
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Simulating Circuit-Level Simplifications on CNF ⋆

Matti J ärvisalo · Armin Biere · Marijn Heule

Received: date / Accepted: date

Abstract Boolean satisfiability (SAT) and its extensions have becomea core technology in
many application domains, such as planning and formal verification, and continue finding
various new application domains today. The SAT-based approach divides into three steps:
encoding, preprocessing, and search. It is often argued that by encoding arbitrary Boolean
formulas in conjunctive normal form (CNF), structural properties of the original problem
are not reflected in the CNF. This should result in the fact that CNF-level preprocessing
and SAT solver techniques have an inherent disadvantage compared to related techniques
applicable on the level of more structural SAT instance representations such as Boolean
circuits. Motivated by this, various simplification techniques and intricate CNF encodings
for circuit-level SAT instance representations have been proposed. On the other hand, based
on the highly efficient CNF-level clause learning SAT solvers, there is also strong support
for the claim that CNF is sufficient as an input format for SAT solvers.

In this work we study the effect of CNF-level simplification techniques, focusing on
SatElite-style variable elimination (VE) and what we call blocked clause elimination (BCE).
We show that BCE is surprisingly effective both in theory andin practice on CNF formulas
resulting from a standard CNF encoding for circuits: without explicit knowledge of the
underlying circuit structure, it achieves the same level ofsimplification as a combination
of circuit-level simplifications and previously suggestedpolarity-based CNF encodings. We
also show that VE can achieve many of the same effects as BCE, but not all. On the other
hand, it turns out that VE and BCE are indeed partially orthogonal techniques. We also study

⋆ Parts of this article have been preliminarily presented at the 16th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2010) [30] and at the 13th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2010) [29].

The first author is financially supported by Academy of Finland under grant 132812. The second and the third
author are supported by the Austrian Science Foundation (FWF) NFN Grant S11408-N23 (RiSE). The third
author is supported by the Dutch Organization for ScientificResearch under grant 617.023.611.

M. Järvisalo
Department of Computer Science, University of Helsinki, Finland. E-mail: matti.jarvisalo@cs.helsinki.fi

A. Biere
Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria.

M.J.H. Heule
Department of Software Technology, Delft University of Technology, The Netherlands.

2

the practical effects of combining BCE and VE for reducing the size of formulas and on the
running times of state-of-the-art SAT solvers. Furthermore, we address the problem of how
to construct original witnesses to satisfiable CNF formulaswhen applying a combination of
BCE and VE.

Keywords Boolean satisfiability· preprocessing· problem structure· blocked clauses·
variable elimination· Boolean circuits

1 Introduction

Boolean satisfiability (SAT) [6] solvers and their extensions, especially satisfiability modulo
theories (SMT) [4] solvers, have become core technologies in many application domains,
including planning and formal verification. Furthermore, the SAT-based solving approach
continues to find various new application domains today. Conflict-driven clause learning
(CDCL) SAT solvers are at the heart of SMT solvers, and in somecases such as the the-
ory of bit-vectors, most state-of-the-art SMT solvers are based on bit-blasting and use pure
SAT solvers for actual solving (including [21,15,11,10,31,12]). This gives motivation for
developing even more efficient solving techniques for SAT.

SAT-based approaches consist of three main steps:encoding, preprocessing, andsearch
(solving). Encoding refers to the task of declaratively expressing (modelling) the problem
to be solved in the language of propositional logic. Most state-of-the-art CDCL SAT solvers
require the input formulas to be in conjunctive normal form (CNF). However, it is often
the case that less restrictive forms are used during the encoding phase. Among such more
structural formula representations areBoolean circuitsthat allow compact representation
of propositional formulas as directed acyclic graphs (DAGs) which enables e.g. structural
hashing (sharing of sub-formulas). Such circuit representations are typically afterwards au-
tomatically translated (encoded) into CNF for applying a CNF-level SAT solver to determine
satisfiability of the formula. Various simplification techniques and intricate CNF encoders
for general propositional formulas and especially circuit-level SAT instance representations
have been proposed; see [43,8,28,41,20,40,13] for examples.

Simplification techniques applied in the preprocessing phase have the objective of au-
tomatically applying transforms to the input formula in order to make the formula (pre-
sumably) easier to solve; typically, the objective is to reduce the number of variables and
subformulas appearing in the formula. Preprocessing techniques have been developed both
for circuits and for CNF (for examples of CNF-level simplification techniques, see [37,39,2,
42,9,45,19,22,48,32,23]). The way the encoding and simplification/preprocessing is done
before the actual solving can have a notable effect on the running times of SAT solvers.
Indeed, the steps of encoding, preprocessing, and search are tightly intertwined.

It is often argued that by encoding arbitrary Boolean formulas in CNF, structural prop-
erties of the original problem are not reflected in the resulting CNF formula. This should
result in the fact that CNF-level preprocessing and SAT solver techniques have an inherent
disadvantage compared to related techniques that can be applied on the level of more struc-
tural SAT instance representations such as Boolean circuits. On the other hand, based on the
success of the current highly efficient CNF-level CDCL SAT solvers and CNF simplifica-
tion techniques, there is also strong support for the claim that CNF is sufficient as an input
format for SAT solvers.

We believe that this controversy highlights that the current understanding of the lim-
itations of CNF as the de facto input form for SAT solvers is somewhat limited, which

3

motivates further studies on the topic. This work contributes to this understanding by ana-
lyzing CNF-level simplification techniques from a structural point of view. As main results,
we show that, rather surprisingly, simple CNF-level simplification techniques can implicitly
achieve many types of circuit-level simplifications which are believed to require specialized
circuit-level simplifiers.

1.1 Contributions

In this work we study the effect of two main CNF-level simplification techniques: SatElite-
style bounded variable elimination (VE) [19] and what we call blocked clause elimina-
tion (BCE). As demonstrated by the SatElite preprocessor [19], variable elimination (orig-
inating from [14,18]) provides an effective CNF-level simplication technique via bounded
application. Blocked clause elimination, on the other hand, is a clause elimination technique
that removes so calledblocked clauses[36] from CNF formulas. The concept of BCE traces
back to [18, Section 2.4] where it was first noted (in dual form, considering formulas in dis-
junctive normal form) that such clauses can be eliminated without affecting satisfiability.1

While (partial) elimination of blocked clauses has been proposed before [42], we present in
this paper the first systematic analysis of the effectiveness of BCE.

We focus on analyzing the effect of the CNF-level preprocessing techniques of BCE and
VE on CNF formulas originating from circuit-level formula representations.

We show that BCE is surprisingly effective both in theory andin practice on CNF for-
mulas resulting from the standard “Tseitin” CNF encoding [47] for circuits: without explicit
knowledge of the underlying circuit structure, BCE achieves the same level of simplification
as a combination of circuit-level simplifications, such ascone of influence, non-shared input
elimination, andmonotone input reduction, and previously suggested polarity-based CNF
encodings, especially the Plaisted-Greenbaum encoding [43]. This implies that, without los-
ing simplification achieved by such specialized circuit-level techniques, one can resort to
applying BCE after the straightforward Tseitin CNF encoding, and hence implementing
these circuit-level techniques is somewhat redundant. Moreover, since other related circuit
level optimizations forsequentialproblems—in particular, thebounded cone of influence
reduction[5] and using functional instead of relational representations of circuits [33]—can
be mapped to cone of influence, these can also be achieved by BCE purely on the CNF-level.
As regards CNF-level simplification techniques, BCE achieves the simplification resulting
from, e.g.,pure literal elimination[17,14], as also observed in [36,42].

As regards the effect of variable elimination based preprocessing, we show that VE can
achieve many of the same effects as BCE, but not all. Especially, for achieving the same
simplifications as combining all the considered circuit-level simplification techniques, it is
insufficient to use the Tseitin encoding before applying VE on the resulting CNF formula;
instead, the Plaisted-Greenbaum encoding is required. It also turns out that VE and BCE are
indeed partially orthogonal techniques, which motivates combining these two techniques for
achieving even better simplification.

We also address the problem of reconstructing original solutions to CNF formulas af-
ter applying a preprocessing. For many real application scenarios of SAT it is important
to be able to extract a full satisfying assignment for original SAT instances from a satisfy-
ing assignment for the instances after preprocessing. For instance, when applying BCE, a

1 We thank one of the anonymous reviewers for pointing out thisreference.

4

solution to the original CNF is not directly available in general. We show how such full solu-
tions can be efficiently reconstructed from solutions to theconjunctive normal form (CNF)
formulas resulting from applying a combination of various CNF preprocessing techniques,
especially, blocked clause elimination combined with SatElite-style variable elimination and
equivalence reasoning [2,3,22].

To accompany the more theoretical analysis in this paper, wepresent an experimental
evaluation of the effectiveness of BCE combined with SatElite-style variable eliminating
CNF preprocessing comparing our implementation with the standard Tseitin and Plaisted-
Greenbaum encodings and the more recent NiceDAG [40,13] andMinicirc [20] CNF en-
coders. It turns out that the combination of these CNF-leveltechniques is in many cases
competitive with the circuit-level encoders. However, it turns out that the additional benefit
of applying BCE for achieving faster SAT solving is often modest: using BCE as a pre-
processor appears in many cases to have only a slight positive effect on the running times
of state-of-the-art SAT solvers, especially when considering CDCL. This leads to the con-
jecture that the often applied circuit simplifications achieved by BCE may in many cases
be of limited value from the practical perspective. However, in cases some non-negligible
improvements can be observed, especially for stochastic local search.

1.2 Related Work

This work is not the first time removing blocked clauses is proposed for simplifying CNF
formulas; see [42] for example. However, in contrast to thispaper, the work of [42] does
not make the connection between blocked clauses and circuit-level simplifications and CNF
encodings and, most importantly, [42] concentrates on extracting underlying circuit gate
definitions for applying this knowledge in CNF-level simplification; blocked clause removal
in [42] is actuallynot applied in the case any underlying gate definitions can be extracted,
but rather as an auxiliary simplification over those clauseswhich cannot be associated with
gate definitions.

Blocked clauses have played a role in studies focusing on improving the worst-case
upper bounds on the running time of SAT algorithms [35] whosepredecessor dates back to
the concept ofcomplementary searchby Purdom [44].

It should be noted that, from a proof complexity theoretic point of view, there are CNF
formulas which can be made easier to prove unsatisfiable withresolution (and hence also
with clause learning SAT solvers) byaddingblocked clauses [36]. In more detail, there are
CNF formulas for which minimum-length resolution proofs are guaranteed to be exponential
originally, but by adding instance-specific blocked clauses to the formulas, the resulting for-
mulas yield short resolution proofs. The effect of adding (instance-specific) blocked clauses
has also been studied in some domain-specifix contexts, e.g.[26]. This duality is discussed
further in Section 12. This same observation on duality can also be made about VE. On
one hand, VE has been shown to often notably speed-up SAT solving. On the other hand,
as shown in Section 8 of this article, VE removes some clauseswhich are also removed
by BCE, and can hence increase the length of resolution proofs dramatically. Furthermore,
depending on the variable elimination ordering, VE may eliminate “wrong” variables, in
analogy with making bad decisions during search, and hence lead to notable increase in
proof lengths, as well.

As a final remark, we note that after the first versions of this work, the technique of
blocked clause elimination has been lifted to quantified Boolean formulas (QBFs) in [7].

5

Quantified blocked clause elimination [7] is reported to give a substantial reduction in QBF
solving time.

1.3 Organization

The rest of this paper is organized as follows. After background on Boolean circuits and
CNF encodings of circuits (Section 2) and on resolution-based CNF preprocessing (Sec-
tion 3), we introduce blocked clause elimination (Section 4), and review the circuit-level
simplification techniques considered in this work (Section5). An overview of the main re-
sults of this work is presented in Section 6. In-depth analysis of the effectiveness of BCE
and VE with respect to known circuit-level simplification techniques and CNF encodings is
then presented (Sections 7 and 8), followed by an analysis ofthe effectiveness of combined
BCE and VE (Section 9). After the more theoretical analysis,our implementation of BCE
is described in detail, followed by an in-depth descriptionof how full solutions to CNF for-
mulas can be reconstructed from solutions to the CNF after applying both individual and
combinations of BCE and VE (Section 10). After this, experimental results are reported on
the practical effectiveness of BCE and VE (Section 11), followed by conclusory remarks
(Section 12).

2 Boolean Circuits and CNF Satisfiability

This section reviews the needed background related to Boolean circuits and CNF-level sat-
isfiability, and well-known CNF encodings of circuits.

2.1 CNF Satisfiability

Given a Boolean variablex, there are twoliterals, the positive literal, denoted byx, and the
negative literal, denoted by¬x, thenegation of x. As usual, we identify¬¬xwith x. A clause
is a disjunction (∨, or) of distinct literals and a CNF formula is a conjunction (∧, and) of
clauses. When convenient, we view a clause as a finite set of literals and a CNF formula as
a finite set of clauses; e.g. the formula(a∨¬b)∧ (¬c) can be written as{{a,¬b},{¬c}}.
This allows us to write, for examples,F \G to denote the CNF formula consisting of those
clauses in the CNF formulaF but not in the CNF formulaG, andl ∈C to denote that a literal
l occurs in a clauseC.

A truth assignment for a CNF formulaF is a functionτ that maps variables inF to
{t, f}. A truth assignment is extended to literals by definingτ(¬x) = ¬τ(x), where¬t = f
and¬f = t. A clause is satisfied byτ if it contains at least one literall such thatτ(l) = t.
An assignmentτ satisfies Fif it satisfies every clause inF . A CNF formula issatisfiableif
there is an assignment that satisfies it, andunsatisfiableotherwise.

A clause is atautologyif it contains bothx and¬x for some variablex. Finally, given
an assignmentτ , let τx (respectively,τ¬x) denote the assignment such thatτx(x) = t (respec-
tively, τ¬x(x) = f) and which is otherwise identical toτ .

6

2.2 Boolean Circuits

A Boolean circuit over a finite setGof gatesis a setC of equations of formg := f (g1, . . . ,gn),
whereg,g1, . . . ,gn ∈ G and f : {t, f}n →{t, f} is a Boolean function, with the additional re-
quirements that (i) eachg∈ G appears at most once as the left hand side in the equations in
C , and (ii) the underlying directed graph

〈G,E(C) =
{

〈g′,g〉 ∈ G×G | g := f (. . . ,g′, . . .) ∈ C
}

〉

is acyclic. If〈g′,g〉 ∈E(C), theng′ is achild of g andg is aparentof g′. If g := f (g1, . . . ,gn)
is in C , theng is an f -gate (or of typef), otherwise it is aninput gate. A gate with no parents
is anoutput gate. The fanout (fanin, respectively) of a gate is the number of parents (children,
respectively) the gate has.

A (partial) assignment forC is a (partial) functionτ : G → {t, f}. An assignmentτ is
consistentwith C if τ(g) = f (τ(g1), . . . ,τ(gn)) for eachg := f (g1, . . . ,gn) in C .

A constrained Boolean circuitC τ is a pair〈C ,τ〉, whereC is a Boolean circuit andτ
is a partial assignment forC . With respect to aC τ , each〈g,v〉 ∈ τ is aconstraint, andg is
constrainedto v if 〈g,v〉 ∈ τ .

An assignmentτ ′ satisfiesC τ if (i) it is consistent withC , and (ii) it respects the con-
straints inτ , meaning that for each gateg∈ G, if τ(g) is defined, thenτ ′(g) = τ(g). If some
assignment satisfiesC τ , thenC τ is satisfiableand otherwiseunsatisfiable.

The following Boolean functions are some which often occur as gate types.

– NOT(v) is t if and only if v is f.
– OR(v1, . . . ,vn) is t if and only if at least one ofv1, . . . ,vn is t.
– AND(v1, . . . ,vn) is t if and only if all v1, . . . ,vn aret.
– XOR(v1, . . . ,vn) is t if and only if an odd number ofvi ’s aret.
– ITE(v1,v2,v3) is t if and only if (i) v1 andv2 aret, or (ii) v1 is f andv3 is t.

As typical, we inline gate definitions of typeg := NOT(g′). In other words, each occurrence
of g asĝ := f (. . .,g, . . .) is expected to be rewritten as ˆg := f (. . .,NOT(g′), . . .).

Example 1A Boolean circuitC τ and its graphical representation are shown in Figure 1. A
satisfying truth assignment for the circuit is

τ ′ = {〈c1, t〉,〈t1, t〉,〈o0, f〉,〈t2, f〉,〈t3, t〉,〈a0, t〉,〈b0, f〉,〈c0, t〉}.

C = {c1 := OR(t1,NOT(t2))

t1 := AND(t3,c0)

o0 := XOR(t3,c0)

t2 := AND(a0,b0)

t3 := XOR(a0,b0)}

τ = {〈c1, t〉}
a0 b0 c0

AND XOR

OR

AND XORt3t2

t1 o0

c1 t

¬

Fig. 1 A constrained Boolean circuitC τ and its graphical representation.

7

2.3 Well-Known CNF Encodings

The standard satisfiability-preserving “Tseitin” encoding [47] of a constrained Boolean
circuit C

τ into a CNF formula TST(C τ) works by introducing a Boolean variable for
each gate inC τ , and representing for each gateg := f (g1, . . .gn) in C τ the equivalence
g ⇔ f (g1, . . .gn) with clauses. Additionally, the constraints inτ are represented as unit
clauses: ifτ(g) = t (τ(g) = f, respectively), introduce the clause(g) ((¬g), respectively).
A well-known fact is that unit propagation2 on TST(C τ) behaves equivalently to standard
Boolean constraint propagation on the original circuitC

τ (see, e.g., [16] for details).
A well-known variant of the Tseitin encoding is the Plaisted-Greenbaum encoding [43]

which is based ongate polarities. Given a constrained Boolean circuitC
τ , apolarity func-

tion polτ
C

: G→ 2{t,f} assigns polarities to each gate in the circuit. Heret andf stand for the
positiveandnegativepolarities, respectively. Any polarity function must satisfy the follow-
ing requirements.

– If 〈g,v〉 ∈ τ , thenv∈ polτ
C
(g).

– If g := f (g1, . . . ,gn), then:
– If f = NOT, thenv∈ polτ

C
(g) implies¬v∈ polτ

C
(g1).

– If f ∈ {AND,OR}, thenv∈ polτ
C
(g) impliesv∈ polτ

C
(gi) for eachi.

– If f = XOR, thenpolτ
C
(g) 6= /0 impliespolτ

C
(gi) = {t, f}.

– If f = ITE, thenv∈ polτ
C
(g) implies

polτ
C
(g1) = {t, f} andv∈ polτ

C
(gi) for i = 2,3.

The Plaisted-Greenbaum encoding [43] uses the polarity functionminpolτ
C

that assigns
for each gate the subset-minimal polarities from 2{t,f} respecting the requirements above. In
other words, for each gateg,

minpolτ
C
(g) := {v | τ(g) = v or v∈minpolτ

C
(g′) for some parentg′ of g}.

The Tseitin encoding, on the other hand, can be seen as using the subset-maximal polarity
assigning polarity functionmaxpolτ

C
(g) := {t, f} for each gateg. For the gate types consid-

ered in this paper, the clauses introduced based on gates polarities are listed in Table 1.

Table 1 CNF encoding for constrained Boolean circuits based on gatepolarities. In the table,gi is ¬g′i if
gi := NOT(g′i), andgi otherwise.

gateg t ∈ polτ
C
(g) f ∈ polτ

C
(g)

g := OR(g1, . . . ,gn) (¬g∨g1∨·· · ∨gn) (g∨¬g1)∧·· · ∧ (g∨¬gn)
g := AND(g1, . . . ,gn) (¬g∨g1)∧·· · ∧ (¬g∨gn) (g∨¬g1 ∨·· · ∨¬gn)
g := XOR(g1,g2) (¬g∨¬g1 ∨¬g2)∧ (¬g∨g1 ∨g2) (g∨¬g1∨g2)∧ (g∨g1 ∨¬g2)
g := ITE(g1,g2,g3) (¬g∨¬g1 ∨g2)∧ (¬g∨g1 ∨g3) (g∨¬g1∨¬g2)∧ (g∨g1 ∨¬g3)
〈g, t〉 ∈ τ (g)
〈g, f〉 ∈ τ (¬g)

Example 2The polarities assigned by the subset-minimal polarity functionminpolτ
C

to the
gates of the circuit in Example 1 are shown in Figure 2 next to each gate. The clauses in
the Tseitin encoding of the circuit are shown on the left. ThePlaisted-Greenbaum encoding
produces only the underlined clauses. In the figure, the clauses and literals removed by unit
propagation are crossed over with lines.

2 Given a CNF formulaF, while there is a unit clause(l) in F, unit propagation removes fromF (i) all
clauses inF in which l occurs, and (ii) the literal¬l from each clause inF.

8

✚
✚(c1) ✘✘✘✘(c1∨¬t1)

✘✘✘(c1∨ t2)
(✟✟¬c1∨ t1 ∨¬t2)

(t1∨¬t3 ∨¬c0)
(¬t1∨ t3)
(¬t1∨c0)

(¬o0∨ t3 ∨c0)
(¬o0∨¬t3 ∨¬c0)
(o0∨ t3∨¬c0)
(o0∨¬t3 ∨c0)

(t2∨¬a0∨¬b0)

(¬t2∨a0)
(¬t2∨b0)

(¬t3∨a0∨b0)

(¬t3∨¬a0∨¬b0)

(t3∨a0∨¬b0)
(t3∨¬a0∨b0)

a0 b0 c0

AND XOR

OR

AND XORt3t2

o0

c1

t1

{t}

¬
{t}

{f}

/0

{t}

{f, t} {t}{f, t}

Fig. 2 The polarities assigned by the subset-minimal polarity function minpolτ
C

to the gate of the circuit in
Example 1 (right) and the Tseitin CNF encoding of the circuit(left). The Plaisted-Greenbaum encoding of the
circuit consists of the underlined clauses. The clauses andliterals removed by unit propagation are crossed
over with lines.

Given a constrained Boolean circuitC τ , we denote the CNF formula resulting from the
Plaisted-Greenbaum encoding ofC

τ by PG(C τ).
Relevant additional concepts related to polarities are

– monotone gates: gateg is monotone if|minpolτ
C
(g)|= 1; and

– redundant gates: gateg is redundant ifminpolτ
C
(g) = /0.

Example 3Recall the circuit in Example 2. The gatesc1, t1, t2, t3, andc0 are monotone,
while the gateo0 is redundant.

3 Resolution and Simplification based on Variable Elimination

The resolution rule states that, given two clausesC1= {x,a1, . . . ,an} andC2= {¬x,b2, . . . ,bm},
the implied clauseC= {a1, . . . ,an,b1, . . . ,bm}, called theresolventof C1 andC2, can be in-
ferred byresolvingon the variablex. We writeC=C1⊗C2. This notion can be lifted to sets
of clauses: for two setsSx andS¬x of clauses which all containx and¬x, respectively, we
define

Sx⊗S¬x = {C1⊗C2 |C1 ∈ Sx,C2 ∈ S¬x, andC1⊗C2 is not a tautology}.

Following the Davis-Putnam procedure [14] (DP), a basic simplification technique, re-
ferred to asvariable elimination by clause distributionin [19], can be defined. The elimi-
nation of a variablex in the whole CNF formula can be computed by pair-wise resolving
each clause inSx with every clause inS¬x. Replacing the original clauses inSx∪S¬x with the
set ofnon-tautologicalresolventsS= Sx⊗S¬x gives the CNF formula(F \ (Sx∪S¬x))∪S
which is satisfiability-equivalent toF .

Notice that DP is a complete proof procedure for CNF formulas, with exponential worst-
case space complexity. Hence for practical applications ofvariable elimination by clause
distribution as a simplification technique for CNF formulas, variable elimination needs
to be bounded. Closely following the heuristics applied in the SatElite preprocessor [19]
for applying variable elimination3, in this paper we study as a simplification technique

3 More precisely, the SatElite preprocessor [19] applies a variant of VE calledvariable elimination by
substitution. The analysis on VE in this paper applies to this variant as well.

9

the bounded variant of variable elimination by clause distribution, VEk. In VEk, a vari-
ablex can be eliminated only if|S| ≤ |Sx∪S¬x|+ k, i.e., when the resulting CNF formula
(F \(Sx∪S¬x))∪Swill not contain more than|F |+k clauses, whereF is the formula before
the elimination step andk an integer. Notice that, given that VEk may eliminate a particular
variable, then VEk′ for anyk′ > k may also eliminate the same variable. However, the oppo-
site does not hold in general. In the following, we let VE stand for VE0, resembling closely
the threshold values typically applied in practice.

Example 4Consider a CNF formulaF with

Sx = (x∨c)∧ (x∨¬d)∧ (x∨¬a∨¬b) and S¬x = (¬x∨a)∧ (¬x∨b)∧ (¬x∨¬e∨ f)

for the variablex. Applying variable elimination to eliminatex, we have

S= Sx⊗S¬x

= (a∨c)∧ (b∨c)∧ (a∨¬d)∧ (b∨¬d)∧

(¬a∨¬b∨¬e∨ f)∧ (c∨¬e∨ f)∧ (¬d∨¬e∨ f).

Since|Sx|+ |S¬x|= 6 and|S|= 7, VE0 can not eliminate the variablex, in contrast to VEk for
anyk> 0. Notice that the clauses(x∨¬a∨¬b), (¬x∨a), and(¬x∨b) in F are equivalent
to the Tseitin encoding of the gatex= AND(a,b). This is why resolving(x∨¬a∨¬b) with
(¬x∨a) and(¬x∨b) onx produces only tautological clauses that are not included inS[19].

�

The observation made in this example (and applied e.g. in [19]) can be formulated as fol-
lows.

Proposition 1 For any f∈ {AND,OR,XOR, ITE} and gate definition of the form

g := f (g1, . . . ,gk),

applying variable elimination to eliminate the variable g in the Tseitin encoding of g:=
f (g1, . . . ,gk) produces only tautological clauses.

Proof Easy to check for eachf ∈ {AND,OR,XOR, ITE} (recall Table 1). �

It should be noted that the result of VE can vary noticeably depending on the order in
which variables are eliminated. In more detail, VE does not have a unique fixpoint for all
CNF formulas, and the fixpoint reached in practice is dependent on variable elimination
ordering heuristics. Hence VE is notconfluent.

Theorem 1 VEk is not confluent for any k≥ 0.

Proof Consider the following CNF formula

Fn
VE =

∧

1≤i≤n,1≤ j≤n

(xi ∨y j)∧ (1)

(¬x1∨z1)∧ (¬x2∨z1)∧
∧

3≤i≤n

(¬xi ∨¬z1)∧ (2)

(¬y1∨z2)∧ (¬y2∨z2)∧
∧

3≤ j≤n

(¬y j ∨¬z2). (3)

10

Notice that each variablexi andyi , where 1≤ i ≤ n, occurs exactly once negatively in
Fn

VE. Furthermore, eliminating anyxi from Fn
VE will replace all positive occurrences ofxi by

z1 in the clauses of type 1 (ifi ≤ 2) or respectively by¬z1 in the clauses of type 2 (ifi ≥ 3).
Additionally the single clause of type 2 containing the negative occurrence ofxi is removed.
For example, eliminating the variablex1 from Fn

VE results in the formula

∧

1≤ j≤n

(z1∨y j)∧
∧

2≤i≤n,1≤ j≤n

(xi ∨y j)∧

(¬x2∨z1)∧
∧

3≤i≤n

(¬xi ∨¬z1)∧

(¬y1∨z2)∧ (¬y2∨z2)∧
∧

3≤ j≤n

(¬y j ∨¬z2).

Similarly, eliminating anyyi from Fn
VE replaces the positive occurrences ofyi by z2 (or¬z2).

Now, for anyn andk≥ 0, let us consider any total order≺ on the variables inFn
VE such

thatxi ≺ z1,z2 andyi ≺ z1,z2 for all 1≤ i ≤ n. It is not difficult to see that applying VEk on
eachxi andyi in the order given by≺ will result in the formula

(z1∨z2)∧ (z1∨¬z2)∧ (¬z1∨z2)∧ (¬z1∨¬z2).

Applying VEk on this reduced formula will result in the empty clause, no matter which one
of z1 andz2 is eliminated first.

On the other hand, fixk ≥ 0 to an arbitrary value and consider the formulaFk+4
VE . Take

any total order≺ on the variables inFn
VE such thatz1,z2 ≺

′ xi andz1,z2 ≺
′ yi for all 1≤ i ≤ n.

Using any such variable order≺′, VEk can eliminate the variablesz1 andz2: both variables
occur positively in exactly two clauses and negatively ink+2 clauses. Hence, eliminating a
singlezi , wherei ∈ {1,2}, will produce 2(k+2)−2−(k+2) = k new clauses. For example,
eliminating the variablez1 from Fk+4

VE will result in the formula
∧

1≤i≤k+4,1≤ j≤k+4

(xi ∨y j)∧

∧

3≤i≤k+4

(¬xi ∨¬x1)∧
∧

3≤i≤k+4

(¬xi ∨¬x2)∧

(¬y1∨z2)∧ (¬y2∨z2)∧
∧

3≤ j≤k+4

(¬y j ∨¬z2),

after which, following the order≺′, the variablez2 can still be eliminated in a similar fashion,
resulting in the formula

∧

1≤i≤k+4,1≤ j≤k+4

(xi ∨y j)∧

∧

3≤i≤k+4

(¬xi ∨¬x1)∧
∧

3≤i≤k+4

(¬xi ∨¬x2)∧

∧

3≤i≤k+4

(¬xi ∨¬y1)∧
∧

3≤i≤k+4

(¬xi ∨¬y2).

However, we notice that after eliminatingz1 andz2, all remaining variables occur at least
twice negatively andk+4 times positively. In fact, VEk cannot remove any of these variables
because they will introduce at least 2(k+ 4)− 2− (k+ 4) = k+ 2 clauses. Therefore, by
eliminating thezi variables first according to≺′, VEk does not result in the empty clause, in
contrast to the case in which the order≺ was used. �

11

4 Blocked Clause Elimination

The main analysis presented in this paper involves what we call blocked clause elimination
(BCE), a CNF-level simplification technique removes so calledblocked clauses[36] from
CNF formulas.

Definition 1 (Blocking literal) A literal l in a clauseC of a CNF formulaF blocksC (with
respect toF) if for every clauseC′ ∈ F with ¬l ∈ C′, the resolvent(C\ {l})∪ (C′ \ {¬l})
obtained from resolvingC andC′ on l is a tautology.

With respect to a fixed CNF formula and its clauses we have:

Definition 2 (Blocked clause)A clause is blocked if it has a literal that blocks it.

Example 5Consider the formula

Fblocked= (a∨b)∧ (a∨¬b∨¬c)∧ (¬a∨c).

Only the first clause ofFblocked is not blocked. Both of the literalsa and¬c block the second
clause. The literalc blocks the last clause. Notice that after removing either(a∨¬b∨¬c)
or (¬a∨ c), the clause(a∨b) becomes blocked. This is actually an extreme case in which
BCE can remove all clauses of a formula, resulting in a trivially satisfiable formula. �

As a side-remark, notice that a literall cannot block any clause in a CNF formulaF if F
contains the unit clause{¬l}, and hence in this case no clause containingl can be blocked
with respect toF . An important fact is that BCE preserves satisfiability.

Proposition 2 ([36]) Removal of an arbitrary blocked clause preserves satisfiability.

which follows immediately from the following proposition

Proposition 3 ([36])Assume that literal l blocks C w.r.t. F. Letτ be a satisfying assignment
for F \{C}. If τ does not satisfy C, thenτl satisfies both F\{C} and C and thus F.

Additionally, we have the following.

Lemma 1 Given a CNF formula F, let clause C∈ F be blocked with respect to F. Any
clause C′ ∈ F, where C′ 6= C, that is blocked with respect to F is also blocked with respect
to F \{C}.

Proof If the clauseC where blocked with respect toF but not with respect toF \{C}, then
there should be aC′ ∈ F \ {C} which causesC not to be blocked with respect toF \ {C}.
However, since we know thatC′ ∈ F , the clauseC can not be blocked with respect toF . �

Therefore the result of blocked clause elimination is independent of the order in which
blocked clauses are removed, and hence blocked clause elimination has a unique fixpoint
for any CNF formula, i.e., BCE is confluent.

Theorem 2 BCE is confluent.

12

5 Circuit-Level Simplifications

In this section we review the circuit-level simplification techniques—non-shared inputs
elimination, monotone input reduction, andcone of influence reduction[16]—considered
in this work.

For the following, we consider an arbitrary constrained Boolean circuitC τ .

Non-shared inputs elimination(NSI): While there is a (non-constant) gateg with the def-
inition g := f (g1, . . . ,gn) such that eachgi is an input gate with fanout one (non-shared)
in C τ , remove the gate definitiong := f (g1, . . . ,gn) from C .

Monotone input reduction (MIR): While there is a monotone input gateg in C
τ , extend

τ by assigningg to minpolτ
C
(g).

Cone of influence reduction(COI): While there is a redundant gateg in C
τ , remove the

gate definitiong := f (g1, . . . ,gn) from C .

These circuit-level simplifications, along with the Plaisted-Greenbaum encoding, are
implemented e.g. in thebc2cnf circuit simplifier and CNF encoder that is part of the BC
package implemented by Tommi Junttila.4

Example 6Recall the circuit in Example 2. The definition of the gateo0 is removed by
COI sinceo0 is redundant. The gatec0 is assigned tot by MIR sincec0 is a monotone
input. As an interesting example of the behavior of NSI, consider a chain ofXOR-gates,
g3 := XOR(g2,g1),g5 := XOR(g4,g3), . . . in which the gateg1 and eachg2i , wherei > 0,
are non-shared input gates (as illustrated on the left in Figure 3). As long as eachg2i+1,
wherei > 0, is non-shared, NSI will remove the whole chain, first removing the definition
g3 := XOR(g2,g1) and so forth (as illustrated on the right in Figure 3). �

XOR

XORg4 g3

g5

g2 g1

g3 := XOR(g2,g1),g5 := XOR(g4,g3), . . .

XOR

g4 g3

g5

g5 := XOR(g4,g3), . . .

Fig. 3 An XOR chain in which the gatesg1 and eachg2i , wherei > 0, are input gates (left); the chain after
the gateg3 has been removed by NSI (right).

6 Overview of Main Results

The main results of this section show the surprising effectiveness of the CNF-level simplifi-
cation of blocked clause elimination and variable elimination (when applied until fixpoint).

4 Seehttp://users.ics.tkk.fi/tjunttil/circuits/.

13

For the analysis, we will apply the following definition of the relative effectiveness of
CNF encodings and both circuit and CNF-level simplificationtechniques.

Definition 3 Assume two methodsT1 and T2 that take as input an arbitrary constrained
Boolean circuitC τ and output CNF formulasT1(C

τ) and T2(C
τ), respectively, that are

satisfiability-equivalent toC τ . We say thatT1 is at least as effective as T2 if, for any C
τ ,

T1(C
τ) contains at most as many clauses and variables asT2(C

τ) does. IfT1 is at least as
effective asT2 and vice versa, thenT1 andT2 areequally effective. If there is aC τ for which
T2(C

τ) contains more clauses or variables thanT1(C
τ) does, thenT2 is not as effective as

T1. Finally, if T1 is at least as effective asT2, andT2 is not as effective asT1, thenT1 is strictly
more effective than T2.

Notice that, considering BCE, a stricter variant of this definition, based on clause elimi-
nation, could be applied:T1 is at least as effective asT2 , if for every circuitC τ we have
T1(C

τ)⊆ T2(C
τ). However, for VE this stricter definition cannot be naturally applied, since

in general VE produces non-tautological resolvents which are not subsumed by the original
clauses. Because of this inherent property of VE, we will forsimplicity in the following use
the “weaker” version, as in Definition 3. All the results presented not concerning VE also
hold under the stricter version of the definition. Also notice that the “at least as effective”
relation is analogously defined for two CNF-level simplification methods which, instead of
Boolean circuits, take CNF formulas as input.

When considering the effectiveness of VE in this paper, we apply a non-deterministic in-
terpretation which allows foranyvariable elimination order, i.e., we say that VE can achieve
the effectiveness of another simplification technique, if there is some elimination order for
which VE achieves the same effectiveness. Finally, note that in the following we always
assume that formulas are closed under standard unit propagation.

An overview of the main results of this section is presented in Fig. 4. An edge from
X to Y implies thatX is as least as effective asY. Notice that transitive edges are omitted:
for example, BCE is at least as effective as the combination of PG and the circuit-level
simplification techniquescone of influence reduction(COI), non-shared inputs elimination
(NSI), andmonotone input reduction(MIR). On the left side,XPG means the combination of
first applying the Plaisted-Greenbaum and then the CNF-level simplification techniqueX on
the resulting CNF formula. Analogously, PGX means the combination of first applying the
circuit-level simplificationX and then the Plaisted-Greenbaum encoding. On the right side
the standard Tseitin encoding is always applied. The pointed circles around COI, MIR, and
NSI on the left and right represent applying the combinationof these three simplifications
and then the Plaisted-Greenbaum (left) or Tseitin encoding(right). Additionally, BCE+VE
refers to all possible ways of alternating BCE and VE until fixpoint.

6.1 Pure Literal Elimination by BCE and VE

Before turning to the main results, relating BCE with circuit-level simplification techniques,
we begin by first arguing that both BCE and VE actually achievethe same simplifications as
the well-knownpure literal elimination, first introduced in [17,14]. Given a CNF formula
F , a literall occurring inF is pure if ¬l does not occur inF .

Pure Literal Elimination (PL): While there is a pure literall in F , remove all clauses con-
taining l from F .

Notice that the following two lemmas apply for all CNF formulas, and are not restricted
to CNF formulas produced by the TST or PG encodings.

14

Plaisted−Greenbaum encoding Tseitin encoding

C
N

F
−

le
ve

l s
im

pl
ifi

ca
tio

n
C

irc
ui

t−
le

ve
l s

im
pl

ifi
ca

tio
n

PGMIR PGNSI

VEPG BCE VE

[BCE+VE]PG BCE+VE

PLPG

BCEPG

PL

PGCOI COI MIR NSI

PG

Fig. 4 Relative effectiveness of combinations of CNF encodings with both circuit and CNF-level simpli-
fication techniques. An edge fromX to Y implies thatX is as least as effective asY. Transitive edges are
omitted. Notice that these results are dependent on the assumption that formulas are closed under standard
unit propagation.

Lemma 2 BCE is at least as effective asPL.

Proof A pure literal blocks all clauses which contain it by definition, and hence clauses
containing a pure literal are blocked. �

Notice that a similar observation to Lemma 2 (that clauses that contain pure literals are
blocked) was already made in [36,42].

Lemma 3 VE is at least as effective asPL.

Proof Let l be a pure literal. By definition,S¬l (the set of clauses containing¬l) is empty.
HenceSl ⊗S¬l = /0, and therefore VE removes the clauses inSl . �

It is also evident—as will become clear in the following—that there are examples on
which both BCE and VE can remove clauses not removed by applying PL. Hence both BCE
and VE are in fact strictly more effective than PL.

7 Effectiveness of BCE on Circuit-Based CNF Formulas

In this section we show that BCE, starting from the Tseitin encoding of any Boolean circuit,
achieves all of the simplifications achieved by the circuit-level techniques NSI, COI, and
MIR, and also removes those clauses that do not appear in the Plaisted-Greenbaum encoding
of the simplified circuit. Before proceeding, let us remind the reader again thatthese results
are dependent on the assumption that formulas are closed under standard unit propagation.

First, we observe that the Plaisted-Greenbaum encoding actually achieves the effective-
ness of COI.

15

Lemma 4 PG is at least as effective asPGCOI

Proof For any redundant gateg,minpolτ
C
(g)= /0 by definition. Hence the Plaisted-Greenbaum

encoding does not introduce any clauses for such a gate. �

On the other hand, blocked clause elimination can achieve the Plaisted-Greenbaum en-
coding starting with the result of the Tseitin encoding. Forthe result, the following small
lemma is useful.

Lemma 5 For any f∈{AND,OR,XOR, ITE} and gate definition of the form g:= f (g1, . . . ,gk),
applyingBCEon the Tseitin encoding of g:= f (g1, . . . ,gk) removes all clauses.

Proof For any f ∈ {AND,OR,XOR, ITE} andg := f (g1, . . . ,gk), it is easy to check that the
literals associated withg (recall Table 1) block each of the clauses in the Tseitin encoding
of g := f (g1, . . . ,gk), and hence all of the clauses are blocked. �

Lemma 6 BCETST is at least as effective asPG.

Proof We claim that BCE removes all clauses in TST(C τ)\PG(C τ) from TST(C τ). There
are two cases to consider: redundant and monotone gates. Forboth cases, BCE works implic-
itly in a top-down manner, starting from the output gates. Notice that BCE has no and does
not need explicit knowledge of the circuitC τ underlying TST(C τ). Since BCE is confluent
it will remove all blocked clauses independent of the elimination order.

Consider an arbitrary redundant output gate definitiong := f (g1, . . . ,gn). Sinceg is not
constrained underτ , all clauses in TST(C τ) in which g occurs are related to this defini-
tion. By Lemma 5, BCE removes all clauses in whichg occurs. On the circuit level, this is
equivalent to removing the definitiong := f (g1, . . . ,gn).

Now consider an arbitrary monotone output gate definitiong := f (g1, . . . ,gn) with po-
larity minpolτ

C
(g) = {v}, wherev ∈ {t, f}. Theng must be constrained:τ(g) = v. Hence

unit propagation ong removes all clauses produced by TST for the case “if¬v∈ polτ
C
(g)”

in Table 1 and removes the occurrences ofg from the clauses produced for the case “if
v ∈ polτ

C
(g)”. To see how BCE removes in a top-down manner those clauses related to

monotone gate definitions which are not produced by PG, consider the gate definitiongi :=
f ′(g′1, . . . ,g

′
n′). Assume that unit propagation ong has no effect on the clauses produced

by TST for this definition, thatminpolτ
C
(gi) = {v}, and that BCE has removed all clauses

related to the parents ofgi in TST(C τ)\PG(C τ). Now one can check that the literals asso-
ciated withgi block each of the clauses produced by TST for the case “if¬v∈ polτ

C
(gi)”.

This is because all the clauses produced by TST for the definitions of gi ’s parents and in
which gi occurs have been already removed by BCE (or by unit propagation). Hence all the
clauses produced by TST for the case “if¬v∈ polτ

C
(gi)” in Table 1 are blocked. �

Example 7Recall the circuit and the CNF formula resulting from applying the Tseitin en-
coding on this circuit in Example 2. BCE can remove the clauses that are not produced by
applying the Plaisted-Greenbaum on this circuit (that is, the clauses that are not underlined)
for instance in the following order:

1. (¬o0∨ t3∨c0), ¬o0 blocking
2. (¬o0∨¬t3∨¬c0), ¬o0 blocking
3. (o0∨ t3∨¬c0), o0 blocking
4. (o0∨¬t3∨c0), o0 blocking
5. (t1∨¬t3∨¬c0), t1 blocking

16

6. (¬t2∨a0), ¬t2 blocking
7. (¬t2∨b0), ¬t2 blocking
8. (t3∨a0∨¬b0), t3 blocking
9. (t3∨¬a0∨b0), t3 blocking

�

Combining Lemmas 4 and 6, we have

Lemma 7 BCETST is at least as effective asPGCOI.

Next, we consider non-shared inputs elimination.

Lemma 8 BCETST is at least as effective asPGNSI.

Proof Assume a gate definitiong := f (g1, . . . ,gn) such that eachgi is a non-shared input
gate. It is easy to check from Table 1 that for eachgi , each clause produced by TST for
g := f (g1, . . . ,gn) is blocked bygi . The result now follows from Lemma 6 and Proposition 1
(notice that PG(C τ) is always a subset of TST(C τ)). �

Example 8Consider a chain ofXOR-gates,g3 := XOR(g2,g1),g5 := XOR(g4,g3), . . . in which
the gateg1 and eachg2i , wherei > 0, are non-shared input gates (recall Figure 3, illustrated
on the left). The clauses in the Tseitin encoding ofg3 := XOR(g2,g1) are

(¬g3∨¬g1∨¬g2),(¬g3∨g1∨g2),(g3∨¬g1∨g2),(g3∨g1∨¬g2).

Since the gatesg1 andg2 are non-shared, they do not appear in any other clauses of the
Tseitin encoding. Now bothg1 andg2 block each of these clauses. Seeing the Tseitin en-
coding on the circuit-level after removing these four clauses clauses, the result is the circuit
on the right in Figure 3, which corresponds exactly to NSI on the gateg3.

Notice that, in fact, BCE can remove all the four aforementioned clauses even in the case
that only one of the gatesg1 andg2 is non-shared. In this case, the non-shared one blocks
all the four clauses.

Related to this example, we note that in [25]XOR chains are explicitly detected on
the CNF-level. Detected chains are removed if they contain anon-shared input gate (i.e., a
variable that does not occur in the other clauses). Moreover, if a variable occurs only inXOR

chains, the variable is substituted in all but one chain using XOR reasoning. The remaining
XOR chain in which it occurs is removed. �

On the other hand, notice that PL cannot achieve the effectiveness of NSI when applying
PG: since PG produces the same set of clauses as TST for any gate g with minpolτ

C
(g) =

{t, f}, no literal occurring in these clauses can be pure.
We now turn to the monotone input reduction. Notice that MIR is a proper generalization

of PL: given a CNF formulaF, any pure literal inF is monotone in the straight-forward
circuit representation ofF where each clauseC ∈ F is represented as an outputOR-gate
the children of which are the literals inC. On the other hand, a monotone input gate in
a circuit C

τ is not necessarily a pure literal in TST(C τ): TST introduces clauses which
together contain both positive and negative occurrences ofall gates, including monotone
ones. Hence we have the following.

Proposition 4 TSTMIR is strictly more effective thanPLTST.

17

However, it actually turns out that, when applying the Plaisted-Greenbaum encoding, PL
and MIR are equally effective (and hence PLPG is also strictly more effective than PLTST).

Lemma 9 PLPG andPGMIR are equally effective.

Proof Assume a gate definitiong := f (g1, . . . ,gn), where somegi is a monotone input gate.
To see that PL(PG(C τ)) is at least as effective as PG(MIR(C τ)), first notice that sincegi is
monotone,g is monotone. Now, it is easy to check (recall Table 1) thatgi occurs only either
negatively or positively in the clauses introduced by PG forg := f (g1, . . . ,gn), and hencegi

is pure.
To see that PG(MIR(C τ)) is at least as effective as PL(PG(C τ)), notice that in order to

be a pure literal in PG(C τ), a gate has to be both monotone and an input. �

Using this lemma, we arrive at the fact that BCE on TST can achieve the combined
effectiveness of MIR and PG.

Lemma 10 BCETST is at least as effective asPGMIR .

Proof Since BCE can remove all clauses in TST(C τ) \PG(C τ) by Lemma 6, after this
BCE can remove all clauses containing some monotone input gate gi since BCE is at least
as effective as PL (Lemma 2). The result then follows by Lemma9. �

Combining Lemmas 6, 7, 8, and 10, we arrive at the following.

Lemma 11 BCETST is at least as effective as first applying the combination ofCOI, MIR,
andNSI on the circuit-level until fixpoint, and then applyingPGon the resulting circuit.

As an interesting side-remark, we also have the following.

Proposition 5 The combination ofNSI, MIR, andCOI is confluent.

Moreover, BCE is more effective than applying the combination of COI, MIR, and NSI
onC

τ until fixpoint, and then applying PG on the resulting circuit.

Lemma 12 First applying the combination ofCOI, MIR, andNSI on the circuit-level until
fixpoint, and then applyingPGon the resulting circuit, is not as effective asBCETST.

Proof Consider a gate definitiong := XOR(g1, . . . ,gn), whereg hasminpolτ
C
(g) = {t, f}

(hence COI and MIR cannot remove/assign this gate definition, and the TST and PG CNF
encodings produce exactly the same clauses for this definition) and only asingle gi is a
non-shared input gate (hence NSI cannot remove the definition), i.e. it occurs only in the
definition ofg. However, in this case the clauses in TST(C τ) in whichgi occurs are blocked.

�

Combining Lemmas 11 and 12, we finally arrive at our main theorem.

Theorem 3 BCETST is strictly more effective than first applying the combination of COI,
MIR, and NSI on the circuit-level until fixpoint, and then applyingPG on the resulting
circuit.

18

✚
✚(c1)

(✟✟¬c1∨ t1 ∨¬t2)

(¬t1∨ t3)

✘✘✘✘(¬t1∨c0)

✚
✚(c0)

(t2∨¬a0∨¬b0) (¬t3∨a0∨b0)

(¬t3∨¬a0∨¬b0) a0 b0 c0

AND

OR

AND XORt3t2

c1

t1¬

t

t

Fig. 5 The circuit of Example 2 after applying COI, NSI, and MIR, andits Plaisted-Greenbaum encoding
after unit propagation. the clauses and literals removed byunit propagation are crossed over with lines.

Example 9Recall the circuit and the CNF formula resulting from applying the Tseitin en-
coding on this circuit in Example 2. The circuit after applying COI, NSI, and MIR, along
with its Plaisted-Greenbaum encoding after unit propagation, is shown in Figure 5 (notice
that the unit clauses are shown for clarity only).

In contrast, after removing those clauses in the Tseitin encoding of the original circuit
that are not produced by applying the Plaisted-Greenbaum onthe original circuit (recall
Example 7), BCE can removeall the remaining clauses in the following order by simulating
PL.

1. (t1∨ t2) and(t2∨¬a0∨¬b0), t2 is pure
2. (¬t1∨ t3), ¬t1 is pure
3. (¬t3∨a0∨b0) and(¬t3∨¬a0∨¬b0), ¬t3 is pure

�

8 VE and Circuit-Level Simplifications

We will now show that VE, using an optimal elimination ordering, can also achieve the
effectiveness of many of the considered circuit-level simplifications.

Proposition 6 VETST is at least as effective as (i)TSTCOI; (ii) TSTNSI.

Proof

(i) Assume a redundant output gate definitiong := f (g1, . . . ,gn). Now Sg⊗S¬g = /0 since
all resolvents are tautologies when resolving ong (recall Table 1).

(ii) Assume a gate definitiong := f (g1, . . . ,gn) such that eachgi is a non-shared input gate.
For OR (similarly for AND), Sg1 ⊗S¬g1 = /0. After resolving ong1 we are left with the
clauses∪k

i=2(g∨¬gi), where each¬gi is then a pure literal. ForXOR, simply notice that
Sg1 ⊗S¬g1 = /0. For ITE, notice thatSg1 ⊗S¬g1 = (¬g∨g2∨g3), and theng2 andg3 are
both pure literals.

�

Proposition 7 VEPG is at least as effective asVETST.

Proof Follows from PG(C τ)⊆ TST(C τ). �

19

Proposition 8 VEPG is at least as effective as (i)PGCOI; (ii) PGNSI; and (iii) PGMIR .

Proof (i) Follows directly from Lemma 4.
(ii) By a similar argument as in the proof of Proposition 6, part (ii).

(iii) Follows directly from Lemmas 3 and 9.
�

Evidently, there are also examples on which VEPG (or VETST, when mentioned) can
remove more clauses than the techniques considered in the three propositions above. Hence
VEPG is in fact strictly more effective than any of these techniques. However, there are cases
in which VE is not as effective as BCE. In fact, as we will show next, compared to applying
only BCE or VE, one can benefit from applying thecombinationof BCE and VE.

9 Benefits of Combining BCE and VE

We will now consider aspects of applying BCE in combination with VE.
There are cases in which VE is not as effective as BCE. Namely,VE cannot achieve the

effectiveness of MIR when applying TST, in contrast to BCE.

Proposition 9 VETST is not as effective asBCETST.

Proof To see this, notice that an input gate can have arbitrarily large finite fanout and still be
monotone. On the other hand, VEk cannot be applied on gates which have arbitrarily large
fanout and fanin, since the elimination boundk can then be exceeded (number of clauses
produced would be greater than the number of clauses removed).

For a concrete example, consider the following circuit:

CPG,n = {x1 = AND(g2, . . . ,gn), . . . ,xi = AND(g1, . . . ,gi−1,gi+1, . . . ,gn),

. . . ,xn = AND(g1, . . . ,gn−1),

y1 = OR(x1,x2), . . . ,yn−1 = OR(xn−1,xn),yn = OR(xn,x1)}

τ = {〈y1, t〉, . . . ,〈yn, t〉}.

Now, the Tseitin encoding ofC τ
PG,k+5 after unit propagation (on theyi variables) is

Fk+5
TST =

∧

1≤i≤k+5

(xi ∨
∨

1≤ j≤k+5, j 6=i

¬g j) ∧
∧

1≤i, j≤k+5,i 6= j

(¬xi ∨g j) ∧
∧

1≤i<k+5

(xi ∨xi+1)∧ (xk+5∨x1).

For anyk ≥ 0, VEk can not eliminate any variables fromFk+5
TST : each of thexi variables

occurs three times positively andk+4 times negatively, so that eachxi occurs in exactlyk+7
clauses. Eliminating anyxi , the number of distinct new non-tautological resolvents would be
2(k+4); we have 2(k+4)− (k+7) = k+1> k. Each of thegi variables occursk+4 times
positively andk+ 4 times negatively. By eliminating anygi , the number of distinct new
non-tautological resolvents would be(k+ 3)(k+4); we have(k+ 3)(k+ 4)−2(k+ 4) =
k2+5k+4> k.

On the other hand, for anyn, BCE can removeall clauses ofFn
TST by eliminating the

clauses in chronological order. First, all literalsxi in the non-binary clauses are blocking.
(this step is essentially applying Plaisted-Greenbaum). After this, allg j literals are blocking
and pure (this step is essentially applying MIR). After all clauses that contain someg j literal
are removed, all thexi literal are blocking the remaining clauses. �

20

In general, a main point to notice is that for VE, in order to achieve the effectiveness of
BCE (on the standard Tseitin encoding), one has to apply the Plaisted-Greenbaum encoding
before applying VE. In addition, since VE is not confluent in contrast to BCE, in practice
the variable elimination ordering heuristics for VE has to be good enough so that it forces
the “right” elimination order. In addition, there are casesin which BCE is more effective
than VEPG.

Theorem 4 VEPG is not as effective asBCETST.

Proof For some intuition, consider a clauseC with blocking literall . Notice that the result
of performing VE onl is not dependent on whetherC is removed. However, for any non-
blocking literall ′ ∈C the number of non-tautological clauses after applying VE onl ′ would
be smaller if BCE would first removeC.

For a concrete example in which BCE can remove more clauses than VE, consider the
following formula.

F = (a∨b∨c)∧ (¬a∨¬b)∧ (¬a∨¬c)∧ (¬b∨¬c) ∧

(a∨d∨e)∧ (a∨d∨¬e)∧ (a∨¬d∨e)∧ (a∨¬d∨¬e) ∧

(b∨d)∧ (b∨e)∧ (¬b∨¬d)∧ (¬b∨¬e)∧ (c∨d)∧ (c∨e)∧ (¬c∨¬d)∧ (¬c∨¬e).

Notice thatF can be seen as a Boolean circuit in which each clause inF is represented
by an OR-gate that is constrained tot; for example, the clause(a∨ b∨ c) is represented
as g(a∨b∨c) := OR(a,b,c). In fact, unit propagation on both the Tseitin and the Plaisted-
Greenbaum encoding of this circuit gives back exactlyF .

Now, it can be checked that VE cannot eliminate any of the variables inF . However,
BCE can remove(a∨b∨c) because the literala is blocking the clause. �

On the other hand, there are also cases in which the combination of BCE and VE can
be more effective than applying BCE or VE only. For instance,by applying VE on a CNF
formula, new blocked clauses may arise.

Theorem 5 [BCE+VE]TST is strictly more effective thanBCETST.

Proof Consider a circuit with anXOR-gateg := XOR(g1,g2) whereg1 and g2 are input
gates with fanout one (non-shared). Assume thatg := XOR(g1,g2) is rewritten as anAND-
OR circuit structureg := AND(a,b), a := OR(g1,g2), b := OR(NOT(g1),NOT(g2)), wherea
andb are newly introduced gates with fanout one (see Fig. 9). Notice thatg1 andg2 now
have fanout two. In the Tseitin encoding of this structure, BCE cannot see thatg1 andg2 are
non-shared in the underlyingXOR. However, by first eliminating theOR-gatesa andb with
VE, BCE can then remove the clauses containing the variablesg1 andg2 (the gates become
implicitly “non-shared” again). �

In other words, there are cases in which variable elimination results in additional clauses
to be blocked. On the other hand, since BCE can remove the clauses not produced by
the Plaisted-Greenbaum encoding,[BCE+VE]PG can not be more effective than[BCE+
VE]TST.

Proposition 10 [BCE+VE]TST and [BCE+VE]PG are equally effective.

21

XOR g

g1 g2

g := XOR(g1,g2)

AND

b

g

OR OR

g1 g2

¬
¬

a

g := AND(a,b),
a := OR(g1,g2),
b := OR(NOT(g1),NOT(g2))

Fig. 6 An XOR-gate (left) andXOR rewritten as anAND-OR circuit structure (right)

10 ImplementingBCE and Reconstructing Solutions

Before proceeding with results of an experimental evaluation on the effectiveness of BCE
and VE, we will now explain how we have implemented BCE as partof our PrecoSAT
solver (http://fmv.jku.at/precosat). Furthermore, we will address the related
and practically relevant question of how to reconstruct original solutions to CNF formulas
when applying BCE and VE (among other simplification techniques).

10.1 Implementing BCE

As explained in the following, BCE can be implemented in a similar way as VE in the
SatElite preprocessor, which is described in [19]. Improved and simplified implementations
of SatElite can be found in the source codes of MiniSAT 2.0 (http://minisat.se/)
and PrecoSAT.

Basically the BCE algorithm is implemented as follows. First “touch” all literals. Then,
as long as there is a touched literall , find clauses that are blocked byl , mark l as not
touched any more, remove these blocked clauses, and touch the negation of all literals in
these clauses. Touched literals are kept in a priority list that is ordered by the number of
occurrences. Literals with few occurrences are to be tried first. This algorithm, pseudo-
code of which is given in Fig. 7, is in essence the basis for theimplementation of BCE in
PrecoSAT starting with version 465.

10.1.1 Some Practical Aspects

In practice, we have noticed that BCE, implemented as just described, takes far less time
than the mentioned implementations of VE. In the common casethat a literal does not
block a clause, on average only a few tautological resolutions are performed before a non-
tautological one is found. Thus in most application scenarios BCE can almost always be run
until fixpoint (at least once).

Notice also that, similar to on-the-fly self-subsuming resolution [24], BCE can also be
applied on-the-fly during VE. If elimination of a candidate variable would add too many re-
solvents and the variable is not eliminated, some of the antecedents could still have produced
only tautologies. Such antecedents are thus blocked and canbe removed by BCE.

22

touch(F,Q, l)

determine number of occurrences of l in F

if there are no occurrences of l in F then return

if l 6∈ Q then enqueue(Q, l)

update position of l in Q accordingly

bce(F)

Q = new empty priority queue of literals // sorted by number of occurrences

foreach literal l in F do touch(F,Q, l)

while Q 6= /0 do

l = dequeue(Q) // dequeue minimum

foreach clause C∈ F with l ∈C do // start of outer loop

foreach clause D ∈ F with ¬l ∈ D do

if resolvent of C with D is non-tautological then

continue with next C in outer loop

// all resolvents of C on l in F are tautologies and thus C is blocked

F = F \{C}

save C on stack for solution reconstruction // see Sect. 10.2

foreach literal k∈C do touch(F,Q,¬k)

return F

Fig. 7 Pseudo-code for implementing BCE for a CNF formulaF.

10.2 Reconstructing Original Solutions

For many real application scenarios of SAT it is important tobe able to extract a full satis-
fying assignment for original SAT instances from a satisfying assignment for the instances
after preprocessing. For instance, notice that in Example 5in Section 4, although BCE alone
can show that the original formula is satisfiable, a solutionto the original CNF formula is
not directly available. We will now show how such full solutions can be efficiently recon-
structed from solutions to the CNF formulas resulting from applying the combination of
BCE and VE. Furthermore, we will show thatequivalence reasoning[2,3,22], which is a
further important simplification technique (and also implemented in e.g. PrecoSAT), does
not interfere with the BCE reconstruction. The presented reconstruction techniques are both
time and space wise linear, and hence have no real overhead w.r.t. solving.

We begin by describing how to reconstruct solutions for VE and BCE techniques sepa-
rately, and then explain reconstruction in the combined case, along with an explanation of
why equivalent literals do not interfere with this process.

10.2.1 Reconstruction for Variable Elimination

We start with variable elimination for which reconstruction can be seen as part of the com-
pleteness proof of DP. For the following, let VE(F,x) denote the result of applying variable
elimination toF w.r.t. x.

23

Proposition 11 Let τ be a satisfying assignment forVE(F,x). Either τx or τ¬x satisfies
Sx∪S¬x, and, the one that does, also satisfies F= VE(F,x)∪ (Sx∪S¬x).

To reconstruct a solution after VE has been applied repeatedly for the variablesx1, . . . ,xm,
it is enough to save (remember) the clauses(Sx1 ∪S¬x1), . . . ,(Sxm ∪S¬xm). Assume thatτ
satisfies VE(· · ·VE(VE(F,x1),x2) · · · ,xm). Let τm+1 = τ , and, iteratively fromi = m to 1,
defineτ i as the one ofτ i+1

xi
andτ i+1

¬xi
which satisfies(Sxm ∪S¬xm). Proposition 11 guarantees

thatτ1 is a satisfying assignment for the original formulaF.
If the application only requires to reconstruct one solution, then in practice5 it is enough

to only save eitherSxi or S¬xi . W.l.o.g. assumeSxi is saved. Then, ifτ i+1
¬xi

satisfies the saved
Sxi , we pickτ i = τ i+1

¬xi
, since this truth assignment obviously satisfiesS¬xi as well. Otherwise

xi is forced to bet and we must setτ i = τ i+1
xi

. This case occurs if and only if there is a clause
in Sxi for which τ i+1 assigns all literals exceptxi to f.

In an actual implementation only the smaller of the two sets is saved. Thus this technique
is also efficient in the case where VE is used for pure literal elimination as discussed in
Section 6.1. In addition to plain VE, it also works for functional substitution [19] as in the
SatElite preprocessor. The only difference between VE and functional substitution is that the
latter removes some redundant clauses fromSx⊗S¬x while maintaining the set of satisfying
assignments.

10.2.2 Reconstruction Blocked Clause Elimination

Now consider solution reconstruction for BCE. In analogy tothe case of VE, the proof [36]
which shows that removal of a blocked clause does not turn an unsatisfiable formula into a
satisfiable formula, gives us grounds to reconstruct solutions for BCE (see Proposition 3).

In practice it is enough to save all removed blocked clausesC1, . . . ,Cm together with
their blocking literalsl1, . . . , lm.6 Let τm be a satisfying assignment forFm, whereFi = F \
∪i

j=1{Cj} for i = 1. . .m andF0 = F . If τ i satisfiesCi , we pick τ i−1 = τ i , and otherwise

τ i−1 = τ i
li
. Using Proposition 3, one can show by induction thatτ i satisfiesFi , and thusτ0 is

a satisfying assignment forF .

10.2.3 Combined Solution Reconstruction

First, BCE and VE can be combined by saving clauses for reconstructing solutions after
BCE resp. VE on the same reconstruction stack. Reconstruction works in reverse order in
which these clauses have been saved. This also works nicely if BCE is applied on-the-fly
during VE: while counting the non-tautological resolventsof Sx⊗S¬x to determine whether
VE is applied tox, it may occur that a clauseC∈ (Sx∪S¬x) has only tautological resolvents
w.r.t. x, even though the overall number of non-tautological resolvents exceeds|Sx ∪S¬x|,
which preventsx from being eliminated. YetC can be removed as a blocked clause and is
saved on the reconstruction stack.

5 By private communication with Niklas Sörensson.
6 A space efficient way to save this information is to maintainli as the first literal in the saved clauseCi .

This also allows to keep track of eliminated variables in VE.

24

10.2.4 Equivalent Literals and Solution Reconstruction

In addition to BCE and VE, various other simplification techniques can be exploited within
the SAT solving process. One well-known and often useful techniques isequivalent literal
reduction.

For two literalsl1 andl2, let l1 ≡ l2 denote the CNF formula(l1∨¬l2)∧ (¬l1∨ l2). For
a given CNF formulaF, if F ⊢ l1 ≡ l2 (that is, both of the clauses(l1∨¬l2) and(¬l1∨ l2)
can be derived fromF), the equivalent literalsl1 andl2 can be exploited by the equivalence
reduction in which all occurrences ofl2 are substituted byl1 (or vice versa), eliminating the
variable ofl2 (or l1).

In order to combine VE and equivalent literal reduction it isenough to make sure that
VE is only attempted after all equivalent literals have beenfirst substituted. Enforcing this
order of using equivalent literal reasoning and VE makes sure that variables eliminated with
VE are always representatives and the only remaining variables of their equivalence class.
Eliminating a representative through VE will eliminate itswhole equivalence class, and after
this it is not possible that further equivalent literals could be added to the equivalence class
of an eliminated variable.

In contrast to the case of combining BCE and VE, when combining BCE with equivalent
literal reduction, the question of solution reconstruction appears more intricate: at some
point after removing a blocked clauseC, a literall which blockedC may become equivalent
to another literal and may even become a representative of its equivalence class. On the other
hand, it could be that one would be forced to flip the value ofl during solution reconstruction
since BCE removedC (recall Section 10.2.2). Hence the values of all the literals in the
equivalence class should be flipped, which does not seem to besound in general, since this
could make some other clause unsatisfied. However, we will now show that the value of
such al will neverhave to be flipped in such a situation during the BCE reconstruction step.
The following example highlights this fact.

Example 10Consider the CNF formula

F = (x∨y)∧ (x∨¬z)∧ (¬x∨¬z)∧ (¬x∨¬y∨z)∧ (y∨z).

Notice that the clause(x∨y) is blocked byy w.r.t.F . Assume that BCE removes(x∨y) from
F . Now, resolving ony, one can derive from the clauses(¬x∨¬y∨z) and(y∨z) the clause
(¬x∨z). Together with(x∨¬z)∈ F \{(x∨y)}, (¬x∨z) forms the equivalencex≡ z.

Consider the truth assignmentτ which assignsτ(x) = f, τ(y) = t, andτ(z) = f. Notice
thatτ satisfiesF \{(x∨y)}. Moreover, it also satisfies(x∨y), and hence one does not need
to flip the assignment onx in the BCE reconstruction step for(x∨y). However, if one would
still flip the assignment onx to τ(x) = t, one would then need to flip the assignment onz to
τ(z)= t due to the equivalencex≡ z. Notice that these flips together result in the assignment
τ(x) = τ(y) = τ(z) = t that does not satisfy the clause(¬x∨¬z) ∈ F. �

Especially, equivalent literals detected and applied in simplifying a CNF formula after
removing blocked clauses cannot make the removed blocked clauses to not to be satisfied un-
der a satisfying assignment for the rest of the formula. For proving this result, we recall some
well-known concepts related to resolution proofs. A sequence of clauses(C0,C1, . . . ,Cn) is
a resolution derivation of the clauseC from a CNF formulaF if (i) Cn =C, and (ii) eachCi ,
where 0≤ i < n, is either a clause inF (in this caseCi is called aninput clause), orCi is the
resolvent of two clausesCj andCk, where j,k< i. We denote byF ⊢C the fact that there is
a resolution derivation of the clauseC from the CNF formulaF . A well-known refinement
of resolution is tree-like resolution, where derivations have to be representable as trees.

25

Theorem 6 Assume a CNF formula F, a clause C∈ F which is blocked for l∈C w.r.t. F,
and a literal l′. If F \{C} ⊢ l ≡ l ′ , then (F \{C})∪ (l ≡ l ′) |=C.

In other words, any satisfying assignment for(F \ {C}) ∪ (l ≡ l ′) also satisfies the
blocked clauseC. This means that binary equivalences detected during preprocessing can
be exploited when applying BCE, at the same time guaranteeing all the blocked clauses re-
moved by BCE will be satisfied by any satisfying assignment for the resulting preprocessed
CNF formula. Notice that this lemma is independent of the techniques used for deriving the
clauses inl ≡ l ′.

Proof (of Theorem 6)Assume a CNF formulaF , a clauseC = (l ∨ l1∨ · · ·∨ lk) ∈ F which
is blocked forl ∈ C w.r.t. F . Denote byB ⊂ F the set of clauses which contain the literal
¬l . Hence each clause inB contains at least one of the literals¬l1, . . . ,¬lk. Assume that
F \{C} ⊢ l ≡ l ′ for some literall ′, and hence there is a resolution derivation of(l ∨¬l ′) and
(¬l ∨ l ′) from F \{C}.

If F is unsatisfiable,F \{C} is also unsatisfiable sinceC is blocked, and hence trivially
(F \ {C})∪ (l ≡ l ′) |= C. Now consider the case thatF and (thus) alsoF \ {C} and (F \
{C})∪ (l ≡ l ′) are satisfiable. Take an arbitrary satisfying assignmentτ for (F \{C})∪ (l ≡
l ′). We will show that any suchτ also satisfiesC.

The case in whichτ(l) = t (that is,τ satisfiesl) is trivial. Now assumeτ(l) = f. Then
τ(l ′) = f sinceτ satisfiesl ≡ l ′. Consider an arbitrary resolution derivationπ = (C1, . . . ,Cm)
of Cm= (¬l ∨ l ′) from F \{C}. Assume w.l.o.g. thatπ is tree-like. We claim that there is an
input clauseC′ = (¬l ∨ l ′1∨· · ·∨ l ′k)∈ B in π such thatτ(l ′i) = f for all i. SinceC′ ∈ B, it then
follows that one of thel ′i s is one of the literals¬l1, . . . ,¬lk, and henceτ satisfiesC (recall
thatC= (l ∨ l1∨ · · ·∨ lk)).

To prove the claim, we show that there is a pathP1, . . . ,Pn of clauses inπ (seen as a tree)
from the root of the tree (P1 =Cm) to a leaf (Pn is an input clause ofπ), such that each clause
Pi on the path contains¬l andτ assigns all literals inPi except¬l to f.

First notice that forP1 = Cm we know thatτ(¬l) = t andτ(l ′) = f. Now assume that
Pi = {¬l}∪D, whereD is a set of literals such thatτ assigns every literal inD to f, was
directly derived from clausesCa andCb in π resolving on the variablex. Notice that at least
one ofCa andCb must contain¬l . First consider the case thatCa contains¬l andCb does
not. Sinceτ assigns all literals inD to f, τ must satisfy the literal forx in Cb. (Otherwiseτ
does not satisfyCb which would imply thatτ does not satisfy an input clause inπ and hence
τ cannot be a satisfying truth assignment for(F \ {C})∪ (l ≡ l ′), in contradiction to our
assumption.) Henceτ assigns all literals inCa apart from¬l to f. In this case letPi+1 =Ca.
The case thatCb contains¬l andCa does not is identical.

Now consider the case that bothCa andCb contain¬l . Sinceτ assigns a unique truth
value tox, τ assigns all literals in eitherCa or Cb apart from¬l to f. In this case letPi+1 be
this particular clause. �

11 Experiments

In this section we present results of experiments on how muchreduction can be achieved
using BCE in combination with VE and various circuit encoding techniques. Here reduction
is measured in the size of the CNF formula before and after preprocessing, and on the other
hand, as gain in the number of instances solved.

26

11.1 Experiment Setup

We used all formulas of SMT-Lib (http://smtlib.org) over the theory of bit-vectors
(QF BV) made available on July 2, 2009, as a practice benchmark set for the SMT com-
petition 2009. From these we removed the large number of mostly trivial SAGE exam-
ples. The remaining 3672 SMT problems were bit-blasted to And-Inverter Graphs (AIGs)
in the AIGER format (http://fmv.jku.at/aiger) using our SMT solver Boolec-
tor [10]. Furthermore, we used the AIG instances used in [13], consisting of two types of
instances: (i) AIGs representing BMC problems (with step bound k = 45) obtained from
all the 645 sequential HWMCC’08 (http://fmv.jku.at/hwmcc08) model check-
ing problems, and (ii) 62 AIGs from the structural SAT track of the SAT competition. We
have made the SMT-Lib instances publicly available athttp://fmv.jku.at/aiger/
smtqfbv-aigs.7z (260MB); the others cannot be distributed due to license restric-
tions. However, the HWMCC’08 instances can easily be regenerated using publicly avail-
able tools7 and the model checking benchmarks available athttp://fmv.jku.at/
hwmcc08.

11.2 Results on Achieved Simplifications

We encoded these 4379 structural SAT instances with four algorithms: the standard Tseitin
encoding [47], the Plaisted-Greenbaum polarity-based encoding [43], the Minicirc encoder
based on technology mapping [20] and VE, and the most recent NiceDAG encoder [40,13].
The NiceDAG implementation was obtained from the authors. For Minicirc, we used an
improved implementation of Niklas Eén.

In order to additionally experiment with application benchmarks already in CNF, we
also included 292 CNF formulas of the application track of the SAT competition 2009 to
our benchmark set. All resulting CNF formulas were preprocessed with VE alone (further
abbreviated e), and separately first with BCE (b), followed by VE (e), and both repeated
again, which altogether gives 6 versions of each CNF formula(no BCE or VE, e, b, be, beb,
bebe). We call such an application of one preprocessing algorithm, either BCE or VE, which
is run to completion, apreprocessing phase.

The results are presented in Table 2. The first column lists the benchmark family: S
= SAT’09 competition, A = structural SAT track, H = HWMCC’08,B = bit-blasted bit-
vector problems from SMT-Lib. These are all AIGs except for the CNF formulas in S. The
next column gives the encoding algorithm used: T = Tseitin, P= Plaisted-Greenbaum, M =
Minicirc, N = NiceDAG, and U = unknown for the S family alreadyin CNF. The t columns
give the sum of the time in seconds spent in one encoding/preprocessing phase. The columns
V and C list in millions the sum of numbers of variables and clauses over all produced CNF
formulas in each phase.

We applied a time limit of 900 seconds and a memory limit of 4096 MB for each encoder
and each preprocessing phase. Thus 139 out of 106848= 6· (4·4379+292) CNF formulas
were not generated: HM encoding ran out of memory on 5 very large BMC instances, one
large CNF formula in S could not be preprocessed at all, and there was a problem with the
parser in NiceDAG, which could not parse 14 actually rather small AIGs in BN. Further-
more, there were 10 timeouts for various preprocessing phases in the A family: 2 in AT/beb,

7 Notice that COI is performed already in the generation process by these tools. However, we did not
implement the non-trivial NSI or MIR for the experiments.

27

Table 2 Effectiveness of BCE in combination with VE using various encoders. Values in the table are sums over all instances in thespecific benchmark family: S = SAT’09
competition, A = structural SAT track, H = HWMCC’08, B = bit-blasted bit-vector problems from SMT-Lib. Circuit encoders: T = Tseitin, P = Plaisted-Greenbaum, M =
Minicirc, N = NiceDAG, and U = unknown for the S family alreadyin CNF. Columns: t = sum of running times over all instances inthe specific benchmarks family, V = sum of
numbers of variables in the resulting CNF formulas in millions, C = sum of numbers of clauses in the resulting CNF formulasin millions. The CNF-level preprocessors run after
the circuit encoders: encoding = no CNF-level preprocessing, b = BCE, e = VE, be = BCE followed by VE, beb = be followed by BCE, bebe = beb followed by VE.

encoding b be beb bebe e
t V C t V C t V C t V C t V C t V C

S U 0 46 256 2303 29 178 1042 11 145 1188 11 145 569 11 144 2064 11 153
A T 12 9 27 116 7 18 1735 1 8 1835 1 6 34 1 6 244 1 9
A P 10 9 20 94 7 18 1900 1 6 36 1 6 34 1 6 1912 1 6
A M 190 1 8 42 1 7 178 1 7 675 1 7 68 1 7 48 1 8
A N 9 3 10 50 3 10 1855 1 6 36 1 6 34 1 6 1859 1 6
H T 147 121 347 1648 117 277 2641 18 118 567 18 118 594 18 116 3240 23 140
H P 130 121 286 1398 117 277 2630 18 118 567 18 118 595 18 116 2835 19 119
H M 6961 16 91 473 16 84 621 12 78 374 12 77 403 12 76 553 15 90
H N 134 34 124 573 34 122 1185 17 102 504 17 101 525 17 100 1246 17 103
B T 577 442 1253 5799 420 1119 7023 57 321 1410 56 310 1505 52 294 8076 64 363
B P 542 442 1153 5461 420 1119 7041 57 321 1413 56 310 1506 52 294 7642 57 322
B M 10024 59 311 1252 58 303 1351 53 287 1135 53 286 1211 52 280 1435 55 303
B N 13148 196 643 2902 193 635 4845 108 508 2444 107 504 2250 105 500 5076 114 518

28

2 in AN/be, 2 in AN/e, 2 in AP/be, and 2 in AP/e. However, exceptfor the one large CNF
formula, where also VE run out of memory, there is not a singlecase where BCE did not
run until completion within the given time and memory limits.

The results show that the combination “be” of BCE and VE always gives better results
than VE (e) alone, with comparable speed. Using a second phase (beb) of BCE gives further
improvements, even more if VE is also applied a second time (bebe). The CNF sizes after
applying BCE (b) for the P encoder and the T encoder are equal,as expected. Further pre-
processing, however, diverges: since clauses and literalsare permuted, VE is not confluent,
and thus VE phases can produce different results.

Notice that BCE on the Tseitin encoding (row T, column b) removes more clauses and
variables than what are removed by the Plaisted-Greenbaum encoding (row P, column “en-
coding”) for each of the three AIG instance families A, H, andB, which is in line with out
analysis on the effectiveness of BCE. A further interestingaspect to notice is that the com-
bination bebe of BCE and VE compares well against the Minicirc and NiceDAG encoders.
Especially, on the bit-vector AIG instances (rows B), the bebe combination on the Tseitin en-
coding (row T, column bebe) removes more clauses and variables than both of Minicirc (row
M, column “encoding”) and NiceDAG (row N, column “encoding”. This is true even when
VE is run after these circuit encoders (rows M and N, column e). While the remaining num-
bers of clauses and variables are in the same range as for Minicirc, the difference between
bebe and NiceDAG is notable: the numbers of clauses and variables produced by NiceDAG
are close to double the numbers for bebe. For the implementations used in this experiment,
the total running time on the bit-vector AIG instances for the combination of Tseitin encod-
ing and applying bebe was around 16,000 seconds, compared to around 10,000 and 13,000
for Minicirc and NiceDAG, respectively, without VE, and around 11,500 and 18,000 with
VE, respectively.

An alternative view to the reduction achieved by BCE, VE, andtheir combinations is
given in Figures 8 and 9. The plot in Figure 8 shows the absolute sizes of the original and pre-
processed CNF formulas. The horizontal axis ranges over allCNF formulas sorted for each
preprocessing phase individually with respect to the number of clauses in the CNF formulas
(similarly as in “cactus” plots used in presenting the results of the SAT competitions). The
vertical axis gives the number of clauses in the sorted formulas. The plot in Figure 9 shows
the percentage of clauses remaining after preprocessing. As the plots shows blocked clause
elimination (“b”) already reduces CNF size. Variable elimination alone (“e”) is consider-
ably more effective, but can be improved by combining it withblocked clause elimination
(“be”). This trend continues if these preprocessing techniques are applied repeatedly (twice
in “bebe”).8

Notice that, in addition to “be”, “beb”, and “bebe”, one could also study the effect of the
variants “eb”, “ebe”, and “ebeb”. However, we do not consider these variants here due to
the following reasons. First, notice that by eliminating clauses using BCE can onlyincrease
the number of possible variable eliminations by VEk for anyk, since removing clauses does
not increase the number of variable occurrences. Second, notice that the property of a clause
being blocked is maintained by VE in the sense that any resolvent of a blocked clause either
remains blocked (in case the eliminated variable does not contribute to the fact that the
clause is blocked) or is a tautology (otherwise). Hence applying BCE after each round of
VE can eliminate resolvents of blocked clauses and also increase the benefit of the next
round of VE, actually re-enabling VE.

8 VE and BCE are idempotent: “ee = e” and “bb = b”.

29

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 500 1000 1500 2000 2500 3000 3500 4000

N
u
m

b
er

 o
f

cl
au

se
s

Index

none
b
e

be
bebe

Fig. 8 Number of clauses in preprocessed CNF formulas starting from the Tseitin encoding (“none”), fol-
lowed by one round of blocked clauses elimination (“b”), oneround of variable elimination (“e”), combi-
nation blocked clause and variable elimination once (“be”)and twice (“bebe”). The horizontal axis ranges
over CNF formulas sorted for each preprocessing phase individually with respect to the number of clauses in
the CNF formula(similarly as in “cactus” plots used in presenting the results of the SAT competitions). The
vertical axis gives the absolute number of remaining clauses in each CNF formula on a logarithmic scale.

11.3 Results on the Effect on Solving Times

Reducing the size of a CNF formula by preprocessing does not necessarily lead to faster
running times. In this section we address the question of howapplying BCE can affect state-
of-the-art CDCL and local search SAT solvers.

11.3.1 Effect ofBCEon CDCL Solvers

Although it was impossible to run all structural instances with a large time limit, we per-
formed preliminary experiments with a time limit of 90 seconds. We used PrecoSAT v236,
the winner of the application track of the SAT competition 2009. The results were inconclu-
sive. Running preprocessing until completion takes a considerable portion of the 90 seconds
time limit, even if restricted to VE.

It should be noted that the success of PrecoSAT shows thatinprocessing, i.e., inter-
leaving preprocessing with CDCL search (and thus not running preprocessing until com-
pletion) is a much better strategy than typical run-to-completion preprocessing, particularly
if preprocessors are run during inprocessing repeatedly, with enough time spent on search
in-between. However, this strategy is difficult to evaluateobjectively when many prepro-
cessing techniques are combined.9 Therefore, for these experiments, we decided to stick

9 In PrecoSAT we have failed literal preprocessing, various forms of equivalence reasoning, explicit pure
literal pruning, BCE, VE, combined with on-the-fly subsumption.

30

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

P
er

ce
n
ta

g
e

o
f

cl
au

se
s

re
m

ai
n
in

g

Index

b
e

be
bebe

Fig. 9 Size reduction by preprocessing after one round of blocked clauses elimination (“b”), one round
of variable elimination (“e”), combination blocked clauseand variable elimination once (“be”) and twice
(“bebe”). The horizontal axis ranges over CNF formulas sorted for each preprocessing phase individually
with respect to the size reduction measured in the number of remaining clauses. The vertical axis gives the
percentage of clauses remaining in each CNF formula.

with the run-to-completion approach, which also gives someclear indication of how much
CNF size reduction can be achieved through BCE.

For the 292 SAT competition instances we were able to run PrecoSAT with a more
reasonable timeout of 900 seconds. The cluster machines used for the experiments, with Intel
Core 2 Duo Quad Q9550 2.8-GHz processor, 8-GB main memory, running Ubuntu Linux
version 9.04, are around two times as fast as the ones used in the first phase of the 2009
SAT competition. In the first phase of the competition, with asimilar time limit, PrecoSAT
solved many more instances than competitors. The results ofthis experiment show that using
BCE is somewhat beneficial: PrecoSAT solves 176 original instances, 177 preprocessed by
BCE and VE alone (b and e, respectively), 179 be instances, 180 beb instances, and 183
bebe instances. If we accumulate the time for all the preprocessing phases and add it to the
actual running time, then 181 instances can be solved in the last case. For the other cases the
number of solved instances does not change.

These numbers are confirmed by similar experiments with MiniSAT 2.2.0 as the backend
solver. Plain MiniSAT without preprocessing solves 154 instances. Enabling the internal
preprocessor of MiniSAT, which implements a variant of VE, gives 169 solved instances.
Combining blocked clause elimination with this version solves 171 instances. In this last
experiment we used PrecoSAT 465 as BCE preprocessor (command line switch “-k -p”)
and the result was fed into MiniSAT. The time is measured by adding up preprocessing time
and the time of running MiniSAT.

31

11.3.2 Effect ofBCEon Local Search

We now turn to the question of the effect of applying BCE on CNF-level stochastic local
search (SLS) for SAT. It is well-known that, at present, CNF-level SLS solvers are most
often highly inferior to CDCL solvers on real-world application instance families. Examples
of such families of instances include the instances resulting from CNF encodings of AIGs
as well as the SAT competition application benchmarks whichwe used in Sections 11.2
and 11.3.1 for evaluating the simplification power of BCE andVE, and the performance
of state-of-the-art CDCL solvers when applying BCE. Thus, for evaluating the effect of
BCE on the efficiency of CNF-level SLS solvers, we need to consider alternative sources of
instances.

It is well-known that SLS solvers show strong performance onrandomly generated
SAT problems. However, we have noticed that randomk-SAT instances contain almost no
blocked clauses, especially when considering the most difficult instances taken from the
satisfiability threshold.

For a possible alternative source of benchmark instances that satisfy both of our re-
quirements that (i) state-of-the-art SLS solvers perform well on the instances, and (ii) the
instances contain a non-negligible number of blocked clauses, we analyzed the results of the
crafted satisfiable instance category of the 2011 SAT Competition (http://satcompetition.
org/2011). Among those instance families, we were able to pinpoint three interesting
families of instances:frb, rbsat, andsrhd.

We solved these instances with the adaptg2wsat+p SLS algorithm [38] using the imple-
mentation available in the UBCSAT SLS version 1.1 solver [46] (http://www.satlib.
org/ubcsat/). To the best of our knowledge, adaptg2wsat+p is among the best current
SLS solvers for such crafted SAT instances. We ran the solveron each instance 1000 times
using random seeds without timeout. The results of this experiment are presented in Table 3
for representative instances from each family. In the table, “flips” and “time” represent the
median number of flips performed and the median running timesin seconds used for each
instance, respectively. We note that the time needed to apply BCE on these instances was
negligible (typically less than 0.1 seconds). The effect of BCE seems to be consistent for all
the instances: removing blocked clauses by BCE does not drastically influence the number
of flips required to solve any of the instances. However, interestingly the solving times are
improved by a non-negligible amount. We suspect that this isdue to the fact the computa-
tional cost per flip is reduced after removing blocked clauses with BCE since smaller lookup
tables are needed on the implementation level for performing the actual search.

The fact that BCE does not appear to have a notable influence onthe number of flips
performed by SLS leads to the following conjecture: blockedclauses are often either sat-
isfied or, when falsified, easy to satisfy during local search. For some intuition, consider
an arbitrary complete assignmentτ over the variables of a CNF formulaF. Assume thatτ
characterizes the current configuration of a CNF-level SLS solver. Take any blocked clause
C ∈ F , and letl ∈ C be a blocking literal. Now, ifC is falsified byτ , then we know by the
definition of blocked clauses thatτ satisfies at least two literals of each clause inF in which
the literal¬l occurs. Hence by flippingl to t, C becomes satisfied while all clauses satisfied
by τ remain satisfied.

32

Table 3 The effect of applying BCE on the performance of the adaptg2wsat+p SLS algorithm when solving
representative instances of three families from the crafted satisfiable track of the 2011 SAT Competition. The
columns have the following explanations: size = the size of the CNF formula (original and after applying
BCE, flips = the median number of flips performed by adaptg2wsat+p, time = the median running time of
adaptg2wsat+p in seconds.

Original CNF formula CNF formula after BCE
CNF formula size flips time (s) size flips time (s)

frb45-21-1 61855 2600763 12.47 49961 2640216 9.70
frb75-13-2 34275 181756 0.50 27588 181531 0.39
frb80-14-2 43179 1129643 3.50 34948 1131352 2.77

rbsat-v1150c84314g1 84314 7737733 43.24 67882 7042883 31.01
rbsat-v945c61409g3 61409 3129700 14.47 51959 3231077 12.23
rbsat-v945c61409gyes1 61409 4591362 21.17 51959 4273371 15.93

srhd-m27-q255-n25-p30 45238 3242589 13.10 36691 3372989 11.77
srhd-m32-q369-n30-p15 82294 1357707 7.39 69274 1369229 6.78
srhd-m37-q446-n35-p15 129272 2100255 18.65 112111 1999134 12.93

12 Conclusions

This work addresses the important question of interplay between problem structure and
practical reasoning techniques for Boolean satisfiability. The focus is on analyzing con-
junctive normal form (CNF) level reasoning techniques and relating the behavior of such
techniques with the behavior of known techniques that work on more structural representa-
tion forms of Boolean satisfiability instances, especially, on the level of Boolean circuits. In
more detail, we analyzed the two CNF-level simplification techniques of SatElite-style vari-
able elimination (VE) and what we call blocked clause elimination (BCE). We showed that
BCE, although a simple concept, is surprisingly effective:without any explicit knowledge
of the underlying circuit structure, BCE achieves the same simplifications as combinations
of circuit-level simplifications and the well-known polarity-based Plaisted-Greenbaum CNF
encoding. This implies that the effect of such specialized circuit-level techniques can ac-
tually be systematically accomplished directly on the CNF-level. Furthermore, in contrast
to specialized circuit-level techniques, BCE can be naturally applied on any CNF formula,
regardless of its origin. We also showed that VE can achieve many of the same effects as
BCE (but not all). It turns out that VE and BCE are indeed partially orthogonal techniques,
which motivates combining these two techniques for achieving even better simplification.
Further, we showed how witnesses to original CNF formulas can be reconstructed from so-
lutions acquired after applying combinations of BCE, VE, and equivalent literal reduction
on the formulas. Experimental results with an implementation of a CNF-level preprocessor
combining BCE and VE show that BCE can be applied effectivelyand efficiently, though
the improvement due to using BCE in combination with VE with respect to solving more
instances appears to be at most modest.

It is also possible to improve SAT solver running times byadding (instead ofremov-
ing by BCE) blocked clauses to CNF formulas in intelligent ways.While motivated by
proof complexity theoretical arguments [36] as well as the more practical evidence presented
in [26,34] using manually added domain-specific blocked clauses, this question poses mul-
tiple challenges. For example, in contrast to BCE, adding blocked clauses is not confluent,
and in general there is an exponential number of possibilities to introduce blocked clauses
to CNF formulas. In fact, without restricting the focus on variables that already occur in
a formula, allowing one to add arbitrary blocked clauses into a formula covers the exten-

33

sion rule of the extremely powerful Extended Resolution proof system [47,36]. While the
possibilities of applying the extension rule within CDCL SAT solvers have been studied [1,
27], the resulting implementations do not yet reach the fullpotential on specific families
of CNF formulas that are known to be easy for extended resolution but hard for resolution
(including pigeon-hole formulas). This hints to the direction that it is difficult to exploit the
potential of blocked clause addition even for formulas for which it is known that this tech-
nique could—in principle—improve solving times significantly. We note that studying pos-
sibilities of improving SAT solver running times by developing novel ways ofautomatically
addingblocked clauses is out of the scope of this work. However, it is an interesting question
whether one could benefit from developing good heuristics for applying a combination of
restricted BCE and addition of blocked clauses. Our first, very preliminary experiments on
automatically adding blocked clauses, performed after theacceptance of this article, has led
us to conjecture that it is at least non-trivial to enhance the performance of CDCL solvers
via adding blocked clauses. However, understanding the duality between eliminating and
adding blocked clauses for practical purposes remains as interesting future work.

Acknowledgements The authors thank Niklas Eén and Pete Manolios, respectively, for providing up-to-
date versions of the Minicirc and NiceDAG encoders used in the experiments. The first author thanks Tommi
Junttila for multiple extended discussions related to the circuit simplifications implemented in thebc2cnf
tool.

References

1. Audemard, G., Katsirelos, G., Simon, L.: A restriction ofextended resolution for clause learning SAT
solvers. In: M. Fox, D. Poole (eds.) Proceedings of the 24th AAAI Conference on Artificial Intelligence
(AAAI 2010). AAAI Press (2010)

2. Bacchus, F.: Enhancing Davis Putnam with extended binaryclause reasoning. In: Proceedings of the
18th National Conference on Artificial Intelligence (AAAI 2002), pp. 613–619. AAAI Press (2002)

3. Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality reduction. In: Pro-
ceedings of the 6th International Conference on Theory and Applications of Satisfiability Testing (SAT
2003),Lecture Notes in Computer Science, vol. 2919, pp. 341–355. Springer (2004)

4. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere et al. [6],
pp. 825–885

5. Biere, A., Clarke, E.M., Raimi, R., Zhu, Y.: Verifiying safety properties of a power PC microprocessor
using symbolic model checking without BDDs. In: N. Halbwachs, D. Peled (eds.) Proceedings of the
11th International Conference on Computer Aided Verification (CAV 1999),Lecture Notes in Computer
Science, vol. 1633, pp. 60–71. Springer (1999)

6. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,Frontiers in
Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

7. Biere, A., Lonsing, F., Seidl, M.: Quantified blocked clause elimination. In: Proceedings of the 23nd
International Conference on Automated Deduction (CADE-23), Lecture Notes in Computer Science.
Springer (2011)

8. Boy de la Tour, T.: An optimality result for clause form translation. Journal of Symbolic Computation
14(4), 283–302 (1992)

9. Brafman, R.I.: A simplifier for propositional formulas with many binary clauses. IEEE Transactions on
Systems, Man, and Cybernetics, Part B34(1), 52–59 (2004)

10. Brummayer, R., Biere, A.: Boolector: An efficient SMT solver for bit-vectors and arrays. In:
S. Kowalewski, A. Philippou (eds.) Proceedings of the 15th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS 2009),Lecture Notes in Computer Science,
vol. 5505, pp. 174–177. Springer (2009)

11. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The MathSAT 4 SMT solver.
In: A. Gupta, S. Malik (eds.) Proceedings of the 20th International Conference on Computer Aided
Verification (CAV 2008),Lecture Notes in Computer Science, vol. 5123, pp. 299–303. Springer (2008)

34

12. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.:The OpenSMT solver. In: J. Esparza, R. Majum-
dar (eds.) Proceedings of the 16th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2010),Lecture Notes in Computer Science, vol. 6015, pp. 150–153.
Springer (2010)

13. Chambers, B., Manolios, P., Vroon, D.: Faster SAT solving with better CNF generation. In: Proceedings
of Design, Automation and Test in Europe (DATE 2009), pp. 1590–1595. IEEE (2009)

14. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM7(3),
201–215 (1960)

15. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: C.R. Ramakrishnan, J. Rehof (eds.) Pro-
ceedings of the 14th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2008),Lecture Notes in Computer Science, vol. 4963, pp. 337–340. Springer (2008)

16. Drechsler, R., Junttila, T., Niemelä, I.: Non-clausalSAT and ATPG. In: A. Biere, M.J.H. Heule, H. van
Maaren, T. Walsh (eds.) Handbook of Satisfiability,Frontiers in Artificial Intelligence and Applications,
vol. 185, chap. 21, pp. 655–694. IOS Press (2009)

17. Dunham, B., Fridshal, R., Sward, G.: A heuristic programfor proving elementary logical theorems. In:
Proceedings of the International Conference on Information Processing (IFIP 1959), pp. 282–284 (1959)

18. Dunham, B., Wang, H.: Towards feasible solutions of the tautology problem. Annals of Mathematical
logic 10, 117–154 (1976)

19. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: F. Bac-
chus, T. Walsh (eds.) Proceedings of 8th International Conference on Theory and Applications of Satis-
fiability Testing (SAT 2005),Lecture Notes in Computer Science, vol. 3569, pp. 61–75. Springer (2005)

20. Eén, N., Mishchenko, A., Sörensson, N.: Applying logic synthesis for speeding up SAT. In: J. Marques-
Silva, K.A. Sakallah (eds.) Proceedings of the 10th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT 2007),Lecture Notes in Computer Science, vol. 4501, pp. 272–286.
Springer (2007)

21. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: W. Damm, H. Hermanns
(eds.) Proceedings of the 19th International Conference onComputer Aided Verification (CAV 2007),
Lecture Notes in Computer Science, vol. 4590, pp. 519–531. Springer (2007)

22. Gershman, R., Strichman, O.: Cost-effective hyper-resolution for preprocessing CNF formulas. In:
F. Bacchus, T. Walsh (eds.) Proceedings of the 8th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT 2005),Lecture Notes in Computer Science, vol. 3569, pp. 423–429.
Springer (2005)

23. Han, H., Somenzi, F.: Alembic: An efficient algorithm forCNF preprocessing. In: Proceedings of the
44rd Design Automation Conference (DAC 2007), pp. 582–587 (2007)

24. Han, H., Somenzi, F.: On-the-fly clause improvement. In:O. Kullmann (ed.) SAT,Lecture Notes in
Computer Science, vol. 5584, pp. 209–222. Springer (2009)

25. Heule, M.J.H., van Maaren, H.: Aligning CNF- and equivalence-reasoning. In: H.H. Hoos, D.G. Mitchell
(eds.) SAT 2005 Selected Revised Papers,Lecture Notes in Computer Science, vol. 3542, pp. 145–156.
Springer (2005)

26. Heule, M.J.H., Verwer, S.: Exact DFA identification using SAT solvers. In: J.M. Sempere, P. Garcı́a
(eds.) Proceedings of the 10th International Colloquium onGrammatical Inference: Theoretical Results
and Applications (ICGI 2010),Lecture Notes in Computer Science, vol. 6339, pp. 66–79 (2010)

27. Huang, J.: Extended clause learning. Artificial Intelligence174(15), 1277–1284 (2010)
28. Jackson, P., Sheridan, D.: Clause form conversions for Boolean circuits. In: H.H. Hoos, D.G. Mitchell

(eds.) SAT 2004 Selected Revised Papers,Lecture Notes in Computer Science, vol. 3542, pp. 183–198.
Springer (2005)

29. Järvisalo, M., Biere, A.: Reconstructing solutions after blocked clause elimination. In: O. Strichman,
S. Szeider (eds.) Proceedings of the 13th International Conference on Theory and Applications of Sat-
isfiability Testing (SAT 2010),Lecture Notes in Computer Science, vol. 6175, pp. 340–345. Springer
(2010)

30. Järvisalo, M., Biere, A., Heule, M.J.H.: Blocked clause elimination. In: J. Esparza, R. Majumdar (eds.)
Proceedings of the 16th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2010),Lecture Notes in Computer Science, vol. 6015, pp. 129–144.
Springer (2010)

31. Jha, S., Limaye, R., Seshia, S.A.: Beaver: Engineering an efficient SMT solver for bit-vector arithmetic.
In: A. Bouajjani, O. Maler (eds.) Proceedings of the 21st International Conference on Computer Aided
Verification (CAV 2009),Lecture Notes in Computer Science, vol. 5643, pp. 668–674. Springer (2009)

32. Jin, H., Somenzi, F.: An incremental algorithm to check satisfiability for bounded model checking. Elec-
tronic Notes in Theoretical Computer Science119(2), 51–65 (2005)

33. Jussila, T., Biere, A.: Compressing BMC encodings with QBF. Electronic Notes in Theoretical Computer
Science174(3), 45–56 (2007)

35

34. Kautz, H.A., Ruan, Y., Achlioptas, D., Gomes, C.P., Selman, B., Stickel, M.E.: Balance and filtering in
structured satisfiable problems. In: B. Nebel (ed.) Proceedings of the 17th International Joint Conference
on Artificial Intelligence (IJCAI 2001), pp. 351–358. Morgan Kaufmann (2001)

35. Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theoretical Computer Science
223(1–2), 1–72 (1999)

36. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics96–97, 149–
176 (1999)

37. Le Berre, D.: Exploiting the real power of unit propagation lookahead. Electronic Notes in Discrete
Mathematics9, 59–80 (2001)

38. Li, C.M., Wei, W., Zhang, H.: Combining adaptive noise and look-ahead in local search for SAT. In:
J. Marques-Silva, K.A. Sakallah (eds.) Proceedings of the 10th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2007), LectureNotes in Computer Science, pp. 121–133.
Springer (2007)

39. Lynce, I., Marques-Silva, J.: The interaction between simplification and search in propositional satisfia-
bility. In: CP’01 Workshop on Modeling and Problem Formulation (2001)

40. Manolios, P., Vroon, D.: Efficient circuit to CNF conversion. In: J. Marques-Silva, K.A. Sakallah (eds.)
Proceedings of the 10th International Conference on Theoryand Applications of Satisfiability Testing
(SAT 2007),Lecture Notes in Computer Science, vol. 4501, pp. 4–9. Springer (2007)

41. Mishchenko, A., Chatterjee, S., Brayton, R.K.: DAG-aware AIG rewriting: A fresh look at combinational
logic synthesis. In: E. Sentovich (ed.) Proceedings of the 43rd Design Automation Conference (DAC
2006), pp. 532–535. ACM (2006)

42. Ostrowski, R., Grégoire,́E., Mazure, B., Sais, L.: Recovering and exploiting structural knowledge from
CNF formulas. In: P.V. Hentenryck (ed.) Proceedings of the 8th International Conference on Principles
and Practice of Constraint Programming (CP 2002),Lecture Notes in Computer Science, vol. 2470, pp.
185–199. Springer (2002)

43. Plaisted, D.A., Greenbaum, S.: A structure-preservingclause form translation. Journal of Symbolic
Computation2(3), 293–304 (1986)

44. Purdom, P.W.: Solving satisfiability with less searching. IEEE Transactions on Pattern Analysis and
Machine Intelligence6(4), 510–513 (1984)

45. Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination resolution for preprocess-
ing SAT instances. In: H.H. Hoos, D.G. Mitchell (eds.) SAT 2004 Selected Revised Papers,Lecture
Notes in Computer Science, vol. 3542, pp. 276–291. Springer (2005)

46. Tompkins, D.A., Hoos, H.H.: UBCSAT: An implementation and experimentation environment for SLS
algorithms for SAT & MAX-SAT. In: Online Proceedings of the 7th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2004) (2004)

47. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: J. Siekmann, G. Wrightson
(eds.) Automation of Reasoning 2: Classical Papers on Computational Logic 1967–1970, pp. 466–483.
Springer (1983)

48. Van Gelder, A.: Toward leaner binary-clause reasoning in a satisfiability solver. Annals of Mathematics
and Artificial Intelligence43(1), 239–253 (2005)

