2’s, since our algorithm detects only total models.16
ecall that the associated trail must not contain any relevant decision, which is not reflected in the structure of the trail.
End0. The state s′ is mapped to ε, which is the minimal element with respect to >lex, hence s ≻EnumIrred s′ trivially

olds. The representation of the state may contain both 0’s and 2’s but no 1’s, since any decision need be flipped.
Unit. An unassigned variable is propagated. Its representation changes from 2 to 0, and all elements preceding it remain

naffected. Due to 2 >lex 0, we also have that s ≻EnumIrred s′.
Back1 / Back0. A decision literal, e. g., ¬ℓ, is flipped and propagated at a lower decision level, let us say d. The decision

evel d is extended by ℓ, which is represented by 0 and replaces the decision literal at decision level d+1. All variables at

16 This restriction may be weakened in favor of finding partial models. In this section, we refer to the rules introduced in Section 6.1 and discuss
a generalization of our algorithm enabling the detection of partial models further down.
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decision level d + 1 and higher are unassigned and thus represented by 2. Therefore, s ≻EnumIrred s′. Notice that, although
different preconditions of the rules Back1 and Back0 apply and the two rules differ, the structure of their states is the
same.

DecX / DecYS. An unassigned variable is decided, i. e., the first occurrence of 2 is replaced by 1 in the representation.
The other elements remain unaltered, hence s ≻EnumIrred s′. As for the backtracking rules, whether a relevant or irrelevant
or internal variable is decided, is irrelevant and not reflected in the mapping of the state, as for rules Back1 and Back0.

We have shown that after any rule application the resulting state is smaller than the preceding one with respect to the
exicographic order on which ≻EnumIrred is based. This argument shows that ≻EnumIrred is well-founded and that therefore
EnumerateIrredundant terminates. □

6.3.4. Equivalence
The final state is given by a DSOP M such that M ≡ π (F , X). The proof is split into several steps. We start by proving

that, given a total model I of P , its subsequence I⋆ returned by SAT (line 20 of EnumerateIrredundant in Fig. 3) is a (partial)
model of π (P, X) and that any total model of P found during execution either was already found or is found for the first
time. Then we show that all models of P are found and that each model is found exactly once, before concluding by
proving that M ≡ π (F , X).

Proposition 5. Let I be a total model of P and I⋆ = SAT(N, π (I, X ∪ Y )). Then I⋆ is a model of π (P, X).

Proof. All variables in X ∪ Y ∪ S are assigned and P(X, Y , S) and N(X, Y , T ) are a dual representation of F (X, Y ). Invariant
InvDualPN holds. In particular it holds for the values of the variables in X ∪Y ∪ S set to their values in I , i. e., we have that
∃ S [ P(X, Y , S)|I ] ≡ ¬∃ T [N(X, Y , T )|I ] where only the unassigned variables in (X ∪ Y ) − I are universally quantified.
Since I is a total model of P , Invariant InvDualPN can be rewritten as P(X, Y , S)|I ≡ ¬∃ T [N(X, Y , T )|I ], and π (I, X ∪ Y )
cannot be extended to a model of N . Since the variables in T are defined in terms of variables in X ∪ Y , an incremental
SAT call on N ∧ I yields a conflict in N exclusively by propagating variables in T .

Exhaustive conflict analysis yields a clause D consisting of the negations of the (assumed) literals in I involved in the
conflict. Its negation is a counter-model of π (N, X ∪ Y ) which, due to Eq. (5), is a model of π (P, X ∪ Y ). Obviously, the
same holds for the projection onto X , and π (¬D, X) |H π (P, X). Since I⋆ = π (¬D, X), we have I⋆ |H π (P, X), and the claim
holds. □

Proposition 6. A total model I of P is either

(i) contained in M or
(ii) subsumed by a model in M or
(iii) a model of P0 ∧

⋀
i Bi where Bi are the blocking clauses added to P0

Proof. All variables in X ∪ Y ∪ S are assigned and I |H P . If I was already found earlier, it was shrunken and the resulting
model projected onto X to obtain I⋆ which was then added to M (rule Back1 and line 24 in EnumerateIrredundant in
Fig. 3). If all assumed variables participated in the conflict and furthermore Y = S = ∅, then π (I⋆, X ∪ Y ) = π (I⋆, X) = I ,
and Item (i) holds. Otherwise, I⋆ < I and I⋆ subsumes I . Since I⋆ ∈ M , in this case Item (ii) holds.

Suppose the model I is found for the first time. Since I |H P , also I |H C for all clauses C ∈ P . This in particular holds for
all blocking clauses which were added to the original formula P = P0 (rule Back1 and line 22 in EnumerateIrredundant),
and Item (iii) holds. □

Proposition 7. Every model is found.

Proof. According to Proposition 4, EnumerateIrredundant terminates. The final state M is reached by either rule End0 or
rule End1. Assume P = P0

⋀
i Bi with Bi denoting the blocking clauses added to the original formula P0, and let I denote

the current trail. If rule End0 is applied, then P is unsatisfiable, since P|I = 0 and I contains no decision. If rule End1 is
applied, then by Proposition 6, Item (iii), m = π (I, X) is a model of P . Now, (P ∧ ¬m)|I = 0 and I contains no decision
literal. Therefore, (P ∧ ¬m)|I is unsatisfiable, and all models have been found. □

Proposition 8. Every model is found exactly once.

Proof. We recall Proposition 1 stating that only pairwise contradicting models are detected. In essence, this says that
every model is found exactly once. □

Theorem 1 (Correctness). If (P, N, 0, ε, δ0) ⇝∗
EnumIrred M, then

(i) M ≡ π (F , X)
(ii) C ∧ C ≡ 0 for C , C ∈ M and C ̸= C
i j i j i j
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Proof. The cubes in M are exactly the I⋆ computed from the total models of P . These are models of π (P, X) (Proposition 5).
Since by Proposition 7 all models are found, M ≡ π (P, X). But by Eq. (2), models(∃ Y , S . P(X, Y , S)) = models(∃ Y . F (X, Y ))
holds, i. e. models(π (P, X)) = models(π (F , X)). Therefore, M ≡ π (F , X), and Item (i) holds.

Due to Proposition 1, the found models are pairwise contradicting, and Item (ii) holds as well. Notice that one could
also use Proposition 8, since, as its consequence, only pairwise contradicting models are found. □

6.4. Generalization to partial model detection

EnumerateIrredundant only finds total models of P . In SAT solving, this makes sense from an computational point of
view, because checking whether a partial assignment satisfies a formula is more expensive than extending it to a total
one. However, model enumeration is computationally more expensive than SAT solving, hence satisfiability checks, e. g.,
in the form of entailment checks [41], might pay off. Notice that it still might make sense to shrink the models found. In
this section, we discuss the changes to be made to our approach in order to support the detection of partial models.

First, the satisfiability condition need be changed such that it complies with any other strategy determining whether
the (partial) assignment I satisfies P . The check now reads ‘‘I(P) ≡ 1’’ and replaces the one on line 15 of EnumerateIrre-
dundant (Fig. 3). The rest of the algorithm remains unaltered. In our calculus (Fig. 5), the precondition ‘‘I(P) ≡ 1’’ replaces
the check whether all variables in X ∪Y ∪S are assigned in rules End1 and Back1. The other preconditions as well as rules
End0, Unit, Back0, DecX, and DecYS remain unaltered.

Second, the computation of I⋆ need be adapted. It is based on the assumption that I is total such that a conflict in N|I
is obtained by propagating only variables in T . Now Invariant InvDualPN ensures that a conflict in N|I is obtained also if I
is a partial assignment, although in order to obtain this conflict variables in X ∪ Y might need be propagated or decided.
Projecting the so-obtained assignment I ′ onto I solves the issue. Hence, we replace line 20 in EnumerateIrredundant (Fig. 3)
by ‘‘I ′ := SAT(N, π (I, X ∪ Y )); I⋆ = π (I ′, V (I))’’. These changes need also be reflected in rule Back1 and in the proof of
Proposition 3.

7. Conflict-driven clause learning for redundant all-SAT

Conflict analysis is based on the assumption that the reason of every propagated literal is contained in the formula. In
irredundant model enumeration (see Sections 5 and 6), this reason is either a clause learned by means of conflict-driven
clause learning (CDCL) or a blocking clause. The motivation for adding blocking clauses is to ensure that the (partial)
models detected by our calculus represent pairwise disjoint sets of total models. In some tasks, however, enumerating
models multiple times causes no harm, and we can refrain from adding blocking clauses to the formula and avoid its
blowing-up in size.

Consider a formula P(X, Y , S) over relevant variables X , irrelevant variables Y and Tseitin variables S, and let I with
variables in X ∪ Y ∪ S be a total assignment satisfying P . Remember that by applying rule Back1, the trail I is shrunken to
I⋆ and projected onto X obtaining m = π (I⋆, X). Backtracking to decision level δ(m)− 1 occurs, and the decision literal ℓd

at decision level δ(m) is flipped, i. e., propagated with reason B = ¬m. If now B is not added to P and a conflict involving
ℓ occurs, the reason of ℓ is not available for conflict analysis. To ensure the functioning of conflict analysis, we propose
to annotate ℓ on the trail with ¬m but without adding B to P .

xample 10 (Conflict Analysis for Model Enumeration). Consider the following formula over the set of variables X =

a, b, c, d}, Y = {e}, S = ∅:

P(X, Y , S) = (a ∨ b ∨ ¬c)  
C1

∧ (¬b ∨ c)  
C2

∧ (d ∨ ¬c ∨ e)  
C3

∧ (d ∨ ¬c ∨ ¬e)  
C4

uppose we decide a and b, propagate c with reason C2 and decide d followed by deciding e. The resulting trail I1 =
d bd cC2 dd ed is a model of F . This model is blocked by B1 = (¬a∨¬b∨¬d) with decision level δ(B1) = 3, which consists
f the negated relevant decision literals on I1. Considering only the decisions ensures that B1 contains exactly one literal
er decision level and that after backtracking to decision level δ(B1) − 1 = 2, the clause B1 becomes unit. Recall that B1
s not added to P . The decision literal dd is flipped with reason B1, and e is propagated with reason C3. But now C4 is
alsified. The current trail is I2 = ad bd cC2 ¬dB1 eC3 , which is visualized by the following implication graph:

a@1

b@2

¬d

c
e κ

B1

B1

C2

C3

C3

C4

C4

C4

For conflict analysis, we first resolve the conflicting clause C4 with the reason of e, C3, obtaining the resolvent (d∨¬c).
oth d and ¬c have the highest decision level 2, and we continue by resolving (d ∨ ¬c) with B1 obtaining (¬c ∨ ¬a ∨ b),
ollowed by resolution with C2 resulting in C5 = (¬a ∨ ¬b), which has only one literal at decision level 2. The resolution
rocess stops, and C is added to P .
5
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Fig. 9. Rule for backtracking after detection of a model in redundant model enumeration. The calculus for redundant projected model enumeration
differs from its irredundant counterpart only in the fact that no blocking clauses are used. Hence, all rules in Fig. 5 are maintained except for rule
Back1, which is replaced by rule Back1red.

8. Projected redundant model enumeration

Now we turn our attention to the case where enumerating models multiple times is permitted. This allows for
refraining from adding blocking clauses to the formula under consideration, since they might significantly slow down
the enumerator. This affects both our algorithm and our calculus for irredundant projected model enumeration. Omitting
the use of blocking clauses has a minor impact on our algorithm and its formalization. For this reason, in this section we
point out the differences between the two methods.

8.1. Algorithm and calculus

The only difference compared to EnumerateIrredundant consists in the fact that no blocking clauses are added to P .
However, they are remembered as annotations on the trail in order to enable conflict analysis after finding a model. Our
algorithm EnumerateRedundant therefore is exactly the same as EnumerateIrredundant listed in Fig. 3 without lines 22–23.
The annotation of flipped literals happens in function Backtrack() in line 26.

Accordingly, our formalization consists of all rules in Fig. 5 except for rule Back1 which is replaced by rule Back1red
shown in Fig. 9. Rule Back1red differs from rule Back1 only in the fact that both P and N remain unaltered.

8.2. Example

Example 11 (Projected Redundant Model Enumeration). Consider again Example 1 elaborated in detail in Section 6.2 for
EnumerateIrredundant. We have

P = (a ∨ c)  
C1

∧ (a ∨ ¬c)  
C2

∧ (b ∨ d)  
C3

∧ (b ∨ ¬d)  
C4

and

N = (¬t1 ∨ ¬a)  
D1

∧ (¬t1 ∨ ¬c)  
D2

∧ (a ∨ c ∨ t1)  
D3

∧

(¬t2 ∨ ¬a)  
D4

∧ (¬t2 ∨ c)  
D5

∧ (a ∨ ¬c ∨ t2)  
D6

∧

(¬t3 ∨ ¬b)  
D7

∧ (¬t3 ∨ ¬d)  
D8

∧ (b ∨ d ∨ t3)  
D9

∧

(¬t4 ∨ ¬b)  
D10

∧ (¬t4 ∨ d)  
D11

∧ (b ∨ ¬d ∨ t4)  
D12

∧

(t1 ∨ t2 ∨ t3 ∨ t4)  
D13

Suppose X = {a, c} and Y = {b, d}. The execution trail is depicted in Fig. 10.
Assume we decide a, b, c , and d (steps 1–4) obtaining the trail I1 = ad bd cd dd which is a model of P . Dual model

shrinking occurs as in step 5 in the example elaborated in Section 6.2, except that the assumed literals b and c occur in
a different order, and the same model a b is obtained. Notice that the clause B1 = (¬a ∨ ¬b) is not added to P .

After backtracking, we have P|I1 = (d) ∧ (¬d), and after propagating d (step 6), we obtain a conflict. The current trail
is I3 = ad ¬bB1 dC3 and C4|I3 = (). Resolution of the reasons on I3 in reverse assignment order is executed, starting with
the conflicting clause C4. We obtain C4 ⊗ C3 = (b) = C5, which contains exactly one literal at the maximum decision
level, hence no further resolution steps are required. Since (b) is unit, the enumerator backtracks to decision level 0 and
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Fig. 10. Execution trace for F = (a ∨ c) ∧ (a ∨ ¬c) ∧ (b ∨ d) ∧ (b ∨ ¬d) defined over the set of relevant variables X = {a, b} and the set of irrelevant
ariables Y = {c, d} (see Example 1).

Fig. 11. Invariants for projected model enumeration with repetition. Notice that Invariants InvDualPN and InvDecs are the same as for irredundant
model enumeration while, due to the lack of blocking clauses, in Invariant InvImplIrred the models recorded in M need be considered.

propagates b with reason C5 (step 7). After deciding a, c , and d, we find the same model b a c d as in step 4 (steps 8–10).
Obviously, model shrinking provides us with the same model b a, which is added to M , and the last relevant decision is
flipped (step 11). Now unit propagation leads to a conflict (step 12), and since there are no decisions on the trail, the
procedure stops (step 13). Now the cubes in M , which represent the models of P , are not pairwise disjoint anymore.
However, we still have M ≡ π (P, X) ≡ π (F , X).

8.3. Proofs

Invariants InvDualPN and InvDecs listed in Fig. 7 are applicable also for redundant model enumeration, since they
involve none of P and N . Invariant InvImplIrred instead need be adapted since no blocking clauses are added to P and
therefore it ceases to hold. Assume a model I has been found and shrunken to m and that the last relevant decision literal
ℓ has been flipped. Since its reason B = decs(¬m) is not added to P , from P ∧decs(I) we cannot infer I . Recall that instead
m is added to M , hence ¬M contains the reasons of all decision literals which were flipped after having found a model.
A closer look reveals that this case is analog to the one in our previous work [40]. In this work, we avoided the use of
blocking clauses by means of chronological backtracking. However, the basic idea is the same, and we replace Invariant
InvImplIrred by Invariant InvImplRed listed in Fig. 11. This is exactly Invariant (3) in our previous work on model counting
[40], hence in our proof we use a similar argument. The invariants for redundant model enumeration under projection
are given in Fig. 11.

8.3.1. Invariants in non-terminal states

Proposition 9 (Invariants in EnumerateRedundant). The Invariants InvDualPN, InvDecs, and InvImplRed hold in non-terminal
states.

Proof. The proof is carried out by induction over the number of rule applications. Assuming Invariants InvDualPN, InvDecs,
and InvImplRed hold in a non-terminal state (P, N, M, I, δ), we show that they are met after the transition to another
non-terminal state for all rules.
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Now rules End1, End0, Back0, DecX, and DecYS are the same as for EnumerateIrredundant (Fig. 5). In Section 6.3.1 we
already proved that after the execution of these rules Invariants InvDualPN and InvDecs still hold.

As for Invariant InvImplRed, from Proposition 6, Item (i) and Item (ii), and observing that m ⩽ I , where I is a total
model of P and m ∈ M its projection onto the relevant variables, we can conclude that Invariant InvImplRed holds as
well. To see this, remember that in Invariant InvImplIrred we consider P = P0 ∧

⋀
i Bi where the Bi are the clauses added

to P0 blocking the models mi. But Bi ⩽ mi, hence Invariant InvImplRed holds after applying rules Unit, Back0, DecX, and
DecYS, and we are left to carry out the proof for rule Back1red.

Back1red
Invariant InvDualPN : Both P and N remain unaltered, therefore Invariant InvDualPN holds after the application of

ack1red.
Invariant InvDecs: The proof is analogous to the one for rule Back1.
Invariant InvImplRed : We need to show that P∧¬(M ∨ m)∧decs⩽n(J ℓ) |H (J ℓ)⩽n for all n. First, notice that the decision

evels of all the literals in J do not change while applying the rule. Only the decision level of ℓ is decremented from b+ 1
o b. It also stops being a decision. Since δ(J ℓ) = b, we can assume n ⩽ b. Observe that P ∧ ¬(M ∨ m) ∧ decs⩽n(J ℓ) ≡

m ∧ (P ∧ ¬M ∧ decs⩽n(I)), since ℓ is not a decision in J ℓ and I⩽b = J and I⩽n = J⩽n by definition. Now the induction
ypothesis is applied and we get P ∧ ¬(M ∨ m) ∧ decs⩽n(J ℓ) |H I⩽n. Again, using I⩽n = J⩽n, this almost closes the proof
xcept that we are left to prove P ∧ ¬(M ∨ m) ∧ decs⩽e(J ℓ) |H ℓ as ℓ has decision level b in J ℓ after applying the
ule and thus ℓ disappears in the proof obligation for n < b. To see this notice that P ∧ ¬B |H I⩽b+1 using again the
nduction hypothesis for n = b + 1 and recalling that ¬B = decs⩽b+1(I). This gives P ∧ ¬decs⩽b(J) ∧ ¬ℓ |H I⩽b+1 and thus
∧ ¬decs⩽b(J) ∧ ¬I⩽b+1 |H ℓ by conditional contraposition. □

.3.2. Progress and termination
The proofs that our method for redundant projected model enumeration always makes progress and eventually

erminates are the same as in Sections 6.3.2 and 6.3.3.

.3.3. Equivalence
Some properties proved for the case of irredundant model enumeration cease to hold if we allow enumerating

edundant models. Specifically, Proposition 5, and Proposition 7 hold, while Proposition 8 does not. Item (i) and Item
ii) of Proposition 6 hold, while Item (iii) does not. In Theorem 1, Item (i) holds but Item (ii) does not. Their proofs remain
he same as for irredundant model enumeration in Section 6.3.1.

.4. Generalization

The same observations made for irredundant model enumeration in Section 6.4 apply.

. Discussion

The complexity bounds for All-SAT are exponential in the number of variables occurring in the formula for all
lgorithms, due to the size of the search space. The goal is therefore to reduce the number of assignments to be
hecked, which is achieved by CDCL and adding short blocking clauses. In the brute-force approach for irredundant model
numeration, a blocking clause is exactly the negation of the satisfying assignment or consists of its negated decision
iterals [44,63]. In both cases, the resulting blocking clause has size at least the decision level of the trail, and their number
orresponds to the number of models. The addition of blocking clauses to P (see line 22 of algorithm EnumerateIrredundant
isted in Fig. 3) slows down unit propagation, in particular if they are long. Blocking many assignments with few clauses
s therefore crucial, since CDCL-based SAT solvers spend most of their computing time with unit propagation.

For computing short blocking clauses, our dual model shrinking approach relies on the ability of conflict analysis to
etermine short clauses. Given a formula P and its negation N , it identifies the reason for the conflict in N induced by an
ssignment satisfying P by adopting CDCL in N . Due to the effectiveness of conflict analysis, our shrinking method has
he potential to rule out a large number of assignments satisfying P as is shown by an example.

xample 12 (Efficiency of Dual Model Shrinking). Consider the set of variables X = {a, b, c, d, e, f } and the formula
(X, Y ) = (a ∧ e ∧ f ) ∨ (b ∧ e ∧ ¬f ) ∨ (c ∧ ¬e ∧ f ) ∨ (d ∧ ¬e ∧ ¬f ). Without loss of generality, we assume Y = ∅.
CNF representation of F is given by

P(X, Y , S) = (¬v1 ∨ a) ∧ (¬v1 ∨ e) ∧ (¬v1 ∨ f ) ∧ (v1 ∨ ¬a ∨ ¬e ∨ ¬f ) ∧

(¬v2 ∨ b) ∧ (¬v2 ∨ e) ∧ (¬v2 ∨ ¬f ) ∧ (v2 ∨ ¬b ∨ ¬e ∨ f ) ∧

(¬v3 ∨ c) ∧ (¬v3 ∨ ¬e) ∧ (¬v3 ∨ f ) ∧ (v3 ∨ ¬c ∨ e ∨ ¬f ) ∧

(¬v4 ∨ d) ∧ (¬v4 ∨ ¬e) ∧ (¬v4 ∨ ¬f ) ∧ (v4 ∨ ¬d ∨ e ∨ f ) ∧

(v1 ∨ v2 ∨ v3 ∨ v4),
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where S = {v1, v2, v3, v4}. Let further a CNF representation ¬F be given by

N(X, Y , T ) = (t0) ∧

(¬u1 ∨ ¬a ∨ ¬e ∨ ¬f ) ∧ (u1 ∨ a) ∧ (u1 ∨ e) ∧ (u1 ∨ f ) ∧

(¬u2 ∨ ¬b ∨ ¬e ∨ f ) ∧ (u2 ∨ b) ∧ (u2 ∨ e) ∧ (u2 ∨ ¬f ) ∧

(¬u3 ∨ ¬c ∨ e ∨ ¬f ) ∧ (u3 ∨ c) ∧ (u3 ∨ ¬e) ∧ (u3 ∨ f ) ∧

(¬u4 ∨ ¬d ∨ e ∨ f ) ∧ (u4 ∨ d) ∧ (u4 ∨ ¬e) ∧ (u4 ∨ ¬f ) ∧

(¬u5 ∨ u1) ∧ (¬u5 ∨ u2) ∧ (¬u5 ∨ u3) ∧ (¬u5 ∨ u4) ∧

(u5 ∨ ¬u1 ∨ ¬u2 ∨ ¬u3 ∨ ¬u4) ∧

(u6 ∨ t0 ∨ u5) ∧ (u6 ∨ ¬t0 ∨ ¬u5) ∧

(¬u6 ∨ ¬t0 ∨ u5) ∧ (¬u6 ∨ t0 ∨ ¬u5) ∧

(u6)

uppose the model I = ad bd cd dd ed ¬v3 ¬v4 f d ¬v1 ¬v2 of P has been found, where for better readability we omit
he reasons of the propagation literals. Obviously, I⋆ = a e f already satisfies F , and its negation, the clause ¬I⋆ =

¬a∨¬e∨¬f ), is obtained after calling a SAT solver on N and π (I, X) and analyzing the resulting conflict. Our algorithm
or irredundant model enumeration enumerates exactly the cubes in F , which is optimal.

This conflict is obtained exclusively by unit propagation, which is linear in the length of I and the computation of I⋆
equires a linear number of resolution steps. Finally, the dual blocking clause encoding is linear in the size of the original
ormula. The enumerated models in Example 12 coincide with the ones obtained by our dual approach for projected
odel counting [38], which in our experiments finds minimal partial models, but without the overhead of processing

wo formulae throughout the computation. As already mentioned, for algorithm EnumerateIrredundant to be correct when
dopting dual model shrinking in line 20, N need represent the negation of P anytime. Concretely, line 23 is mandatory in
ombination with dual model shrinking in line 20 for determining the backtracking level in line 25. Experiments further
how that if a different, non-trivial blocking clause computation strategy is adopted in line 20, restarts are required, which
ight lead to repeating the same (partial) assignments multiple times [47,65].
The strength of executing entailment checks, as proposed as a generalization, is shown by Example 12. In fact, the trail

= ad bd cd dd already logically entails P . The combination of logical entailment checks and dual model shrinking bears
he potential to enumerate even shorter models. Recent experiments support our claim for the efficiency of executing
ogical entailment checks and of dual reasoning for model shrinking [19,61].

0. Conclusion

Model enumeration and projection, with and without repetition, is a key element to several tasks. We have presented
wo methods for propositional model enumeration under projection. EnumerateIrredundant uses blocking clauses to avoid
numerating models multiple times, while EnumerateRedundant is exempt from blocking clauses and admits repetitions.
ur CDCL-based model enumerators detect total models and uses dual reasoning to shrink them.
To ensure correctness of the shrinking mechanism, we developed a dual encoding of the blocking clauses. We

rovided a formalization and proof of correctness of our blocking-based model enumeration approach and discussed a
eneralization to the case where partial models are found. These partial models might not be minimal, hence shrinking
hem still might make sense. Also, there is no guarantee that the shrunken models are minimal as they depend on the
rder of the variable assignments.
We presented a conflict-driven clause learning mechanism for redundant model enumeration, since standard CDCL

ight fail in the absence of blocking clauses. Basically, those clauses are remembered on the trail without being added
o the input formula. This prevents a blowup of the formula but also does not further make use of these potentially short
lauses, which in general propagate more eagerly than long clauses. We discussed the modifications of our blocking-based
lgorithm and calculus to support redundant model enumeration and provided a correctness proof. Intuitively, shorter
artial models representing non-disjoint sets of total models might be found.
Our method does not guarantee that the shrunken model I⋆ is minimal w. r. t. the decision level b in line Enumer-

teIrredundant. However, finding short DSOPs is important in circuit design [37], and appropriate algorithms have been
ntroduced by, e. g., Minato [36]. While DSOP minimization has been proven to be NP-complete [4], finding a smaller
ecision level b would already be advantageous, since besides restricting the search space to be explored it generates
horter models. To this end, we plan to adapt our dual shrinking algorithm to exploit the Tseitin encoding as proposed
y Iser et al. [25].
In the presence of multiple conflicting clauses, a related interesting question might also be which one to choose as a

tarting point for conflict analysis with the aim to backtrack as far as possible. This is not obvious unless all conflicts are
nalyzed.
Determining short models makes our approach suitable for circuit design. We are convinced that this work provides
ncentives not only for the hardware-near community but also for the enumeration community.
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