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Abstract Automated reasoning techniques based on computer algebra have seen
renewed interest in recent years and are for example heavily used in formal ver-
ification of arithmetic circuits. However, the verification process might contain
errors. Generating and checking proof certificates is important to increase the
trust in automated reasoning tools. For algebraic reasoning, two proof systems,
Nullstellensatz and polynomial calculus, are available and are well-known in proof
complexity. A Nullstellensatz proof captures whether a polynomial can be rep-
resented as a linear combination of a given set of polynomials by providing the
co-factors of the linear combination. Proofs in polynomial calculus dynamically
capture that a polynomial can be derived from a given set of polynomials using
algebraic ideal theory. In this article we present the practical algebraic calculus
as an instantiation of the polynomial calculus that can be checked efficiently. We
further modify the practical algebraic calculus and gain LPAC (practical algebraic
calculus + linear combinations) that includes linear combinations. In this way we
are not only able to represent both Nullstellensatz and polynomial calculus proofs,
but we are also able to blend both proof formats. Furthermore, we introduce ex-
tension rules to simulate essential rewriting techniques required in practice. For
efficiency we also make use of indices for existing polynomials and include deletion
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rules too. We demonstrate the different proof formats on the use case of arithmetic
circuit verification and discuss how these proofs can be produced as a by-product
in formal verification. We present the proof checkers Pacheck, Pastèque, and
Nuss-Checker. Pacheck checks proofs in practical algebraic calculus more effi-
ciently than Pastèque, but the latter is formally verified using the proof assistant
Isabelle/HOL. The tool Nuss-Checker is used to check proofs in the Nullstellen-
satz format.

Keywords Algebraic Proof Systems · Nullstellensatz Proofs · Polynomial
Calculus · Gröbner Basis · Arithmetic Circuit Verification · Isabelle/HOL

1 Introduction

Formal verification aims to guarantee the correctness of a given system with re-
spect to a certain specification. However, the verification process might not be
error-free and return incorrect results, even in well-known systems such as Mathe-
matica [15]. In order to guarantee the correctness of the outcome, one would have
to formally verify the verification tool, e.g., using a theorem prover, which typi-
cally is a demanding task and for complex software it is often infeasible. Thus, a
more common technique to increase the trust in verification results is to gener-
ate proof certificates, which monitor steps of the verification process and enables
reproducing the proof. These certificates can be checked by a simple stand-alone
proof checker.

For example, many applications of formal verification use satisfiability (SAT)
solving and various resolution or clausal proof formats [20], such as DRUP [57,
58], DRAT [22], and LRAT [14] are available to validate the verification results.
In the annual SAT competition it is even required to provide certificates since
2013. However, in certain applications SAT solving cannot be applied successfully.
For instance formal verification of arithmetic circuits, more precisely of multiplier
circuits, is considered to be hard for SAT solving.

Automated reasoning based on computer algebra has a long history [27–29]
with renewed recent interest. The general idea of this approach is to reformulate
a problem as a question about sets of multivariate polynomials, then do Gröbner
bases [8] computations and use properties of Gröbner bases to answer the question.

Formal verification using computer algebra provides one of the state-of-the-art
techniques in verifying gate-level multipliers [11, 34, 46, 47]. In this approach the
circuit is modeled as a set of polynomials and it is shown that the specification,
also encoded as a polynomial, is implied by the polynomials that are induced by
the circuit. More precisely, for each logical gate in the circuit a polynomial equa-
tion is defined that captures the relations of the inputs and output of the gate.
The polynomials are sorted according to a term ordering that is consistent with
the topological order of the circuit. This has the effect that these gate polyno-
mials automatically generate a Gröbner basis [8]. Preprocessing techniques based
on variable elimination are applied to simplify the representation of the Gröbner
basis [34, 46]. After preprocessing the specification polynomial is reduced by the
simplified gate polynomials using a multivariate polynomial division with remain-
der until no further reduction is possible. The given multiplier is correct if and
only if the final result is zero.
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Furthermore, algebraic reasoning in combination with SAT is successfully used
to solve complex combinatorial problems [7], e.g., finding faster ways for matrix
multiplication [23,24], computing small unit-distance graphs with chromatic num-
ber 5 [19], or solving the Williamson conjecture [6], and has possible future ap-
plications in cryptanalysis [10, 56]. All these applications raise the need to invoke
algebraic proof systems for proof validation.

Two algebraic proof systems are commonly studied in the proof complexity
community, polynomial calculus (PC) [12], and Nullstellensatz (NSS) [3]. Both
systems allow reasoning over polynomial equations where the variables represent
Boolean values. These proof systems are well-studied, with the main focus on
deriving complexity measures, such as degree and proof size, e.g., [2, 26, 49,50].

Proofs in PC allow us to dynamically capture whether a polynomial can be
derived from a given set of polynomials using algebraic ideal theory. However, PC
as originally defined [12] is not suitable for effective proof checking [31], because
information of the origin of the proof steps is missing. We introduce the practical
algebraic calculus (PAC) [54], which includes this information and therefore can
be checked efficiently. A proof in PAC is a sequence of proof steps, which model
single polynomial operations. During proof checking each proof step is checked for
correctness. Thus, whenever the proof contains an error, we are able to pinpoint
the incorrect proof step.

In the first version of PAC [54] we explicitly require to write down all poly-
nomial equations, including exponents, which leads to very large proof files. Since
in our application all variables represent elements of the Boolean domain, we can
impose for each variable x the equation x2 = x. We use this observation and
specialize PAC to treat exponents implicitly. That is, we immediately reduce all
exponents greater than one in the polynomial calculations. Furthermore, we add
an indexing scheme to PAC to address polynomial equations and add deletion
rules for efficiency. We include a formalization of extension rules that allow us to
merge and check combined proofs obtained from SAT and computer algebra [35]
in a uniform (and now precise) manner (Sect. 2).

Proofs in NSS capture whether a polynomial can be represented as a linear
combination of a given set of polynomials. These proofs are very concise as they
consist only of the input polynomials and the sequence of corresponding co-factor
polynomials. However, if the resulting polynomial is not equal to the desired tar-
get polynomial, it is unclear how to locate the error in the proof. Furthermore,
it is impossible to express intermediate optimizations and rewriting techniques on
the given set of polynomials in NSS, because we are not able to explicitly model
preprocessing steps. We conjectured for the application of multiplier circuit ver-
ification [31] that: “In a correct NSS proof we would also need to express the
rewritten polynomials as a linear combination of the given set of polynomials and
thus loose the optimized representation, which will most likely lead to an exponen-
tial blow-up of monomials in the NSS proof.” Surprisingly, we have to reject our
conjecture, at least for those multiplier architectures that are considered in our
approach and our experimental results demonstrate that we are able to generate
compact NSS proofs.

In this article we introduce LPAC, a PAC format including linear combinations
that combines PAC with the strength of NSS (Sect. 3), namely a shorter proof,
while retaining the possibility to identify errors. All proof formats can be produced
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by our verification tool AMulet 2.0 [33]. Depending on the options the proofs will
have a stronger PAC, a hybrid, or a stronger NSS flavor (Sect. 4).

We present our new proof checkers Pacheck and Pastèque. They support
PAC (Sect. 5). The proof checker Pastèque in contrast to Pacheck is verified in
Isabelle/HOL, but Pacheck is faster and more memory efficient. To (in)validate
our conjecture, we also implemented an NSS checker, Nuss-Checker. This gives
us the evidence that NSS proofs do not lead to an exponential blow-up (Sect. 6).
Therefore, we also extend Pacheck and Pastèque to check LPAC proofs (Sect. 7).

The tools are easy to use and their results can easily be interpreted. We exper-
iment with the verification of various multipliers that require our new extensions
to be checked. The new PAC format makes the proofs easier to check and less
memory hungry, but proofs in LPAC achieve even better performance for both
checkers (Sect. 8).

This article extends and revises work presented earlier [32, 39, 54]. As a nov-
elty we introduce LPAC, the modification of the PAC format [39] to additionally
support linear combinations of polynomials in the proof rules. Hence, we are able
to not only simulate NSS and PC proofs in PAC, but we are also able to derive
hybrid proofs that consist of a sequence of linear combinations. The hybrid format
allows us to generate concise proofs, which are faster to check by our new checkers
(Sect. 8), and where errors in the proof can be located. We present how LPAC
proofs on different abstraction levels, i.e., NSS, hybrid or PC, are generated in our
recent verification tool AMulet 2.0 [33]. Extending [39], we highlight necessary
modifications in our proof checkers Pacheck and Pastèque to cover LPAC.

2 Algebraic Proof Systems

In this section we introduce the proof systems polynomial calculus (PC) [12] and
its instantiation PAC (Sect. 2.1) and Nullstellensatz [3] (Sect. 2.2). Our algebraic
setting follows [13] and we assume 0 ∈ N.

– Let R be a ring and X denote the set of variables {x1, . . . , xl}. By R[X] we
denote the ring of polynomials in variables X with coefficients in R.

– A term τ = xd1
1 · · ·x

dl

l is a product of powers of variables for di ∈ N. A monomial

is a multiple of a term cτ with c ∈ R \ {0} and a polynomial is a finite sum of
monomials with pairwise distinct terms.

– On the set of terms [X] an order ≤ is fixed such that for all terms τ, σ1, σ2
it holds that 1 ≤ τ and further σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2. One such order is
the so-called lexicographic term order, defined as follows. If the variables of a
polynomial are ordered x1 > x2 > · · · > xl, then for any two distinct terms
σ1 = xd1

1 · · ·x
dl

l , σ2 = xe11 · · ·x
el
l we have σ1 < σ2 iff there exists an index i with

dj = ej for all j < i, and di < ei. We have σ1 = σ2 iff dj = ej for all 1 ≤ j ≤ l.
– For a polynomial p = cτ + · · · the largest term τ (w.r.t. ≤) is called the leading

term lt(p) = τ . The leading coefficient lc(p) = c and leading monomial lm(p) = cτ

are defined accordingly. We call tail(p) = p− lm(p) the tail of p.

As we will only consider polynomial equations with right hand side zero, we
take the freedom to write f instead of f = 0. In our setting all variables represent
Boolean variables, i.e., we are only interested in solutions where every variable
x ∈ X is assigned either 0 or 1. We can therefore impose the equations x2 − x = 0
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for all variables x. The set B(X) = {x2 − x | x ∈ X} ⊂ R[X] is called the set of
Boolean value constraints. Note that R is still an arbitrary ring as we do not restrict
the coefficients of the polynomials, we only restrict the values of the variables.

Definition 1 For a set G ⊆ R[X], a model is a point u = (u1, . . . , ul) ∈ Rl such that
∀g ∈ G : g(u) = g(u1, . . . , ul) = 0. Here, by g(u1, . . . , ul) we mean the element of R
obtained by evaluating the polynomial g for x1 = u1, . . . , xl = ul. Given S ⊆ R a
set G ⊆ R[X] and a polynomial f ∈ R[X], we write G |=S f if every model for G
is also a model for {f}, i.e., G |=S f ⇐⇒ ∀u ∈ Sl : ∀g ∈ G : g(u) = 0⇒ f(u) = 0.

Algebraic proof systems typically reason about polynomial equations. Given
G ⊆ R[X] and f ∈ R[X], the aim is to show that an equation f = 0 is implied
by the constraints g = 0 for every g ∈ G ∪ B(X). This means that every common
Boolean root of the polynomials g ∈ G is also a root of f . In algebraic terms, we
want to derive whether f belongs to the ideal generated by G ∪B(X).

Definition 2 A nonempty subset I ⊆ R[X] is called an ideal if ∀u, v ∈ I : u+ v ∈ I
and ∀w ∈ R[X],∀u ∈ I : wu ∈ I. If G = {g1, . . . , gm} ⊆ R[X], then the ideal
generated by G is defined as 〈G〉 = {q1g1 + · · ·+ qmgm | q1, . . . , qm ∈ R[X]}.

Definition 3 Let G ⊆ R[X] be a finite set of polynomials. A polynomial f ∈ R[X]
can be deduced from G if f ∈ 〈G〉. In this case we write G ` f .

2.1 Polynomial Calculus and PAC

The first proof system we consider is PC [12]. We discuss the original definition [12]
over fields in Sect. 2.1.1 and generalize the soundness and completeness arguments.
In Sect. 2.1.2 we generalize the correctness arguments to commutative rings with
unity, when the constraint set G has a certain shape. For completeness the prop-
erty “commutative ring with unity” is not sufficient and we will require stronger
assumptions on the constraint set G in Sect. 2.1.2. In Sect. 2.1.3 we present our
instantiation PAC.

2.1.1 Polynomial Calculus over Fields

In the original definition of PC [12] the coefficient ring R is assumed to be a
field K. Let G ⊆ K[X] and f ∈ K[X]. A proof in PC is a sequence of polynomials
P = (p1, . . . , pm) which are deduced by repeated application of the following proof
rules:

Addition
pi pj
pi + pj

pi, pj appears earlier in the proof
or are contained in G

Multiplication
pi
qpi

pi appears earlier in the proof
or is contained in G

and q ∈ K[X] being arbitrary

We present here a variant of the PC where the addition and multiplication rules
are closely related to the definition of an ideal. In the initial definition of PC [12],
the addition rule is in fact a linear combination rule and includes multiplication by
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constants. The multiplication rule is more restrictive and only allows multiplication
by a single variable x ∈ X [12] or multiplication with any term, e.g., [9] instead of
a polynomial. It is easy to see that our definition of PC and the original definition
are equivalent and are able to simulate each other polynomially.

Note that every element pi of a PC proof P is an element of the ideal generated
by G. This means that every common root of the elements of G is also a root of
every polynomial appearing in the proof.

Thanks to the theory of Gröbner bases [4, 8, 13] the polynomial calculus is
decidable, i.e., there is an algorithm which for any finite G ⊆ K[X] and f ∈ K[X]
can decide whether G ` f or not.

A basis of an ideal I is called a Gröbner basis if it enjoys certain structural
properties whose precise definitions are not relevant for our purpose. What matters
are the following fundamental facts:

– There is an algorithm (Buchberger’s algorithm) which for any given finite set
G ⊆ K[X] computes a Gröbner basis H for the ideal 〈G〉 = 〈H〉 generated by G.

– Given a Gröbner basis H, there is a computable function redH : K[X]→ K[X]
such that ∀ p ∈ K[X] : redH(p) = 0 ⇐⇒ p ∈ 〈H〉.

– Moreover, if H = {h1, . . . , hm} is a Gröbner basis of an ideal I and p, r ∈ K[X]
are such that redH(p) = r, then there exist q1, . . . , qm ∈ K[X] such that p− r =
q1h1 + · · ·+ qmhm, and such co-factors qi can be computed.

In [12] soundness and completeness are shown for degree-bounded polynomials.
In this context soundness means that every polynomial f which can be deduced
by the rules of PC from a given set of polynomials G vanishes on every common
root of the polynomials g ∈ G, i.e., G ` f =⇒ G |=K f . Completeness means
whenever a polynomial f cannot be deduced by the rules of PC from G, then
there exists a common root of the polynomials G where f does not evaluate to
zero, i.e., G 0 f =⇒ G 6|=K f , or equivalently G |=K f =⇒ G ` f . We are able to
generalize these arguments in this article without forcing a bound on the degree
of f and the polynomials in G. At the end of this section we summarize how the
results fit together in the context of algebraic verification.

To show soundness and completeness of PC over fields K, we now introduce
the extended calculus with the additional radical rule [13, Chap. 4§2 Def 2].

Radical
pm

p

m ∈ N \ {0} and
pm appears earlier in the proof or is contained in G.

Definition 4 If the polynomial f can be deduced from the polynomials in G with
the rules of PC and this additional radical rule, we write G `+ f and call this
proof radical proof. In algebra, the set { f ∈ K[X] : G `+ f } is called the radical

ideal of G and is typically denoted by
√
〈G〉.

Theorem 1 Let K be an algebraically closed field and G ⊆ K[X], f ∈ K[X]. It holds

G `+ f ⇐⇒ G |=K f.

Proof It follows from Hilbert’s Nullstellensatz [13, Chap. 4§1 Thms. 1 and 2] that
the set of all models of G is nonempty if and only if 1 6∈ 〈G〉, and furthermore we
have G `+ f ⇐⇒ G |=K f .
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We are able to derive from Thm. 1 that the extended PC including the radical
rule is correct (“⇒”) and complete (“⇐”).

Also the extended calculus `+ is decidable. It can be reduced to ` using the
so-called Rabinowitsch trick [13, Chap. 4§2 Prop. 8], which says

f ∈
√
〈G〉 ⇐⇒ 1 ∈ 〈G ∪ {yf − 1}〉 or G `+ f ⇐⇒ G ∪ {yf − 1} ` 1,

depending whether you prefer algebraic or logic notation. In both cases, y is a
new variable and the ideal/theory on the right hand sides is understood as an
ideal/theory of the extended ring K[X, y].

Corollary 1 Let K be an algebraically closed field and assume G ⊆ K[X], f ∈ K[X],
and y /∈ X. We have G ∪ {yf − 1} ` 1 ⇐⇒ G |=K f .

The Rabinowitsch trick is therefore used to replace a radical proof (`+) by a
PC refutation and we can therefore decide the existence of models and furthermore
produce certificates for the non-existence of models using only the basic version of
PC. Thus, we do not have to consider the radical rule in practice.

In Thm. 1 we consider models u ∈ Kl. For our applications, only models u ∈
{0, 1}l = Bl ⊆ Kl matter. Using basic properties of ideals [13, Chap. 4§3 Thm. 4],
it is easy to show for G ⊆ K[X], f ∈ K[X] that G |=B f ⇐⇒ G ∪ B(X) |=K f .
Recall from Def. 1 that G |=B f ⇐⇒ ∀u ∈ Bl : ∀g ∈ G : g(u) = 0⇒ f(u) = 0.

Furthermore, the equivalence G ∪ B(X) `+ f ⇐⇒ G ∪ B(X) |=K f holds
even when K is not algebraically closed, because changing from K to its algebraic
closure K will not have any effect on the models in Bl. Finally, let us remark that
the finiteness of Bl also implies that G ∪ B(X) `+ f ⇐⇒ G ∪ B(X) ` f . This
follows from Seidenberg’s lemma [4, Lemma 8.13] and generalizes Thm. 1 of [12].

Corollary 2 Let G ⊆ K[X], f ∈ K[X], for any field K. Then the following holds:

G ∪B(X) ` f ⇐⇒ G |=B f .

Let us briefly put the results of this section into context on the use case of
formal verification. In algebraic verification the set G denotes the initial constraint
set, e.g., for verifying circuits G contains all polynomials induced by a given circuit.
The polynomial f encodes the specification. The goal of verification is to derive,
whether f is implied by G, meaning that all common roots of the polynomials in G
are roots of f , i.e. G |=K f . From G ` f it trivially follows that G |=K f . However,
the other direction G 0 f =⇒ G 6|=K f does not hold in general. From Hilbert’s
Nullstellensatz, cf. Thm. 1, we are only able to derive that G 0+ f =⇒ G 6|=K f .

This means that in general an ideal membership test is not sufficient for ver-
ification and we would need to involve the stronger radical membership test to
prove non-existence of models. Using the Rabinowitsch trick, cf. Cor. 1, allows us
to replace the radical proof by an ideal membership test.

If all variables are Boolean, which is often the case in algebraic verification, we
can further simplify Thm. 1, cf. Cor. 2. First, we relax on K being algebraically
closed, because we are only considering a finite number of models Bl. Second,
because of the finiteness of Bl, G ∪ B(X) is a zero-dimensional ideal, and using
Seidenbergs’s Lemma we are able to deduce 〈G ∪B(X)〉 =

√
〈G ∪B(X)〉. Thus,

we are able to replace the radical proof in Thm. 1 by an ideal membership test.
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G ∪B(X) = { − b + 1− a,

− c + a + b− 2ab,

a2 − a, b2 − b, c2 − c}

a c

b

−c + a + b− 2ab −b + 1− a

−c + 1− 2ab

−b + 1− a

2ab− 2a + 2a2

−c + 1− 2a + 2a2
a2 − a

−2a2 + 2a

−c + 1

Fig. 1: The circuit, polynomial representation of the gates and proof for Ex. 1.

Example 1 This example shows that the output c of an XOR gate over an input
a and its negation b = ¬a is always true, i.e., c = 1 or equivalently −c + 1 = 0.
We apply the polynomial calculus over the ring R[X] = K[X] = Q[c, b, a]. Over Q
a NOT gate x = ¬y is modeled by the polynomial −x + 1 − y and an XOR gate
z = x ⊕ y is modeled by the polynomial −z + x + y − 2xy. Because X = {a, b, c},
we have B(X) = {a2 − a, b2 − b, c2 − c}. The corresponding circuit representation,
the constraint set G ∪B(X), and a polynomial proof tree are shown in Fig. 1.

2.1.2 Polynomial Calculus over commutative rings with unity

For certain sets of polynomials G we are further able to generalize the soundness
and completeness arguments for rings R, which not necessarily have to be fields,
e.g., R = Z. Let now R denote a commutative ring with unity. By R× we denote the
set of multiplicatively invertible elements of R. The rules of PC remain unaffected.

Definition 5 Let G ⊆ R[X]. If for a certain term order, all leading terms of G only
consist of a single variable with exponent 1 and are unique and further lc(g) ∈ R×
for all g ∈ G, then we say G has unique monic leading terms (UMLT). Let X0(G) ⊆
X be the set of all variables that do not occur as leading terms in G.

Example 2 The set G = {−x+2y, y−z} ⊆ Z[x, y, z] has UMLT for the lexicographic
term order x > y > z. In this case X0(G) = {z}.

Definition 6 Let ϕ : X → B ⊆ R denote an assignment of all variables X. We
extend ϕ to an evaluation of polynomials in the natural way, i.e., ϕ : R[X]→ R.

Theorem 2 (Soundness) Let G ⊆ R[X] be a finite set of polynomials and f ∈ R[X],
then

G ∪B(X) ` f ⇒ G |=B f.

Proof If G ∪ B(X) ` f then f ∈ 〈G〉+ 〈B(X)〉 by definition. This means there are
u1, . . . , um ∈ R[X] and v1, . . . , vr ∈ R[X] with f = u1g1 + · · ·+ umgm + v1b1 + · · ·+
vrbr, where gi ∈ G and bi = xi(xi − 1) ∈ B(X) for i = 1 . . . r. Any assignment ϕ in
the sense of Def. 6 vanishes on B(X), i.e., ϕ(bi) = 0. If ϕ is also a model of G then
ϕ(gi) = 0 too and as a consequence ϕ(f) = 0. Therefore G |=B f , as claimed.
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Completeness is less obvious. Consider for instance that {2x} |=B x but x 6∈ 〈2x〉
in Z[X]. Requiring G to have UMLT turns out to be essential (which {2x} does
not have in Z[X], because 2 /∈ Z×). Additionally, we will require the considered
ring R to be an integral domain, which satisfies the property that the product of
any two nonzero elements is nonzero [13].

Lemma 1 If G |=B p and G |=B q then G |=B q ± p.

Lemma 2 Let G ⊆ R[X] be a finite set of polynomials with UMLT. Then for all

q ∈ R[X] there exist p ∈ 〈G〉 + 〈B(X)〉 and r ∈ R[X0(G)] with q = p + r, such that

the variables in the monomials in r have only exponents 1.

Proof We construct p and r by division of q by the polynomials in G∪B(X) until
no term in r is divisible by any leading term of G∪B(X). First, we reduce q by the
polynomials of G. Let g1 ∈ G. Using polynomial division we are able to calculate
f1, r1 ∈ R[X] such that q = f1g1 + r1 and no term in r1 is a multiple of the leading
term of g1. We continuously divide the remainder by polynomials of G and derive
q = f1g1 + · · ·+ fmgm + rm for gi ∈ G, fi, rm ∈ R[X].

This process has to terminate because the tail of a polynomial contains only
smaller variables and the number of variables in G is finite. Since G has UMLT,
rm contains only variables in X0(G) which do not occur as leading terms, i.e,
rm ∈ R[X0(G)]. If any of these variables occurs with exponent larger than one
we can use B(X) to reduce their exponent to 1. Hence, we are able to derive
q = f1g1 + · · · + fmgm + v1b1 + · · · + vlbl + r, where gi ∈ G, bi ∈ B(X), and
fi, vi ∈ R[X] and define p = f1g1 + · · ·+ fmgm + v1b1 + · · ·+ vlbl.

Example 3 Let G ⊆ Z[x, y, z] be as in Ex. 2 and assume q = 2x2+xy+z2 ∈ Z[x, y, z].
Consequently

p = (−2x−5y)(−x+2y) + (10y+10z)(y − z)− 11(−z2+z)

= 2x2 + xy + z2 − 11z ∈ 〈G〉+ 〈B(X)〉 and

r = 11z ∈ Z[X0(G)].

Lemma 3 Assume that R is an integral domain. Let p ∈ R[X] with p2−p ∈ 〈B(X)〉 =
〈{x2 − x | x ∈ X}〉. Further let ϕ be an assignment in the sense of Def. 6. Then ϕ(p) ∈
B = {0, 1}.

Proof Since p2 − p ∈ 〈B(X)〉 there are fi ∈ R[X] with p2 − p =
∑

i fi · (x
2
i − xi).

Thus, ϕ(p2 − p) = 0, as ϕ vanishes on B(X). Assume now ϕ(p) = ε with ε ∈ R.
Then ϕ(p2− p) = ϕ(p)2−ϕ(p) = ε2− ε = ε(ε−1). As R is an integral domain, only
ε ∈ B yields ϕ(p2 − p) = 0.

Theorem 3 (Completeness) Let R be an integral domain and let G ⊆ R[X] be a

finite set of polynomials with UMLT. Suppose further that

∀g ∈ G : (lc(g)−1 tail(g))2 + (lc(g)−1 tail(g)) ∈ 〈B(X)〉.

Then for every f ∈ R[X] we have

G |=B f ⇒ G ∪B(X) ` f.
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Proof Suppose we have G |=B f . Then our goal is to show f ∈ 〈G〉 + 〈B(X)〉.
First, by applying Lemma 2, we obtain p ∈ 〈G〉+ 〈B(X)〉 and r ∈ R[X0(G)] with
f = p + r. Thus G ∪ B(X) ` p by definition. Using Thm. 2 we derive G |=B p

and accordingly G |=B f − p = r by Lemma 1. Now assume r 6= 0 and let m be
a monomial of r which contains the smallest number of variables. Consider the
assignment ϕ that maps x ∈ X0(G) to 1 if it appears in m and to 0 otherwise.
Therefore ϕ(r) 6= 0 since the coefficient of m is unequal to 0. This assignment on
X0(G) admits a unique extension to X which vanishes on G. First, we consider the
polynomial αx + t ∈ G, where α ∈ R× and t = tail(g), with the smallest leading
term x. For this polynomial all variables in t are already considered in ϕ. Since
αx + t = 0 ⇔ x = −α−1t and we require (lc(g)−1 tail(g))2 + (lc(g)−1 tail(g)) =
(α−1t)2 + (α−1t) = (−α−1t)2 − (−α−1t) ∈ 〈B(X)〉, we have ϕ(−α−1t) ∈ {0, 1}
by Lemma 3. We extend the assignment ϕ to x by choosing ϕ(x) = ϕ(−α−1t).
We continue in this fashion until all leading terms of G are assigned. Since G has
UMLT we are able to derive such an assignment ϕ, which contradicts G |=B r.
Thus r = 0 and f = p+ r ∈ 〈G〉+ 〈B(X)〉.

In an earlier version of the manuscript, as well as in the conference paper [34,
Thm. 2], the assumptions “∀g ∈ G : (lc(g)−1 tail(g))2 + (lc(g)−1 tail(g)) ∈ 〈B(X)〉”
and “R is an integral domain” were missing. We thank one of the referees for
making us aware of these bugs. If any of the three assumptions of Thm. 3 is
missing, the theorem is wrong, as can be seen in the following examples.

First, let G = {xyz+ xy− x− y} ⊆ Z[x, y, z] and f = x− y ∈ Z[x, y, z]. The ring
R = Z is an integral domain and we have (xy−x−y)2+xy−x−y ∈ 〈B(X)〉. However
G does not have UMLT, because the leading term of xyz + xy − x− y consists of
more than one variable. We have G |=B f with the models (x, y, z) = (0, 0, 0),
(0, 0, 1), and (1, 1, 1), but G ∪B(X) 6` f because r = x− y.

Next, consider G = {−x+2y} ⊆ Z[x, y] and f = y ∈ Z[x, y]. The polynomials in
G have UMLT and Z is an integral domain. However, for the polynomial −x+ 2y
we have 4y2 − 2y 6∈ 〈B(X)〉. We have G |=B f with the model (x, y) = (0, 0) but
G ∪B(X) 6` f because r = y.

Finally, let G = {x + 4y} ⊆ Z10[x, y] and f = y ∈ Z10[x, y]. The polynomial
in G has UMLT, and we have (4y)2 + 4y = 6y2 − 6y ∈ 〈B(X)〉. However the ring
R = Z10 is not an integral domain as 5 · 2 = 0. We have G |=B f with the model
(x, y) = (0, 0), but G ∪B(X) 6` f because r = y.

Although the previous example shows that the assumption that R is an integral
domain cannot simply be dropped from Thm. 3, it is somewhat stronger than
necessary. What really enters through Lemma 3 into the proof of Thm. 3 is the
assumption that R is a ring in which the formula ∀ x ∈ R : x(x − 1) = 0 ⇒ x =
0 ∨ x = 1 is true. This holds in every integral domain, but also in some rings that
are not integral domains, for example in rings Z2k for k > 1. In our use case of
algebraic circuit verification, which we introduce in Sect. 4.1, we choose R = Z2k

for k ≥ 1 to admit modular reasoning [34]. In the following lemma, we use Hensel
lifting to prove that the rings Z2k have the desired property.

Lemma 4 Let k ∈ N \ {0}, let ϕ be an assignment in the sense of Def. 6, and let

p ∈ Z2k [X] be such that p2 − p ∈ 〈B(X)〉. Then ϕ(p) ∈ B = {0, 1}.

Proof Proof by induction over k. Base case k = 1: For k = 1 the ring Z2 is a field.
Since every field is an integral domain the base case follows by Lemma 3.
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Induction step k → k + 1: Assume p ∈ Z2k+1 [X] with ϕ(p2 − p) = 0 mod
2k+1. Let now ϕ(p) = ε with ε ∈ Z2k+1 . Since ε ∈ {0, . . . , 2k+1 − 1} we can write
ε = 2kε1 + ε0 for ε1 ∈ {0, 1}, ε0 ∈ {0, . . . , 2k − 1}:

ϕ(p2 − p) = ϕ(p)2 − ϕ(p) = ε(ε− 1) = 0 mod 2k+1

=⇒ (2kε1 + ε0)(2kε1 + ε0 − 1) = 0 mod 2k+1

=⇒ 22kε21 + 2kε1(ε0 − 1) + 2kε1ε0 + ε0(ε0 − 1) = 0 mod 2k+1

First, since k ≥ 1, we have 22k = 0 mod 2k+1. Second, it follows that ε0(ε0−1) = 0
mod 2k. Thus by the induction hypothesis we have ε0 ∈ {0, 1} and the equation
above simplifies to

22kε21 + 2kε1(ε0 − 1) + 2kε1ε0 + ε0(ε0 − 1) = 0 mod 2k+1

=⇒ 2kε1(ε0 − 1) + 2kε1ε0 = 0 mod 2k+1

=⇒ ε1(ε0 − 1) + ε1ε0 = 2ε1ε0 − ε1 = ε1 = 0 mod 2

=⇒ ε1 = 0

Hence ϕ(p) = ε = ε0 ∈ {0, 1}. ut

Corollary 3 (Completeness for Z2k) Let R = Z2k for k ≥ 1 and let G ⊆ R[X] be

a finite set of polynomials with UMLT. Suppose further that

∀g ∈ G : (lc(g)−1 tail(g))2 + (lc(g)−1 tail(g)) ∈ 〈B(X)〉.

Then for every f ∈ R[X] we have G |=B f ⇒ G ∪B(X) ` f.

In the use case of algebraic circuit verification, cf. Sect. 4.1, we automatically
have “∀g ∈ G : (lc(g)−1 tail(g))2 + (lc(g)−1 tail(g)) ∈ 〈B(X)〉”. All polynomials
g ∈ G have the form g := − lt(g)+tail(g), with lc(g) = −1, and encode the relation
between the output and inputs of a gate. The leading term lt(g) represents the gate
output and tail(g) computes the output signal in terms of the inputs, cf., Fig. 3.
Thus ϕ(tail(g)) ∈ {0, 1} and hence the assumption tail(g)2−tail(g) ∈ 〈B(X)〉 holds.

2.1.3 Practical Algebraic Calculus

PC proofs as defined so far cannot be checked efficiently, because they only contain
the conclusion polynomials of each proof step.

Example 4 Consider again the example of Fig. 1. The corresponding PC proof is
P = (−c+1−2ab, 2ab−2a+2a2,−c+1−2a+2a2,−2a2 +2a,−c+1). To check the
correctness of this proof we would need to verify that each polynomial is derived
using one of the PC rules, which is hard, because we do not have information on
the antecedents.

For practical proof checking we translate the abstract rules of PC into a con-
crete proof format, i.e., we define a format based on PC, which is logically equiva-
lent but more detailed. In principle a proof in PC can be seen as a finite sequence of
polynomials derived from the initial constraint set and previously inferred polyno-
mials by applying either an addition or multiplication rule. To ensure correctness
of each proof step it is of course necessary to know which rule was used, to check
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Algorithm 1: Proof-Checking(G ∪B(X), R, f)

Input : Constraint set G ∪B(X), PAC steps R = r1, . . . , rk, target polynomial f
Output: “incorrect” or “correct”

1 P0 ← G ∪B(X);
2 for i← 1 . . . k do
3 let ri = (oi, vi, wi, pi);
4 case oi = + do
5 if vi ∈ Pi−1 ∧ wi ∈ Pi−1 ∧ pi = vi + wi then Pi ← append(Pi−1, pi);
6 else return“incorrect”;

7 case oi = ∗ do
8 if vi ∈ Pi−1 ∧ pi = vi ∗ wi then Pi ← append(Pi−1, pi);
9 else return“incorrect”;

10 if ∃pi ∈ Pk ∧ pi = f then return“correct” else return“incorrect”;

that it was applied correctly, and in particular which given or previously derived
polynomials are involved. During proof generation these polynomials are usually
known and thus we require that all of this information is part of a rule in our
concrete PAC proof format to simplify proof checking. A proof rule contains four
components

o : v, w, p;

The first component o denotes the operator which is either ‘ + ’ for addition or
‘ * ’ for multiplication. The next two components v, w specify the two (antecedent)
polynomials used to derive p (conclusion). In the multiplication rule w plays the
role of the polynomial q of the multiplication rule of PC.

For proof validation we need to make sure that two properties hold. The connec-

tion property states that the components v, w are either elements of the constraint
set or conclusions of previously applied proof rules. For multiplication we only
have to check this property for v, because w is an arbitrary polynomial. By the
second property, called inference property, we verify the correctness of each proof
step, namely we simply calculate v + w resp. v ∗ w and check that the obtained
result matches p. In a correct PAC proof we further need to verify that at least one
conclusion polynomial p matches the target polynomial f . The complete checking
algorithm is shown in Alg. 1. Checking each step allows pinpointing the first er-
ror, instead of claiming that the proof is wrong somewhere in one of the (usually
millions) steps.

Example 5 Consider again the example presented in Ex. 1. One PAC proof ob-
taining −c+ 1 ∈ 〈G ∪B(X)〉 ⊆ Q[X] is:

Constraint Set Proof
-b+1-a; + : -c+a+b-2a*b, -b+1-a, -c+1-2a*b;
-c+a+b-2a*b; * : -b+1-a, -2a, 2a*b-2a+2a^2;
a^2-a; + : -c+1-2a*b, 2a*b-2a+2a^2, -c+1-2a+2a^2;
b^2-b; * : a^2-a, -2, -2a^2+2a;
c^2-c; + : -c+1-2a+2a^2, -2a^2+2a, -c+1;

Adaptions We adapt PAC to admit shorter and more concise proofs. First, we
index polynomials, i.e., each given polynomial and proof step is labeled by a unique
positive number. It can be seen in Ex. 5 that the conclusion polynomial of the first
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proof step is again explicitly given as the first antecedent in the third proof step.
Using indices, similar to LRAT [14], allows us now to label the first proof step
and use this index in the third proof step. Naming polynomials by indices reduces
the size of the proof files significantly and makes parsing more efficient, because
only the conclusion polynomials of each step and the initial polynomials of G are
stated explicitly. However, introducing indices for polynomials has the effect that
the semantics changes from sets to multisets, as in DRAT [58], and it is possible
to introduce the same polynomial under different names.

Second, we treat exponents implicitly. For bit-level verification [54] only models
of the Boolean domain {0, 1}n are of interest. Initially, we added the set of Boolean
value constraints B(X) = {x2 − x | x ∈ X} to G and have to include steps in the
proofs that operate on these Boolean value constraints. Instead, we now handle
operations on Boolean value constraints implicitly to reduce the number of proof
steps. That is, we remove the Boolean value constraints from the constraint set
and when checking the correctness, we immediately reduce exponents greater than
one in the polynomials, i.e., x2 = x.

Third, we further introduce a deletion rule to reduce the memory usage of the
proof checker. After each proof step the conclusion polynomial will be added to
the constraint set, thus the number of stored polynomial increases. If we know
that a certain polynomial is not needed anymore in the proof, we use the deletion
rule to remove polynomials.

We introduce the semantics of PAC as a transition system. Let P denote a
sequence of polynomials which can be accessed via indices. We write P (i) = ⊥
to denote that the sequence P at index i does not contain a polynomial, and
P (i 7→ p) to denote that P at index i is set to p. The immediate reduction of
exponents is denoted by “mod〈B(X)〉”. The initial state is (X = Var (G ∪ {f}), P )
where P maps indices to polynomials of G. The following two rules implement the
properties of ideals as introduced above for the original PAC.

[Add (i, j, k, p)] (X,P ) =⇒ (X,P (i 7→ p))

provided that P (j) 6= ⊥, P (k) 6= ⊥, P (i) = ⊥,
p ∈ R[X], and p = (P (j) + P (k)) mod〈B(X)〉.

[Mult (i, j, q, p)] (X,P ) =⇒ (X,P (i 7→ p))

provided P (j) 6= ⊥, P (i) = ⊥, p, q ∈ R[X], and p = (q · P (j)) mod〈B(X)〉.

In the deletion rule we remove polynomials from P which are not needed any-
more in subsequent steps to reduce the memory usage of our tools.

[Deletion (i)] (X,P ) =⇒ (X,P (i 7→ ⊥))

Example 6 The proof of Ex. 1 in the adapted PAC format. We do not include all
possible deletion steps in the proof.

Constraint Set Proof
1 -b+1-a; 3 + 2, 1, -c+1-2a*b;
2 -c+a+b-2a*b; 2 d;

4 * 1, -2a, 2a*b;
1 d;
5 + 3, 4, -c+1;
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Extension Similar to the polynomial calculus with resolution (PCR) [1], which ex-
tends PC by a negation rule, we include an extension rule which allows us to add
new polynomials to the constraint set. The negation rule of PCR introduces for
each variable x ∈ X an additional variable x that represents the negation of x. We
generalize this extension rule such that new variables can act as placeholders for
polynomials.

We use the extension rule to combine SAT solving and algebraic reasoning in
our previous work [34] for multiplier verification. Thus, two proof certificates in
different proof systems, DRUP and PAC are generated. In order to derive a single
proof certificate we converted DRUP proofs to the PAC format [35]. However, to
efficiently convert the resolution steps we encountered the need to extend the initial
set of polynomials G to reduce the size of the polynomials (number of monomials)
in the PAC proof. We included polynomials of the form −fx + 1 − x, similar to
the negation rule in PCR, which introduced the variable fx as the negation of the
Boolean variable x. An example for modelling a resolution step in PAC is given in
Ex. 7 below, where the proof step with index 3 demonstrates our new extension
rule.

However, at that point we did not apply a proper extension rule, but simply
added these extension polynomials to G. This may affect the models of the con-
straint set, because any arbitrary polynomial can be added as an initial constraint.
For example, we could simply add the constant polynomial 1 to G which makes any
PAC proof obsolete. To prevent this issue we add an extension rule to PAC, which
allows us to add further polynomials to the knowledge base with new variables
while preserving the original models on the original variable set of variables X.

[Ext (i, v, p)] (X,P ) =⇒ (X ∪ {v}, P (i 7→ −v + p))

provided that P (i) = ⊥ and v /∈ X and p ∈ R[X], and p2 − p ∈ 〈B(X)〉.

With this extension rule, variables v can act as placeholders for polynomials p, i.e.,
−v + p = 0, which enables more concise proofs. The variables v are not allowed
to occur earlier in the proof. Furthermore, to preserve Boolean models, we require
p2 − p ∈ 〈B(X)〉. This can be easily checked by calculating p2 − p and reducing all
exponents larger than one to one. The normalized result has to be zero. Without
this condition v might take non-Boolean solutions. In that case vn cannot be
simplified to v, requiring to manipulate exponents in the proof checkers, which is
currently not supported.

Consider for example P = {−y + x − 1}. The only Boolean model is (x, y) =
(1, 0). If we extend G by −v + x+ 1 we derive v = 2, because x = 1 for all models
of G. Thus v2 − v = 0 does not hold.

Proposition 1 Ext preserves the original models on X.

Proof We show that adding pv := −v+p does not affect the models of G∪B(X) ⊆
R[X]. We have 〈G∪{pv}∪B(X ∪{v})〉 = 〈G∪{pv}∪B(X)〉 because v2−v = p2−p
and p2− p ∈ 〈B(X)〉. However, every model of 〈G∪{pv}∪B(X)〉 is also a model of
〈G ∪ B(X)〉 because the variable v appears only as leading term in pv. Hence the
result. ut

The Isabelle formal proof is very similar to the idea given here, but we have
to be more explicit. In particular, we explicitly manipulate a linear combination
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of the polynomials and show that every dependence in v can be removed from the
linear combination, since the variable v appears only in pv.

Example 7 Let x̄∨ȳ and y∨z be two clauses. From these clauses we derive the clause
x̄ ∨ z using resolution. The clauses are translated into polynomial equations using
De Morgan’s laws and using the fact that a logical AND can be represented by
multiplication. For example, from x̄∨ ȳ = > ⇔ x∧ y = ⊥ we derive the polynomial
equation xy = 0.

For the PAC proof we introduce an extension variable fz, which models the
negation of z, i.e. −fz + 1− z = 0 in order to find a shorter representation of the
second constraint, cf. proof step 5.

Constraint Set Proof
1 x*y; 3 = fz, -z+1;
2 y*z-y-z+1; 4 * 3, y-1, -fz*y+fz-y*z+y+z-1;

5 + 2, 4, -fz*y+fz;
Target 6 * 1, fz, fz*x*y;
-x*z+x; 7 * 5, x, -fz*x*y+fz*x;

8 + 6, 7, fz*x;
9 * 3, x, -fz*x-x*z+x;
10 + 8, 9, -x*z+x;

2.2 Nullstellensatz

The Nullstellensatz (NSS) proof system [3] derives whether a polynomial f ∈ R[X]
can be represented as a linear combination of polynomials from a given set G =
{g1, . . . , gm} ⊆ R[X]. That is, an NSS proof for a given polynomial f and a set
G = {g1, . . . , gm} is a tuple P = (h1, . . . , hm) of polynomials such that

m∑
i=1

higi = f.

By the same arguments given for PAC, the soundness and completeness arguments
of NSS proofs can be generalized to rings R[X] when G has UMLT. In NSS the
Boolean value constraints are treated implicitly to yield shorter proofs. Thus, the
NSS proof we consider for a given polynomial f ∈ R[X] and a set of polynomials
G = {g1, . . . , gm} ⊆ R[X] is a tuple of co-factors P = (h1, . . . , hm) of polynomials
such that there exist polynomials r1, . . . , rl ∈ R[X] with

m∑
i=1

higi +
l∑

i=1

ri(x
2
i − xi) = f. (1)

Checking NSS proofs seems straightforward as we simply need to expand the
products higi, calculate the sum, and compare the derived polynomial to the given
target polynomial f . However, we discuss practical issues of proof checking in
Sect. 6, where we introduce our NSS proof checker Nuss-Checker. Unlike PAC
introduced above, NSS does not support extensions.

Example 8 A NSS proof for our running example introduced in Ex. 1 is

Constraint Set Proof
-b+1-a; 1-2a;
-c+a+b-2a*b; 1;
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letter ::= ‘a ’ | ‘b ’ | . . . | ‘z ’ | ‘ A ’ | ‘ B ’ | . . . | ‘Z ’

number ::= ‘0 ’ | ‘1 ’ | . . . | ‘ 9 ’

constant ::= (number)+

variable ::= letter (letter | number)∗

term ::= variable (‘ * ’ variable)∗

monomial ::= constant | [ constant ‘ * ’ ] term

poly ::= [ ‘- ’ ] monomial (‘ + ’ | ‘ - ’ monomial)∗

id ::= constant

input ::= (id poly ‘ ; ’)∗

lin com rule ::= id ‘% ’ id [ ‘ * ’ ‘ ( ’ poly ‘ ) ’ ] ( ‘+ ’ id [ ‘ * ’ ‘ ( ’ poly ‘ ) ’ ])∗‘, ’ poly ‘; ’

del rule ::= id ‘d ’ ‘ ; ’

ext rule ::= id ‘= ’ variable ‘ , ’ poly ‘ ; ’

proof ::= (lin com rule | del rule | ext rule)∗

target ::= poly ‘; ’

Fig. 2: Syntax of input polynomials, target, and proofs in the LPAC-format

We derive (1 − 2a)(−b + 1 − a) + (1)(−c + a + b − 2ab) = −c + 1 mod 〈B(X)〉 in
Q[X].

3 Merging NSS and PAC into the hybrid proof system LPAC

PAC proofs are very fine-grained, because for each polynomial operation on the
constraint set a single proof step is generated and checked for correctness. This
makes it on the one hand simple to locate an error in the proof and thus to trace
back the error in the automated reasoning tool. On the other hand the proof files
are very large as for each proof step we write down a single line consisting of an
index, the operation, two antecedents and the conclusion polynomial.

Nullstellensatz proofs are concise, as the core proof only consists of the ordered
sequence of the co-factors, which has equal length of the constraint set. Thus
the corresponding proof files are typically orders of magnitude smaller than PAC
proofs, e.g., compare the proofs in Exs. 6 and 8. However, because proof checking
an NSS proof consists of calculating the linear combination and comparing it to
the target polynomial, it is impossible to locate a possible error in the proof.
Furthermore, the extensions of PAC are not directly portable to core NSS proofs.

To take the best of both worlds we propose now a modified proof format, called
LPAC (practical algebraic calculus + linear combinations). It includes a rule to
merge the addition and multiplication rule to a single proof rule, which represents
linear combination of polynomials. The syntax is given in Fig. 2. Thus we gain
the following semantics. Let P denote a sequence of polynomials, which can be
accessed via indices. The initial state is (X = Var (G ∪ {f}), P ) where P maps
indices to polynomials of G.

[LinComb (i, (j1, . . . , jn), (q1, . . . , qn), p)] (X,P ) =⇒ (X,P (i 7→ p))

provided that P (j1) 6= ⊥, . . ., P (jn) 6= ⊥, P (i) = ⊥, p, q1, . . . , qn ∈ R[X], n ≥ 1,
and p = (q1 · P (j1) + . . .+ qn · P (jn)) mod 〈B(X)〉.

[Deletion (i)] (X,P ) =⇒ (X,P (i 7→ ⊥))

[Ext (i, v, p)] (X,P ) =⇒ (X ∪{v}, P (i 7→ −v+p))
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provided that P (i) = ⊥ and v /∈ X and p ∈ R[X], and p2 − p ∈ 〈B(X)〉.

Our new LPAC format allows us to simulate both the PAC format and NSS
proofs as follows. The LinComb is able to simulate both the Add and the Mult

rule of PAC. By taking n = 2, (p1, p2), and (1, 1), we obtain the normal Add rule.
By taking n = 1, (p1), and (q1), we obtain Mult. The rules Deletion and Ext

remain the same as for PAC. In the actual proof file, elements of the sequence
(q1, . . . , qn) can be skipped and are interpreted as the constant sequence 1. We
simulate NSS proofs by providing a single LinComb rule in the proof file.

Furthermore, we are able to generate hybrid proofs, which are not as concise
as a single linear combination, but also not as fine-grained as an extended PAC
proof. For example, in multiplier verification we apply polynomial reductions which
always consist of a multiplication and addition of polynomials. In the LPAC proof
format we are able to combine these two operations in a single proof step.

Example 9 A possible proof in LPAC for Ex. 1 is as follows:

Constraint Set Proof
1 -b+1-a; 3 % (1-2a)*1+2, -c+1;
2 -c+a+b-2a*b; 1 d;

4 Proof Generation

In this section we demonstrate on the real-world application of multiplier ver-
ification how PAC, LPAC, and NSS proofs can be generated. We first provide
a brief introduction to multiplier verification using our tool AMulet 2.0, before
discussing how proof certificates can be generated.

4.1 Multiplier Verification

We developed a verification tool, called AMulet 2.0 [33,34], which takes as input
signed or unsigned integer multipliers C, given as And-Inverter-Graphs (AIGs),
with 2n input bits a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} and output bits s0, . . . , s2n−1 ∈
{0, 1}. Nodes in the AIG represent logical conjunction and markings on the edges
represent negation. We denote the internal AIG nodes by l1, . . . , lk ∈ {0, 1}. Let
Z[X] = Z[a0, . . . , an−1, b0, . . . , bn−1, l1, . . . , lk, s0, . . . , s2n−1]. In our application we
require the coefficient domain to be Z, because this allows us to apply modular
reasoning by adding a constant 2k to the set of ideal generators, which helps to
keep the size of the intermediate verification results reasonably small. More details
on modular reasoning are given in [34].

The multiplier C is correct iff for all possible inputs ai, bi ∈ {0, 1} the specifi-
cation L = 0 holds:

L = −
2n−1∑
i=0

2isi +

(n−1∑
i=0

2iai

)(n−1∑
i=0

2ibi

)
(2)

The semantics of each AIG node implies a polynomial relation, cf., Fig. 3. Let
G(C) ⊆ Z[X] be the set of polynomials that contains for each AIG node of C the
corresponding polynomial relation.
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Algorithm 2: Reduction(p, pv, v)

Input : Polynomials p, pv ∈ Z[X], lm(pv) = −v
Output: Polynomials h, r ∈ Z[X] such that p + hpv = r

1 t← p, r ← p, h← 0;
2 while t 6= 0 do
3 if v ∈ lt(t) then
4 h = h + lm(t)/v;
5 r = r + pv lm(t)/v mod 〈B(X)〉;
6 t = t− lm(t);

7 return h, r

The polynomials in G(C)∪B(X) are ordered according to a lexicographic order,
such that the output variable of a gate is always greater than the inputs of the
gate, also called reverse topological term order (RTTO) [44]. Using this variable
ordering leads to G(C) having UMLT.

Let J(C) = 〈G(C)∪B(X)〉 ⊆ Z[X] be the ideal generated by G(C)∪B(X). The
circuit fulfills its specification if and only if we can derive that L ∈ J(C), which
can be established by reducing L by the polynomials G(C) ∪ B(X) and checking
whether the result is zero [34]. The algorithm for reducing a polynomial p by a
second polynomial pv is shown in Alg. 2. We again treat B(X) implicitly, thus we
never explicitly reduce by a polynomial from B(X), but always cancel exponents
greater than one to one, which is included in line 5. As a reduction order we follow
the same order that is established for the variables.

However, simply reducing the specification by G(C) leads to large intermediate
results [45]. Hence, we eliminate variables in G(C) prior to reduction to yield a
more compact polynomial representation of the circuit [34]. In the preprocessing
step, we repeatedly eliminate selected variables v ∈ X \ X0 from G(C), cf. Sect.
4.2. in [36]. Let pv ∈ G(C) such that lt(pv) = v. Since G(C) has UMLT and v /∈ X0,
such a pv exists. All polynomials p, with v ∈ tail(p) are reduced by pv to remove
v from G using Alg. 2.

In contrast to more general polynomial division/reduction algorithms we use
the fact in Alg. 2 that lm(pv) = −v. Because of the UMLT property and the
fact that all leading coefficients of G(C) are -1, Alg. 2 essentially boils down to
substituting v = lt(pv) by tail(pv) in p in the case of circuit verification.

Algorithm 2 returns polynomials h, r ∈ Z[X] such that p+hpv = r mod 〈B(X)〉 ∈
Z[X]. We replace the polynomial p by the calculated remainder r [34]. To keep
track of the rewriting steps we want to store information on the derivation of the
rewritten polynomial r.

4.2 Generating PAC proofs

AMulet 2.0 generates PAC proofs as follows. The set of polynomials G(C) deter-
mines the initial constraint set. The specification L defines the target polynomial
of the proof. Proof steps have to be generated whenever polynomials are manipu-
lated, that is during preprocessing for variable elimination and during reduction.

For variable elimination we produce proof steps which simulate reduction of
a polynomial p by a polynomial pv, cf. Alg. 2. Note that p and pv are both con-
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AIG node Index Polynomial equation
l10 = b0 ∧ a0 1 -l10 + b0*a0;
l12 = b0 ∧ a1 2 -l12 + b0*a1;
l14 = b1 ∧ a0 3 -l14 + b1*a0;
l16 = l14 ∧ l12 4 -l16 + l14*l12;
l18 = ¬l14 ∧ ¬l12 5 -l18 + l14*l12-l14-l12+1;
l20 = ¬l18 ∧ ¬l16 6 -l20 + l18*l16-l18-l16+1;
l22 = b1 ∧ a1 7 -l22 + b1*a1;
l24 = l22 ∧ l16 8 -l24 + l22*l16;
l26 = ¬l22 ∧ ¬l16 9 -l26 + l22*l16-l22-l16+1;
l28 = ¬l26 ∧ ¬l24 10 -l28 + l26*l24-l26-l24+1;
s0 = l10 11 -s0 + l10;
s1 = l20 12 -s1 + l20;
s2 = l28 13 -s2 + l28;
s3 = l24 14 -s3 + l24;

Fig. 3: AIG of a simple 2 bit multiplier in AIGER format (left) with induced
constraint set (right).

tained in G(C) and thus appear earlier in the proof. In general two proof steps are
generated, a multiplication step and an addition step

idi * h,idpv,hpv; idi+1 + idp,idi,r;

where idi and idi+1 define unused indices, and idp and idpv represent the indices
of polynomials p resp. pv. The polynomial hpv in above proof steps defines the
expanded polynomial of multiplying h · pv in Z[X]. If lt(pv) = v does not occur in
any other polynomial g ∈ G(C) \ {pv}, we can delete pv from the constraint set,
which we indicate by generating a deleting step

idpv d;

After preprocessing is completed we gain the simplified polynomial model
G(C)′. For monitoring the reduction of L by G(C)′ we have to generate proof
steps which simulate the reduction of L by polynomials g ∈ G(C)′. We consider
the polynomials g ∈ G(C)′ in the reverse topological order, such that each poly-
nomial in G(C)′ has to be considered exactly once for reduction.

However in contrast to variable elimination, the specification L, which acts
as p in Alg. 2, is not part of the constraint set. Thus we are not able to simply
generate two proof steps as before, because checking the addition rule would raise
an error, as p = L does not occur earlier in the proof. On the other hand recall
that all elements of an ideal can be represented as a linear combination of the
generators of the ideal. To simulate the linear combination we generate a multi-
plication PAC step for each reduction step by a polynomial g ∈ G(C)′ and store
the computed factor hg (h is the returned co-factor of Alg. 2). After reducing by
several polynomials, we use a sequence of addition steps to gain a single inter-
mediate specification polynomial. The reason for the intermediate summing up of
polynomials is to keep the memory usage for proof generation small as we do not
want to store too many factors at the same time. After reduction is completed we
sum up all intermediate specifications. If the circuit is correct the final polynomial
is the specification of the circuit.
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15 * 5, l16 -1, -l18*l16+l18+l16*l14*l12 -l16*l14 -l16*l12+l16 -l14*l12+l14+l12 -1;
16 + 6, 15, -l20+l16*l14*l12 -l16*l14 -l16*l12 -l14*l12+l14+l12;
17 * 4, l14*l12 -l14 -l12 , -l16*l14*l12+l16*l14+l16*l12 -l14*l12;
18 + 16, 17, -l20 -2*l14*l12+l14+l12;
19 * 9, l24 -1, -l26*l24+l26+l24*l22*l16 -l24*l22 -l24*l16+l24 -l22*l16+l22+l16 -1;
20 + 10, 19, -l28+l24*l22*l16 -l24*l22 -l24*l16 -l22*l16+l22+l16;
21 * 8, l22*l16 -l22 -l16 , -l24*l22*l16+l24*l22+l24*l16 -l22*l16;
22 + 20, 21, -l28 -2*l22*l16+l22+l16;
23 * 14, 8, -8*s3+8*l24;
24 * 13, 4, -4*s2+4*l28;
25 * 22, 4, -4*l28 -8* l22*l16+4*l22 +4*l16;
26 + 25, 24, -4*s2 -8* l22*l16+4*l22 +4*l16;
27 * 8, 8, -8*l24 +8*l22*l16;
28 * 7, 4, -4*l22 +4*b1*a1;
29 + 28, 27, -8*l24+8*l22*l16 -4*l22 +4*b1*a1;
30 + 29, 26, -4*s2 -8* l24+4*l16 +4*b1*a1;
31 + 30, 23, -8*s3 -4*s2+4* l16+4*b1*a1;
32 * 12, 2, -2*s1+2*l20;
33 * 18, 2, -2*l20 -4* l14*l12+2*l14 +2*l12;
34 + 32, 33, -2*s1 -4* l14*l12+2*l14 +2*l12;
35 * 4, 4, -4*l16 +4*l14*l12;
36 * 3, 2, -2*l14 +2*b1*a0;
37 + 35, 36, -4*l16+4*l14*l12 -2*l14 +2*b1*a0;
38 + 37, 34, -2*s1 -4* l16+2*l12 +2*b1*a0;
39 * 2, 2, -2*l12 +2*b0*a1;
40 + 38, 39, -2*s1 -4* l16+2*b1*a0+2*b0*a1;
41 + 1, 11, -s0+b0*a0;
42 + 40, 41, -2*s1-s0 -4*l16+2*b1*a0+2*b0*a1+b0*a0;
43 + 42, 31, -8*s3 -4*s2 -2*s1 -s0+4*b1*a1+2*b1*a0+2*b0*a1+b0*a0;

Fig. 4: Generating PAC steps during multiplier verification.

Example 10 Figure 3 shows an AIG of a simple 2-bit multiplier. For each node we
introduce the corresponding polynomial equation. These polynomials are shown
on the right side of Fig. 3 and define the initial constraint set. The multiplier is
correct if we derive that the gate polynomials imply the specification −8s3−4s2−
2s1 − s0 + 4a1b1 + 2a1b0 + 2a0b1 + a0b0 = 0.

The corresponding PAC proof can be seen in Fig. 4. Steps 15–22 are generated
during preprocessing. The remaining steps are generated during reduction of the
specification by G(C)′. The result of step 43 matches the circuit specification.

4.3 Generating NSS proofs

In this section we discuss how NSS proofs are generated in our verification tool
AMulet 2.0. We introduced in the previous section that we distinguish two phases
during verification of multipliers. In the preprocessing step we eliminate variables
from G(C) to gain a simpler polynomial representation G(C)′. In the second step
the specification is reduced by G(C)′ to determine whether the given circuit is
correct. Both phases have to be included in the NSS proof to yield a representation
of the specification L as a linear combination of the original gate polynomials
G(C) ∈ Z[X].

Definition 7 For a given set of polynomials G ⊂ Z[X], let base(r) = {(pi, qi) | pi ∈
G, qi ∈ Z[X]}. We call base(r) a basis representation of r ∈ Z[X] in terms of G, if

there exist polynomials v1, . . . vl with r =
∑

(pi,qi) ∈base(r) qipi +
∑l

i=1 vi(x
2
i − xi).
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Algorithm 3: Add-to-basis-representation(f, h,base(r))

Input : Polynomials f , h ∈ Z[X], basis representation base(r)
Output: Updated base(r) such that (f, h) is included

1 if base(f) = {(f, 1)} then
2 if (f, hi) ∈ base(r) for any hi then
3 base(r)← (base(r) \ {(f, hi)}) ∪ {(f, hi + h)};
4 else
5 base(r)← base(r) ∪ {(f, h)};

6 else
7 foreach (f ′i , h

′
i) ∈ base(f) do

8 base(r)← Add-to-basis-representation(f ′i , hh
′
i,base(r))

9 return base(r)

To derive a NSS proof for L we aim to find a basis representation of L in terms
of G(C). For all polynomials g ∈ G(C) it holds that base(g) = {(g, 1)} is a basis
representation in terms of G(C).

As discussed in Sect. 4.1, we rewrite G(C) by replacing polynomials of G(C)
by rewritten polynomials r that are derived using Alg. 2. To keep track of the
rewriting steps we store information on the derivation of the rewritten polynomial
r, i.e., we derive a basis representation of r in terms of G(C). That is, we include
the tuples (p, 1), (pv, h) as used in Alg. 2 in base(r).

Algorithm 3 shows how we update base(r) by adding a tuple (f, h). If the input
polynomial f of Alg. 3 is an element of G(C), i.e. base(f) = {(f, 1)}, we add the
tuple (f, h) to base(r). If f does not occur in any tuple in base(r), we simply add
(f, h) to base(r). Otherwise base(r) contains a tuple (f, hi) that has to be updated
to (f, hi + h), which corresponds to merging common factors in base(r).

If the polynomial f is not an original gate polynomial, f can be written as
a linear combination f = h′1f1 + · · · + h′lfl for some original polynomials fi and
h′i ∈ Z[X]. Thus the tuple (f, h) corresponds to hf = hh′1f1 + · · · + hh′lfl. We
traverse through the tuples (fi, h

′
i) ∈ base(f), multiply each of the co-factors h′i by

h and add the corresponding tuple (fi, hh
′
i) to base(r).

Multiplying and expanding the product hhi may lead to an exponential blow-
up in the size of the NSS proof as the following example shows.

Example 11 Consider OR-gates y0 = x0 ∨ x1, y1 = y0 ∨ x2, . . ., yk = yk−1 ∨ xk+1

represented by the set of polynomials G = {−y0 + x0 + x1 − x0x1,−y1 + y0 + x2 −
y0x2, . . . ,−yk + yk−1 + xk+1 − yk−1xk+1)} ⊆ Z[y0, . . . yk, x0, . . . xk+1]. Assume we
eliminate y1, . . . , yk−1, yielding yk = x0∨x1∨ . . .∨xk+1. The expanded polynomial
representation of yk contains 2k+2 monomials.

These sequences of OR-gates are common in carry-lookahead adders, which
occur in complex multiplier architectures. This lead to the conjecture [31], which
we stated in the introduction of this article. However, our previous verification ap-
proach [34] to tackle complex multipliers also relies on SAT solving. We substitute
complex final-stage adders in multipliers by simple ripple-carry adders that do not
rely on large OR-gates. Thus this blow-up does not occur in our experiments with
our implementation (Sect. 6) for arithmetic circuit verification.
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Constraint set Co -factors
-l10 + b0*a0 1;
-l12 + b0*a1 2;
-l14 + b1*a0 2;
-l16 + l14*l12 2*l14*l12 -2*l14 -2*l12 +4;
-l18 + l14*l12 - l14 - l12 + 1 2*l16 -2;
-l20 + l18*l16 - l18 - l16 + 1 2;
-l22 + b1*a1 4;
-l24 + l22*l16 4*l22*l16 -4*l22 -4*l16 +8;
-l26 + l22*l16 - l22 - l16 + 1 4*l24 -4;
-l28 + l26*l24 - l26 - l24 + 1 4;
-s0 + l10 1;
-s1 + l20 2;
-s2 + l28 4;
-s3 + l24 8;

Fig. 5: NSS proof for verifying the 2-bit multiplier that is depicted in Fig. 3.

Example 12 We demonstrate a sample run of Alg. 3. Let G(C) = {p1, p2, p3} ⊆
Z[X] and x, y, z ∈ Z[X]. Assume q1 = p1 + xp2, q2 = p3 + yp2, and their basis
representations base(q1) = {(p1, 1), (p2, x)} and base(q2) = {(p2, y), (p3, 1)}. Let
p = q1 + zq2. We receive the basis representation of p in terms of G(C) by adding
(q1, 1) and (q2, z) to base(p).

(q1, 1): Since q1 /∈ G(C), we add each tuple of base(q1) = {(p1, 1), (p2, x)} with
co-factors multiplied by 1 to base(p).

(q2, z): We consider base(q2) = {(p2, y), (p3, 1)} and add (p2, yz) and (p3, z) to
base(p). Since p3 is not yet contained in the ancestors of p, we directly add (p3, z)
to base(p). The polynomial p2 is already contained in base(p), thus we add yz to
the co-factor x of p2 and we derive base(p) = {(p1, 1), (p2, x+ yz), (p3, z)}.

After preprocessing is completed, we repeatedly apply Alg. 2 and reduce the
specification polynomial L by G(C)′. We generate the final NSS proof by deriving
a basis representation for L. Therefore we add after each reduction step the tuple
(g, h), where h is the corresponding co-factor of polynomial g, to base(L) using
Alg. 3. After the final reduction step, base(L) represents an NSS proof and is
printed to a file.

Example 13 Figure 5 shows the corresponding NSS proof for the verification of the
2-bit multiplier that is depicted in Fig. 3. It can be seen that the proof contains
only the (ordered) co-factors and thus is smaller than the extensive PAC proof.

4.4 Generating LPAC proofs

The LPAC format allows us to deliver dense PAC proofs. Thus, the proof genera-
tion is very similar as described in Sect. 4.2, with the difference being the level of
compactness of the produced proof steps.

For each substitution step during preprocessing we generate a linear combina-
tion. That is, we merge the multiplication and addition steps, presented in Sect. 4.2
and gain for each preprocessing step a single step

idi % idpv*(h) + idp, r;
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15 % 5*(l16 -1) + 6, -l20+l16*l14*l12 -l16*l14 -l16*l12 -l14*l12+l14+l12;
16 % 4*(l14*l12 -l14 -l12) + 15, -l20 -2* l14*l12+l14+l12;
17 % 9*(l24 -1) + 10, -l28+l24*l22*l16 -l24*l22 -l24*l16 -l22*l16+l22+l16;
18 % 8*(l22*l16 -l22 -l16) + 17, -l28 -2* l22*l16+l22+l16;
19 % 14*(8) , -8*s3+8*l24;
20 % 7*(4) + 8*(8) + 18*(4) + 13*(4) , -4*s2 -8* l24+4*l16 +4*b1*a1;
21 % 2*(2) + 3*(2) + 4*(4) + 16*(2) + 12*(2) , -2*s1 -4*l16 +2*b1*a0+2*b0*a1;
22 % 1 + 11, -s0+b0*a0;
23 % 22 + 21 + 20 + 19, -8*s3 -4*s2 -2*s1 -s0+4*b1*a1+2*b1*a0+2*b0*a1+b0*a0;

Fig. 6: Generating a LPAC proof during multiplier verification.

Similar as before, we generate deletion steps whenever pv can be removed.
During the reduction phase we calculate and store the factors of each reduction

step. After reducing by several polynomials we generate a linear combination step
which sums up these factors to gain intermediate specifications. Thus, we are able
to narrow down possible errors. Finally, we sum up the intermediate specifications
in a single step and yield the specification L.

Example 14 Figure 6 shows the corresponding LPAC proof for the verification of
the 2-bit multiplier that is depicted in Fig. 3. The proof steps 15–18 are generated
during preprocessing, 19–22 are generated during reduction and step with index
23 is the final step for summing up the intermediate specifications. It can be seen
that LPAC enables merging PAC steps. For example the steps with indices 15 and
16 of Fig. 4 are now combined in the first proof step.

5 PAC Checkers

We have implemented two checkers for PAC proofs. The first, Pacheck, (Sect. 5.1)
is efficient while the second, Pastèque, is verified using Isabelle/HOL (Sect. 5.2).

5.1 Pacheck 1.0

Pacheck consists of approximately 1 800 source lines of C code and is published [38]
under MIT license. The default mode of Pacheck supports the extended version
of PAC for the new syntax using indices. Pacheck also supports reasoning with
exponents as described in the initial version of PAC. However, extension rules are
only supported for Boolean models.

Pacheck reads three input files <constraints>, <proof>, and <target> and
then verifies that the polynomial in <target> is contained in the ideal generated
by the polynomials in <constraints> using the proof steps provided in <proof>.
The polynomial arithmetic needed for checking the proof steps is implemented
from scratch, because in the default setting we always calculate modulo the ideal
〈B(X)〉. General algorithms for polynomial arithmetic need to take exponent arith-
metic over Z into account [55], which is not the case in our setting.

In the default mode of Pacheck we order variables in terms lexicographically
using strcmp. All internally allocated terms are shared using a hash table. It turns
out that the order of variables has an enormous effect on memory usage, since
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u x y

v

x u y

x y v

Fig. 7: Term representation w.r.t. v > u > x > y (left) and x > u > y > v (right).

different variable orderings induce different terms. For example, given the mono-
mials uxy and vxy. For the ordering v > u > x > y, the internal sharing is maximal
and only 4 terms are allocated. For the ordering x > u > y > v, terms cannot be
shared and thus 6 terms need to be allocated, cf. Fig. 7. For one example with
more than 7 million proof steps, using -1*strcmp as sorting function leads to an
increase of 50% in memory usage. A further option for sorting the variables is to
use the variable appearance ordering from the given proof files. That is, we assign
increasing level values to new variables during parsing of the proof file and sort
according to this value. However, the best ordering that maximizes internal shar-
ing cannot be determined in advance from the original constraint set, as it highly
depends on the applied operations in the proof steps. Pacheck supports the or-
derings strcmp, -1*strcmp, level, and -1*level. Terms in polynomials are sorted
using a lexicographic term order that is induced by the order of the variables.

Initially each polynomial from <constraints> is sorted and stored as an in-
ference. Inferences consist of a given index and a polynomial and are stored in a
hash table. Proof checking is applied on-the-fly. We parse each step of <proof>

and immediately apply the necessary checks discussed in Sect. 2.1.3. If the proof
step is either Add or Mult, we have to compute whether the conclusion polyno-
mial of the step is equal to the arithmetic operation performed on the antecedent
polynomials.

Since the monomials of the polynomials are sorted, addition of polynomials is
performed by merging their monomials in an interleaved way. Normalization of
the exponents is not necessary in the Add rule, but we still use this technique
for multiplication, where we multiply each monomial of the first polynomial with
each monomial of the second polynomial. In the Mult rule we normalize exponents
larger than one, before testing equality. Furthermore, we check whether the con-
clusion polynomial of the Add or Mult steps matches the polynomial in <target>

to identify whether the normalized target polynomial was derived.

5.2 Pastèque 1.0

To further increase trust in the verification, we implemented a verified checker
called Pastèque in the proof assistant Isabelle/HOL [52]. It follows a “refine-
ment” approach, starting with an abstract specification of ideals, which we then
refine with the Isabelle Refinement Framework [41] to the transition system from
Sect. 2, and further down to executable code using Isabelle’s code generator [18].
The Isabelle files have been made available [17]. The generated code consists of
2 800 lines Standard ML (2 400 generated by Isabelle, 400 for the parser) and is also
available [17,38] under MIT license.
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On the most abstract level, we start from Isabelle’s definition of ideals. The
specification states that if “success” is returned, the target is in the ideal. Then
we formalize PAC and prove that the generated ideal is not changed by the proof
steps. Proving that PAC respects the specification on ideals was not obvious due
to limited automation and development of the Isabelle library of polynomials (e.g.,
“Var (1) = ∅” is not present). However, Sledgehammer [5] automatically proved
many of these simple lemmas. We made a slightly different choice for definitions:
Instead of using B(X) = {x2−x | x ∈ X}, we used {x2−x | True} and proved that
we only need variables of X. This made little difference for proofs, but avoided
checking that variables are present in the problem.

While the input format identifies variables as strings, Isabelle only supports
natural numbers as variables. Therefore, we use an injective function to convert
between the abstract specification of polynomials (with natural numbers as vari-
ables) and the concrete manipulations (with strings as variables). The code does
not depend on this function, only the correctness theorem does. Injectivity is only
required to check that extension variables did not occur before.

In the third refinement stage, Sepref [40] changes data structures automati-
cally, such as replacing the set of variables X by a hash-set. Finally, we use the
code generator to produce code. This code is combined with a trusted (unproven)
parser and can be compiled using the Standard ML compiler MLton [59].

The implementation does not support the usage of exponents and is less so-
phisticated than Pacheck’s. In particular, even if terms are sorted, sharing is not
considered (neither of variables or of monomials) as it can be executed partially by
the compiler, although not guaranteed by Standard ML semantics. Some sharing
could also be performed by the garbage collector. We tried to enforce sharing by
using MLton’s shareAll function and by using a hash map during parsing, i.e.,
using a hash map that assigns a variable to “itself” (the same string, but poten-
tially at a different memory location) and normalize every occurrence. However,
performance became worse.

Pastèque is four times slower than Pacheck. First, this is due to Standard
ML being intrinsically slower than C or C++. While Isabelle’s code generator to
LLVM [43] produces much faster code, we need integers of arbitrary large size,
which is currently not supported. Also achieving sharing is entirely manual, which
is challenging due to the use of separation logic Sepref. Second, there is no axiom-
atization of file reading and hence parsing must be applied entirely before calling
the checker in order for the correctness theorem to apply. This is more memory
intensive and less efficient than interleaving parsing and checking. Pastèque can
be configured via the uloop option to either use the main loop generated by Isa-
belle (parsing before calling the generated checker) or instead use a hand-written
copy of the main loop, the unsafe loop, where parsing and checking is interleaved.
It is only unsafe because it is unchecked. However, the performance gain is large
(on sp-ar-cl-64 with 32 GB RAM, the garbage collection time went from 700 s
down to 25 s), but only the checking functions of each step are verified, not the
main loop.
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Fig. 8: Addition schemes of 6 polynomials.

6 The NSS Checker Nuss-Checker

Our NSS proof checker, Nuss-Checker is implemented in C. It consists of ∼ 1500
source lines of code and is published [30] as open source under the MIT li-
cense. Similar to Pacheck, Nuss-Checker reads three input files <constraints>,
<cofact>, and <target>. The file <constraints> contains the initial constraints
gi ∈ G, <cofact> contains the corresponding co-factors hi in the same order. Nuss-

Checker reads the files <constraints> and <cofact>, generates the products and
then verifies that the sum of the products is equal to the polynomial f given in
<target>. Nuss-Checker uses the same internal representation of polynomials as
Pacheck and furthermore supports the same variables orders as Pacheck, with
strcmp being the default ordering.

We validate the correctness of the generated NSS proofs by checking whether∑l
i=1 higi = f ∈ Z[X] for pi ∈ G ⊆ Z[X], f, hi ∈ Z[X]. This sounds rather straight-

forward as theoretically we only need to multiply the original constraints gi by the
co-factors hi and calculate the sum of the products. However, we will discuss in
this section that depending on the implementation the time and maximum amount
of memory that is allocated varies by orders of magnitude.

Nuss-Checker generates the products higi on the fly. That is, we parse both
files <constraints> and <cofact> simultaneously, read two polynomials gi and hi
from each file and calculate higi. Since addition of polynomials in Z[X] is asso-
ciative, we are able to derive different addition schemes for n-ary addition. We
experimented with five different addition/subtraction patterns. The addition pat-
terns are depicted in Fig. 8 for adding six polynomials. The subscript i in “+i”
shows the order of the addition operation.

If we sum up all polynomials at once, we do not generate the intermediate ad-
dition results. Instead we push all monomials of the l products higi onto one big
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Fig. 9: Time (left) and memory usage (right) of addition schemes for btor multi-
pliers.

stack. Afterwards, the monomials on the stack are sorted and merged, which corre-
sponds to one big addition. However, all occurring monomials of the products are
pushed on the stack and stored until the final sorting and merging, which increases
the memory usage of Nuss-Checker.

If we add up in sequence, we only store one polynomial in the memory, and
always add the latest product higi. On the one hand, this allows for monomials
to cancel, which helps to reduce the memory usage. On the other hand, in the
application of multiplier verification (cf. Sect. 4.1) the target polynomial L contains
n2 partial products aibj that lead to intermediate summands of quadratic size,
which slows down the checking time.

For adding up in sequence we also experimented with the “inverse” operation,
where we start with the target polynomial and step by step subtract the products
higi in the order originally used during the verification. We check whether the
final polynomial is equal to zero. Again we always store only one polynomial in the
memory, which admits a low memory usage. However, in our application the target
polynomial is of quadratic size, making step-wise subtractions time-consuming.

If we add up in a tree structure with breadth first, we add two consecutive prod-
ucts of the NSS proof and store the resulting sum. After parsing the proof, we
have l

2 polynomials on a stack. We repeatedly iterate over the stack and always
sum up two consecutive polynomials, until only one polynomial is left. Using a tree
addition scheme reduces the likelihood of quadratic sized intermediate summands
for multiplier verification.

In the addition scheme, where we use a tree structure and sum up depth first,
we develop the tree on-the-fly by always adding two polynomials of the same
layer as soon as possible. It may be necessary to sum up remaining intermediate
polynomials that are elements of different layers, as shown in Fig. 8. We always
store at most dlog(l)e polynomials in the memory, as a binary tree with l leafs has
height dlog(l)e and we never have more polynomials than layers in the memory.

We apply the presented addition schemes for our use case of multiplier verifica-
tion. We choose two multiplier architectures. In our first experiment we consider a
simple multiplier architecture, called btor, that is generated using Boolector [51]
for various input sizes. Second, we examine a more complex multiplier architecture,
called bp-wt-rc, that uses a Booth encoding and Wallace-tree accumulation. Fig-
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Fig. 10: Time (left) and memory usage (right) of addition schemes for bp-wt-rc
multipliers.

ures 9 and 10 show that the results compare favorably to our conjectures of check-
ing time and memory usage for each addition scheme. However, Nuss-Checker

supports all presented options for addition, with adding up in binary tree, depth first

set as default, because for different applications, using other addition schemes may
be more beneficial. For example, we shuffled the order of the polynomials in the
NSS proof of 128-bit btor-multipliers 200 times. The addition schemes “adding up
in sequence” and “subtract” always exceeded the time limit of 300 seconds. The
fastest addition scheme is “all at once”, which is a factor of two faster than both
tree-based addition schemes.

7 LPAC Checkers

The LPAC checkers combine the strength of PAC (checking intermediate steps and
supporting extensions), while allowing doing a linear combination in a single step
like NSS proofs. We have extended Pacheck (Sect. 7.1), based on our experiments
for Nuss-Checker, and Pastèque (Sect. 7.2) to Pacheck 2.0 and Pastèque 2.0.

7.1 Pacheck 2

Pacheck 2.0 is a re-factorization and improved C++ reimplementation of our
previous proof checkers. Since we are able to simulate PAC and NSS proofs in
LPAC, Pacheck 2.0 unites and extends Pacheck 1.0 and Nuss-Checker.

The internal representation of polynomials is almost the same as for Pacheck 1.0.
However, Pacheck 2.0 does no longer support the usage of exponents and thus
only supports Boolean models. Proof checking is applied on the fly. That is, we
parse a proof step and calculate that the linear combination of known polynomials
is equal to the given conclusion polynomial of the proof step. We calculate linear
combinations similar to proof checking a NSS proof in Nuss-Checker, i.e., when-
ever we parse a product of a polynomial and an index, we directly calculate the
factor. The factors of the linear combination are processed using a tree structure

with depth first addition scheme. Figure 11 shows a demonstration of Pacheck 2.0
on the LPAC proof of Ex. 14.
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$ pacheck btor2.input btor2.proof btor2.target
[pck2] Pacheck Version 2.0
[pck2] Practical Algebraic Calculus Proof Checker
[pck2] Copyright(C) 2020, Daniela Kaufmann, Johannes Kepler University Linz
[pck2] sorting according to strcmp
[pck2] checking target enabled
[pck2] reading target polynomial from 'btor2.target'
[pck2] read 74 bytes from 'btor2.target'
[pck2]
[pck2] reading original polynomials from 'btor2.input'
[pck2] found 14 original polynomials in 'btor2.input'
[pck2] read 327 bytes from 'btor2.input'
[pck2]
[pck2] reading polynomial algebraic calculus proof from 'btor2.proof'
[pck2] found and checked 9 inferences in 'btor2.proof'
[pck2] read 680 bytes from 'btor2.proof'
[pck2]
[pck2] ----------------------------------------------------------------------
[pck2] c TARGET CHECKED
[pck2] ----------------------------------------------------------------------
[pck2]
[pck2] proof length: 23 (total number of polynomials)
[pck2] proof size: 82 (total number of monomials)
[pck2] proof degree: 3
[pck2]
[pck2] total inferences: 23
[pck2] original inferences: 14 (61% of total rules)
[pck2] proof rules: 9 (39% of total rules)
[pck2] extensions: 0 (0% of inference rules)
[pck2] linear combination: 9 (100% of inference rules
[pck2] containing 15 additions
[pck2] and 14 multiplications)
[pck2] rules deleted: 0 (0% of total rules)
[pck2]
[pck2] total allocated terms: 30
[pck2] max allocated terms: 30 (100% of total terms)
[pck2] searched terms: 170 (82% hits,
[pck2] 0.0 average collisions)
[pck2] searched inferences: 69 (3.0 average searches,
[pck2] 0.0 average collisions)
[pck2]
[pck2] maximum resident set size: 2.67 MB
[pck2] process time: 0.01 seconds

Fig. 11: Output of Pacheck 2.0 for the proof of Ex. 14.

7.2 Pastèque 2

Pastèque 2.0 [16] is developed on top of Pastèque 1.0. In order to reuse as much
as possible from Pastèque 1.0, we reuse the specification and the rules of PAC.
Instead of proving the correctness of the LPAC rules directly, we reduce them to
the PAC rules, by seeing the LinComb rule as a series of Add and Mult. This
requires the linear combination to not be empty: While 0 is always in the ideal, it
cannot be generated by the PAC rules.

Additionally, we introduced explicit sharing of variables. We map every variable
string to a unique 64-bit machine integer. In turn, this integer is the index of the
original string in an array. Sharing is introduced in a new refinement step. The
major change is that importing a new variable can now fail (if the problem contains
more than 264 different variables). This is nearly impossible in practical problems,
but we had to add several new error paths in Pastèque. We obviously set up
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the code generator to make the array access from machine words in an array
without converting it to an unbounded integer. This change give us a performance
improvement of around 10%, most likely because the memory representation is
more efficient (fewer pointer indirections), making the work of the garbage collector
easier.

On top of that, as we know that all our array accesses are valid (this is checked
by Sepref during synthesis of the code),1 we add a flag such the compiler makes
use of that. This also allowed us to use MLton’s LLVM backend that produce
faster code, according to our experiments.

We did not change the implementation of the uloop option. Like Pastèque 1.0,
a full proof step is parsed before being checking. For NSS-style LPAC proof, this
means that the full proof is still parsed before checking. In particular, for such
proofs, Pastèque 2.0 should be compared the default version of Pastèque 1.0.
The new sharing reduces memory usage, but parsing the full proof still causes
a extreme memory pressure, as demonstrated by the experiments (Sect. 8). A
solution would be to move the parsing to Isabelle (i.e., take a string as input
instead of polynomials).

8 Experiments

In our experiments we use an Intel Xeon E5-2620 v4 CPU at 2.10 GHz (with turbo-
mode disabled) with a memory limit of 128 GB. The time is listed in rounded
seconds (wall-clock time). We measure the wall-clock time from starting the tools
until they are finished. In our experiments we aim to provide a comprehensive
comparison between our tools. Source code, benchmarks and experimental data
are available [37].

8.1 PAC Proofs

For the experiments of Table 1 we generate PAC proofs as in previous work [34,35]
to validate the correctness of multipliers with input bit-width n. The circuits are
either generated with AMG [25], Boolector [51], or GenMul [48].

For the upper part of Table 1 we generate proof certificates with our tool
AMulet 2.0 [33] to validate the correctness of simple multiplier circuits. Our
previous approach [34] to tackle complex multipliers also relies on SAT solving. We
substitute complex final-stage adders in multipliers by simple ripple-carry adders.
A bit-level miter is generated, which is passed on to a SAT solver to verify the
equivalence of the adders. Computer algebra techniques are used to verify the
rewritten multiplier. Since two different solving techniques are used, two proof
certificates in distinct formats are generated. SAT solvers generate a DRUP proof
and computer algebra techniques produce a PAC proof. In order to obtain a single
proof certificate we translate DRUP proofs into PAC [35]. In the experiments of [35]
all gate polynomials of the given multiplier, the equivalent ripple-carry adder, and
the bit-level miter are assumed as initial set of constraints G. We even added
polynomials that define Boolean negation to the initial constraint set. All these

1 The hash map setup relies on exceptions, which is why we did not do that for Pastèque 1.0,
but now we changed the setup.
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polynomials are now added using extension steps. This preserves the models of the
gate polynomials of the given multiplier. Experiments for these proof certificates
are shown in the lower part of Table 1. The second column shows the input bit-
width and the third column shows the number of generated proof steps.

The memory usage for Pastèque depends on the garbage collector, which likely
explains the peak around 64 GB, that is exactly half of the available memory,
observed for the largest problems. Details on when and how the garbage collection
trigger could explain the surprising bp-wt-cl where the uloop option uses more
memory.

The effect of deletion rules and indices in Pacheck can also be seen in Table 1.
In average deletion rules reduce the memory usage by ∼60%, with minimum 40%
(for bp-ct-bk) and maximum 72% (for sp-ar-rc 512). Although the effect on runtime
is limited. Using indices reduces the runtime by 30 to 80%. Note that in our earlier
experiments [35] the proof checking time is slightly faster than in the column
“no index”, because we did not use proper extension rules, which requires the
additional checks p ∈ Z[X] and p2 − p ≡ 0 mod〈B(X)〉.

8.2 LPAC and NSS

We have changed our pipeline to generate LPAC proofs instead of PAC proofs,
using AMulet 2.0. The experiments are done on the same hardware. In the ex-
periments of this section we only consider Pastèque with the uloop option.

We can only generate NSS proofs to validate the correctness of simple multiplier
circuits that don’t require combining algebra and SAT (i.e., extensions). It can be
seen in Table 2 that NSS-style LPAC proofs are faster to check for Pacheck 2.0
than NSS proofs for Nuss-Checker. However, the memory usage of Pacheck 2.0 is
around an order of magnitude higher than for Nuss-Checker, because Pacheck 2.0
reads and stores the complete constraint set before checking the proof. In Nuss-

Checker the constraint set is parsed on the fly.

Pastèque 2.0 is very slow on NSS-style LPAC proofs because it must parse the
entire file first, before starting checking, leading to very high memory usage. For
those proofs, the uloop has no effect: A full proof step is parsed before checking,
but since the entire proof is a single step, it is the same as parsing the full proof
beforehand.

LPAC proofs (right block of Table 3) are checked as efficiently as NSS-style
LPAC proofs (right block of Table 2) by Pacheck 2.0. For Pastèque 2.0 we gain
a significant speed-up when using LPAC proofs. LPAC proofs only need between
1% − 11% of the corresponding checking time of NSS-style LPAC proofs. Addi-
tionally, checking LPAC proofs is more memory efficient.

If we compare checking LPAC proofs to checking PAC-style LPAC proofs, we
can see that both Pacheck 2.0 and Pastèque 2.0 are a factor of two faster on
checking LPAC proofs. The memory usage remains the same.

We further can see in Table 3 that both Pacheck 2.0 and Pastèque 2.0 are
faster on LPAC proofs that simulate PAC than Pacheck 1.0 and Pastèque 1.0
on PAC proofs. The explicit sharing of variables in Pastèque 2.0 also significantly
reduces the memory usage, except for sp-ar-rc 512 (the reasons for this behavior
are unclear).
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Table 1: Proof Checking (in bold the fastest version)

multiplier n steps

Pacheck 1.0 Pastèque 1.0

no delete no index default default uloop

(106) sec MB sec MB sec MB sec MB sec MB

btor 128 0.3 5 273 11 100 5 92 22 3 886 17 1 773

btor 256 1.0 25 1 144 62 435 25 364 105 21 157 79 4 364

btor 512 4.2 138 4 956 402 1 972 141 1 461 531 64 412 416 22 292

sp-ar-rc 128 0.4 6 454 16 148 6 136 31 5 002 23 1 608

sp-ar-rc 256 1.6 29 1 858 96 651 27 541 139 32 525 102 8 769

sp-ar-rc 512 6.3 146 7 683 617 2 965 134 2 171 608 64 412 471 25 632

sp-ar-cl 32 1.6 23 773 36 354 21 353 121 40 654 113 9 492

sp-dt-lf 32 0.3 2 122 3 73 2 73 11 1 679 11 886

bp-ct-bk 32 0.2 1 86 2 52 1 51 8 1 600 7 1 068

bp-wt-cl 32 5.6 193 4 324 302 1 430 181 1 428 786 58 867 774 64 404

Table 2: NSS Proof Checking, without extension (in bold the fastest version)

multiplier n

Nuss-Checker LPAC simulates NSS

steps steps Pacheck 2.0 Pastèque 2.0

sec MB sec MB sec MB

btor 128 1 2 18 1 2 98 53 2 044

btor 256 1 8 71 1 7 385 762 8 819

btor 512 1 41 295 1 35 1 555 14 347 41 712

sp-ar-rc 128 1 3 24 1 2 142 80 2 845

sp-ar-rc 256 1 13 95 1 10 561 1 181 12 275

sp-ar-rc 512 1 67 392 1 48 2 261 21 543 51 415

Table 3: LPAC Proof Checking (in bold the fastest version)

multiplier n

LPAC simulates PAC LPAC

steps Pacheck 2.0 Pastèque 2.0 steps Pacheck 2.0 Pastèque 2.0

(106) sec MB sec MB (106) sec MB sec MB

btor 128 0.3 5 94 14 1 305 0.1 2 94 7 1 305

btor 256 1.3 26 367 67 3 467 0.3 8 367 37 3 816

btor 512 5.2 149 1 468 351 14 651 1.0 37 1 496 238 16 173

sp-ar-rc 128 0.4 5 137 15 1 330 0.1 2 137 8 1 330

sp-ar-rc 256 1.6 28 543 72 5 709 0.6 11 543 34 5 709

sp-ar-rc 512 6.3 145 2 174 381 34 327 2.4 46 2 173 180 34 327

sp-ar-cl 32 1.6 17 445 88 6 911 0.7 10 198 40 2 104

sp-dt-lf 32 0.3 2 80 8 857 0.2 1 39 4 383

bp-ct-bk 32 0.2 1 54 5 662 0.1 1 27 2 268

bp-wt-cl 32 5.5 144 2 250 646 36 224 2.4 88 1 094 292 10 489
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Finally, we can compare the performance of Pacheck and Pastèque. In both
versions, Pastèque 1.0 and Pastèque 2.0 is less efficient than Pacheck 1.0 and
Pacheck 2.0. Pastèque is both much slower and more memory hungry. Verified
checkers of SAT certificates [21, 42] have the same level of efficiency as state-of-
the-art checkers [53], likely because of the imperative style (unlike our mostly
functional code) and the more efficient memory usage by managing most memory
directly (e.g., for clauses) instead of relying on the garbage collector.

9 Conclusion

In this article we presented the algebraic proof formats PAC, LPAC and NSS,
which are able to validate algebraic verification results. We presented soundness
and completeness arguments for these proof formats and showed how proof cer-
tificates can be generated as a by-product of algebraic reasoning on the use case
of arithmetic circuit verification. Proofs in NSS capture whether a polynomial can
be represented as a linear combination of a given set of polynomials by providing
the co-factors of the linear combination. PAC proofs dynamically capture whether
a polynomial can be derived providing a sequence of proof steps. We extend PAC
by including an extension rule capturing rewriting techniques. Furthermore, we
added a deletion rule and used indices for polynomials. Our novel format LPAC
extends PAC by providing the ability to combine several steps at once.

Our proof checkers Pacheck, Pastèque, and Nuss-Checker are able to check
proofs efficiently. Our experiments showed that the PAC optimizations cut the
memory usage of Pacheck in half and reduce the runtime by around 30–80%.
Our reimplementation Pacheck 2.0 and Pastèque 2.0, which use LPAC further
reduce the runtime by around 25–50%. To our surprise, the size of NSS proofs
does not explode in our experiments and is faster to check than PAC. This was
the motivation to combine the advantages of PAC and NSS into LPAC. Checking
LPAC proofs is as time efficient as checking NSS proofs, while still providing
detailed error messages. However, the memory usage of checking LPAC proofs is
an order of magnitude higher than checking pure NSS proofs. On LPAC, Pacheck

was three times faster than Pastèque and used an order of magnitude less memory,
whereas Pastèque was formally verified in Isabelle.

In the future we want to capture more general extension rules in PAC as the
calculus from Section 2 allows. We imagine that it can be extended in two ways.
First, we could relax the condition p2 = p. This condition is necessary to have
v2 = v, but could be lifted even if it means that vn cannot be simplified to v

anymore, requiring to manipulate exponents. Second, we currently restrict the
extension to the form v = p where p contains no new variables. The correctness
theorem does not rely on that and we leave it as future work to determine whether
lifting one of these restrictions can lead to shorter proofs.

In AMulet 2.0 no redundant proof steps are generated, hence no backward
proof checking is necessary unlike SAT certificates. This might still be interesting
in other applications. Another idea for future work is to bridge the gap between
C and Isabelle, either by imperative code or by verifying the C code directly.
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