Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Simulating Circuit-Level Simplifications on CNF *

Matti J arvisalo - Armin Biere - Marijn Heule

Received: date / Accepted: date

Abstract Boolean satisfiability (SAT) and its extensions have becaroere technology in
many application domains, such as planning and formal eatiéin, and continue finding
various new application domains today. The SAT-based agpradivides into three steps:
encoding, preprocessing, and search. It is often arguedyhencoding arbitrary Boolean
formulas in conjunctive normal form (CNF), structural peofies of the original problem
are not reflected in the CNF. This should result in the fact @ldF-level preprocessing
and SAT solver techniques have an inherent disadvantagparenh to related techniques
applicable on the level of more structural SAT instance e@sgntations such as Boolean
circuits. Motivated by this, various simplification techoes and intricate CNF encodings
for circuit-level SAT instance representations have beepgsed. On the other hand, based
on the highly efficient CNF-level clause learning SAT sofyehere is also strong support
for the claim that CNF is sufficient as an input format for SAIvers.

In this work we study the effect of CNF-level simplificatioechniques, focusing on
SatElite-style variable elimination (VE) and what we céddldked clause elimination (BCE).
We show that BCE is surprisingly effective both in theory amg@ractice on CNF formulas
resulting from a standard CNF encoding for circuits: withexplicit knowledge of the
underlying circuit structure, it achieves the same levesiafplification as a combination
of circuit-level simplifications and previously suggestedarity-based CNF encodings. We
also show that VE can achieve many of the same effects as B&Bpball. On the other
hand, it turns out that VE and BCE are indeed partially ortimag techniques. We also study

* Parts of this article have been preliminarily presentethi@tlth International Conference on Tools and
Algorithms for the Construction and Analysis of Systems CBS 2010) [30] and at the 13th International
Conference on Theory and Applications of Satisfiabilitytifes(SAT 2010) [29].

The first author is financially supported by Academy of Fidlamder grant 132812. The second and the third
author are supported by the Austrian Science Foundatior-JFN¥N Grant S11408-N23 (RIiSE). The third
author is supported by the Dutch Organization for ScienRiésearch under grant 617.023.611.

M. Jarvisalo

Department of Computer Science, University of Helsinknl&nd. E-mail: matti.jarvisalo@cs.helsinki.fi
A. Biere

Institute for Formal Models and Verification, Johannes iéefniversity, Linz, Austria.

M.J.H. Heule

Department of Software Technology, Delft University of firology, The Netherlands.

the practical effects of combining BCE and VE for reducing $fize of formulas and on the

running times of state-of-the-art SAT solvers. Furthemneve address the problem of how
to construct original witnesses to satisfiable CNF formutasn applying a combination of

BCE and VE.

Keywords Boolean satisfiability preprocessing problem structure blocked clauses
variable elimination Boolean circuits

1 Introduction

Boolean satisfiability (SAT) [6] solvers and their extemsipespecially satisfiability modulo
theories (SMT) [4] solvers, have become core technologienany application domains,
including planning and formal verification. Furthermoriee tSAT-based solving approach
continues to find various new application domains today.fl@driven clause learning
(CDCL) SAT solvers are at the heart of SMT solvers, and in soases such as the the-
ory of bit-vectors, most state-of-the-art SMT solvers aedul on bit-blasting and use pure
SAT solvers for actual solving (including [21,15,11,10,84]). This gives motivation for
developing even more efficient solving techniques for SAT.

SAT-based approaches consist of three main sepEding preprocessingandsearch
(solving). Encoding refers to the task of declarativelyresging (modelling) the problem
to be solved in the language of propositional logic. Mostests-the-art CDCL SAT solvers
require the input formulas to be in conjunctive normal for@N§). However, it is often
the case that less restrictive forms are used during thederg@phase. Among such more
structural formula representations @eolean circuitsthat allow compact representation
of propositional formulas as directed acyclic graphs (DAGkich enables e.g. structural
hashing (sharing of sub-formulas). Such circuit represéoris are typically afterwards au-
tomatically translated (encoded) into CNF for applying aFlisvel SAT solver to determine
satisfiability of the formula. Various simplification teahones and intricate CNF encoders
for general propositional formulas and especially cirtenel SAT instance representations
have been proposed; see [43,8,28,41,20,40,13] for example

Simplification techniques applied in the preprocessingsph@ve the objective of au-
tomatically applying transforms to the input formula in erdo make the formula (pre-
sumably) easier to solve; typically, the objective is toussl the number of variables and
subformulas appearing in the formula. Preprocessing tguba have been developed both
for circuits and for CNF (for examples of CNF-level simpléton techniques, see [37,39, 2,
42,9,45,19,22,48,32,23]). The way the encoding and sfivation/preprocessing is done
before the actual solving can have a notable effect on theimgrtimes of SAT solvers.
Indeed, the steps of encoding, preprocessing, and seartiglatly intertwined.

It is often argued that by encoding arbitrary Boolean forwsuih CNF, structural prop-
erties of the original problem are not reflected in the résglCNF formula. This should
result in the fact that CNF-level preprocessing and SATesalechniques have an inherent
disadvantage compared to related techniques that can becapp the level of more struc-
tural SAT instance representations such as Boolean @r@it the other hand, based on the
success of the current highly efficient CNF-level CDCL SAlvers and CNF simplifica-
tion techniques, there is also strong support for the cla@h €NF is sufficient as an input
format for SAT solvers.

We believe that this controversy highlights that the curwemderstanding of the lim-
itations of CNF as the de facto input form for SAT solvers isnswhat limited, which

motivates further studies on the topic. This work contmisuto this understanding by ana-
lyzing CNF-level simplification techniques from a struetiypoint of view. As main results,
we show that, rather surprisingly, simple CNF-level siffiggition techniques can implicitly
achieve many types of circuit-level simplifications whick &elieved to require specialized
circuit-level simplifiers.

1.1 Contributions

In this work we study the effect of two main CNF-level simpétion techniques: SatElite-
style bounded variable elimination (VE) [19] and what wel ddbcked clause elimina-
tion (BCE). As demonstrated by the SatElite preprocessor [E3]akle elimination (orig-
inating from [14,18]) provides an effective CNF-level siioption technique via bounded
application. Blocked clause elimination, on the other hamd clause elimination technique
that removes so calldalocked clausef86] from CNF formulas. The concept of BCE traces
back to [18, Section 2.4] where it was first noted (in dual foconsidering formulas in dis-
junctive normal form) that such clauses can be eliminatatiout affecting satisfiability.
While (partial) elimination of blocked clauses has beerppeed before [42], we present in
this paper the first systematic analysis of the effectiveiné8CE.

We focus on analyzing the effect of the CNF-level preprocgsechniques of BCE and
VE on CNF formulas originating from circuit-level formulepresentations.

We show that BCE is surprisingly effective both in theory amgractice on CNF for-
mulas resulting from the standard “Tseitin” CNF encoding] [ir circuits: without explicit
knowledge of the underlying circuit structure, BCE achgethee same level of simplification
as a combination of circuit-level simplifications, sucttase of influencenon-shared input
elimination andmonotone input reductigrand previously suggested polarity-based CNF
encodings, especially the Plaisted-Greenbaum encod8jgThis implies that, without los-
ing simplification achieved by such specialized circuiteletechniques, one can resort to
applying BCE after the straightforward Tseitin CNF encagdiand hence implementing
these circuit-level techniques is somewhat redundantebl@r, since other related circuit
level optimizations forsequentialproblems—in particular, thbounded cone of influence
reduction[5] and using functional instead of relational represeatet of circuits [33]—can
be mapped to cone of influence, these can also be achievedbp&®€ly on the CNF-level.
As regards CNF-level simplification techniques, BCE aabsethe simplification resulting
from, e.g. pure literal elimination[17,14], as also observed in [36,42].

As regards the effect of variable elimination based pregssitig, we show that VE can
achieve many of the same effects as BCE, but not all. Espedat achieving the same
simplifications as combining all the considered circuitelesimplification techniques, it is
insufficient to use the Tseitin encoding before applying \fElee resulting CNF formula;
instead, the Plaisted-Greenbaum encoding is requiresdtarns out that VE and BCE are
indeed partially orthogonal techniques, which motivataslsining these two techniques for
achieving even better simplification.

We also address the problem of reconstructing originaltewois to CNF formulas af-
ter applying a preprocessing. For many real applicatiomades of SAT it is important
to be able to extract a full satisfying assignment for oaiBAT instances from a satisfy-
ing assignment for the instances after preprocessing.nstarice, when applying BCE, a

1 We thank one of the anonymous reviewers for pointing outréfisrence.

solution to the original CNF is not directly available in geal. We show how such full solu-
tions can be efficiently reconstructed from solutions todbejunctive normal form (CNF)
formulas resulting from applying a combination of variousFpreprocessing techniques,
especially, blocked clause elimination combined with 8tistyle variable elimination and
equivalence reasoning [2,3,22].

To accompany the more theoretical analysis in this papepnegent an experimental
evaluation of the effectiveness of BCE combined with S&tEstyle variable eliminating
CNF preprocessing comparing our implementation with taedsrd Tseitin and Plaisted-
Greenbaum encodings and the more recent NiceDAG [40, 13Manigirc [20] CNF en-
coders. It turns out that the combination of these CNF-l¢ézehniques is in many cases
competitive with the circuit-level encoders. Howeveryitrts out that the additional benefit
of applying BCE for achieving faster SAT solving is often nestl using BCE as a pre-
processor appears in many cases to have only a slight mosffiect on the running times
of state-of-the-art SAT solvers, especially when conaide€DCL. This leads to the con-
jecture that the often applied circuit simplifications @&std@d by BCE may in many cases
be of limited value from the practical perspective. Howeweicases some non-negligible
improvements can be observed, especially for stochastid smarch.

1.2 Related Work

This work is not the first time removing blocked clauses ispps®d for simplifying CNF
formulas; see [42] for example. However, in contrast to gaper, the work of [42] does
not make the connection between blocked clauses and eleveitsimplifications and CNF
encodings and, most importantly, [42] concentrates onaetitrg underlying circuit gate
definitions for applying this knowledge in CNF-level sinfigation; blocked clause removal
in [42] is actuallynot applied in the case any underlying gate definitions can bhaebed,
but rather as an auxiliary simplification over those clawgkieh cannot be associated with
gate definitions.

Blocked clauses have played a role in studies focusing omowiy the worst-case
upper bounds on the running time of SAT algorithms [35] whosslecessor dates back to
the concept oEomplementary seardby Purdom [44].

It should be noted that, from a proof complexity theoretimpof view, there are CNF
formulas which can be made easier to prove unsatisfiable re@blution (and hence also
with clause learning SAT solvers) laddingblocked clauses [36]. In more detail, there are
CNF formulas for which minimum-length resolution proofe guaranteed to be exponential
originally, but by adding instance-specific blocked claugethe formulas, the resulting for-
mulas yield short resolution proofs. The effect of addimgiance-specific) blocked clauses
has also been studied in some domain-specifix contextd2€]g.This duality is discussed
further in Section 12. This same observation on duality dao be made about VE. On
one hand, VE has been shown to often notably speed-up SAihgol®n the other hand,
as shown in Section 8 of this article, VE removes some clawdgsh are also removed
by BCE, and can hence increase the length of resolution pidmaimatically. Furthermore,
depending on the variable elimination ordering, VE may &late “wrong” variables, in
analogy with making bad decisions during search, and heae o notable increase in
proof lengths, as well.

As a final remark, we note that after the first versions of thiskywthe technique of
blocked clause elimination has been lifted to quantified IBaiw formulas (QBFs) in [7].

Quantified blocked clause elimination [7] is reported toegavsubstantial reduction in QBF
solving time.

1.3 Organization

The rest of this paper is organized as follows. After baclkgcbon Boolean circuits and
CNF encodings of circuits (Section 2) and on resolutioredaSNF preprocessing (Sec-
tion 3), we introduce blocked clause elimination (Sectionafd review the circuit-level
simplification techniques considered in this work (Sec&)nAn overview of the main re-
sults of this work is presented in Section 6. In-depth anslg&the effectiveness of BCE
and VE with respect to known circuit-level simplificatiorckmigues and CNF encodings is
then presented (Sections 7 and 8), followed by an analysredéffectiveness of combined
BCE and VE (Section 9). After the more theoretical analysis,implementation of BCE
is described in detail, followed by an in-depth descriptdimow full solutions to CNF for-
mulas can be reconstructed from solutions to the CNF aftplyiyy both individual and
combinations of BCE and VE (Section 10). After this, expeital results are reported on
the practical effectiveness of BCE and VE (Section 11)ofeéd by conclusory remarks
(Section 12).

2 Boolean Circuits and CNF Satisfiability

This section reviews the needed background related to Boalgcuits and CNF-level sat-
isfiability, and well-known CNF encodings of circuits.

2.1 CNF Satisfiability

Given a Boolean variable there are twditerals, the positive literal, denoted by and the
negative literal, denoted byx, thenegation of xAs usual, we identify-—xwith x. A clause
is a disjunction Y, or) of distinct literals and a CNF formula is a conjunction @nd) of
clauses. When convenient, we view a clause as a finite seendl8 and a CNF formula as
a finite set of clauses; e.g. the formykaVv —b) A (—c) can be written ag§{a, —b},{—c}}.
This allows us to write, for exampleB,\ G to denote the CNF formula consisting of those
clauses in the CNF formula but not in the CNF formul&s, andl € C to denote that a literal
| occurs in a claus€.

A truth assignment for a CNF formulg is a functiont that maps variables ik to
{t,f}. A truth assignment is extended to literals by definijgr-x) = —7(x), where—t = f
and—f = t. A clause is satisfied by if it contains at least one literdlsuch thatr () =t.
An assignment satisfies Hf it satisfies every clause iR. A CNF formula issatisfiableif
there is an assignment that satisfies it, andatisfiableotherwise.

A clause is aautologyif it contains bothx and —x for some variablex. Finally, given
an assignmert, let 1y (respectivelyt_x) denote the assignment such thgix) =t (respec-
tively, T_x(x) = f) and which is otherwise identical {0

2.2 Boolean Circuits

A Boolean circuit over a finite s& of gatesis a set4” of equations of forng:= (g1, ...,0n),
whereg,g1,...,0n € Gandf : {t,f}" — {t,f} is a Boolean function, with the additional re-
quirements that (i) eaape G appears at most once as the left hand side in the equations in
%, and (ii) the underlying directed graph

(GE(?)={(d,9) eGxG|g:=1(....d,...) €¢})

is acyclic. If (g, g) € E(%), thend' is achild of gandgis aparentof ¢'. If g:= f(gy,...,0n)
isin %, thengis anf-gate (or of typef), otherwise it is anput gate A gate with no parents
is anoutput gate The fanout (fanin, respectively) of a gate is the numbeioépts (children,
respectively) the gate has.

A (partial) assignment fo¥” is a (partial) functiont : G — {t,f}. An assignment is
consistentvith ¢ if t(g) = f(1(01),...,7(gn)) for eachg:= f(g1,...,0n) IN .

A constrained Boolean circui”™ is a pair(¢’, 1), where% is a Boolean circuit and
is a partial assignment f&f'. With respect to &7, each(g,v) € 1 is aconstraint andg is
constrainedo v if (g,v) € T.

An assignment’ satisfiesg’ if (i) it is consistent with%’, and (ii) it respects the con-
straints int, meaning that for each gatec G, if 7(g) is defined, therr’(g) = 1(g). If some
assignment satisfigs?, then®’? is satisfiableand otherwisainsatisfiable

The following Boolean functions are some which often occugate types.

NOT(v) ist if and only if visf.

OR(V1,...,Vpn) ist if and only if at least one of, ..., vy ist.
AND(V1,...,Vn) istif and only if all v4, ..., vy aret.

XOR(V1,...,Vn) ist if and only if an odd number of;’s aret.
ITE(V1,V2,V3) ist if and only if (i) v andv, aret, or (ii) v1 isf andvs ist.

As typical, we inline gate definitions of tyme:= NOT(¢'). In other words, each occurrence
ofgasg:= f(...,q,...) is expected to be rewritten gs= f(...,NOT(¢'),...).

Example 1A Boolean circuité’™ and its graphical representation are shown in Figure 1. A
satisfying truth assignment for the circuit is

T= {<Clat>7 <t17t>7 <007f>7 <t27f>7 <t3,t>, <3'07t>7 <b07f>7 <Co,t>}.

¢ = {c1:= OR(t1,NOT(t2))
t1 ;= AND(t3,Co)

0p := XOR(t3,Co)

to := AND(ap, bo)

t3 := XOR(ag,bo)}
T={{c.,)}

Fig. 1 A constrained Boolean circui#’™ and its graphical representation.

2.3 Well-Known CNF Encodings

The standard satisfiability-preserving “Tseitin” encagi#7] of a constrained Boolean
circuit €7 into a CNF formula TST%¢™) works by introducing a Boolean variable for
each gate irg’", and representing for each gaje= f(g1,...gn) in €7 the equivalence
g < f(01,...0n) with clauses. Additionally, the constraints inare represented as unit
clauses: ift(g) =t (1(g) = f, respectively), introduce the clauég) ((—g), respectively).
A well-known fact is that unit propagatiéron TST(%") behaves equivalently to standard
Boolean constraint propagation on the original ciréift (see, e.g., [16] for details).

A well-known variant of the Tseitin encoding is the Plaisteteenbaum encoding [43]
which is based ogate polarities Given a constrained Boolean circ@#t, apolarity func-
tion poly, : G — 2{tf} assigns polarities to each gate in the circuit. Hexadf stand for the
positiveandnegativepolarities, respectively. Any polarity function must séithe follow-
ing requirements.

— If (g,v) € 1, thenv € polZ.(g).
— Ifg:=f(01,...,0n), then:
— If f =NoOT, thenv € poll (g) implies v € pol% (g1).
— If f € {AND,OR}, thenv € pol’.(g) impliesv € pol’.(g;) for eachi.
— If f =XOR, thenpoll(g) # 0 impliespoll.(gi) = {t,f}.
— If f =1TE, thenv € poll.(g) implies
poly,(g1) = {t,f} andv € pol(g;) fori =2,3.

The Plaisted-Greenbaum encoding [43] uses the polaritytifbmminpol’, that assigns
for each gate the subset-minimal polarities frothf Rrespecting the requirements above. In

other words, for each gatg
minpolZ(g) := {v| T(g) =V or v & minpol(d') for some pareng of g}.

The Tseitin encoding, on the other hand, can be seen as tErsybset-maximal polarity
assigning polarity functiomaxpol’.(g) := {t,f} for each gate. For the gate types consid-
ered in this paper, the clauses introduced based on gatdties|are listed in Table 1.

Table 1 CNF encoding for constrained Boolean circuits based on gel@ities. In the tableg; is g if
gi := NOT(g), andg; otherwise.

[gateg I t € pol(g) | f € pol(9) |
g:=OR(91;---,0n) (—gVaLV---Van) (9V—01) A+~ A(QV —=0n)
g:=AND(Q1,---,0n) (mgVgL) A+ A(=9VOn) (QV=01V---V-gn)
g:= XOR(01,02) (FgV—g1V—G2) A(—gV a1V Q2) | (9V—-01Va2)A(gVaLV—02)
g:=ITE(01,02,03) (-9V =01V @) A(-gVg1Vas) | (9V—g1V-g2)A(gV a1V —gs)
(g er (g
(gfer (-9)

Example 2The polarities assigned by the subset-minimal polaritcfiam minpoll, to the
gates of the circuit in Example 1 are shown in Figure 2 nextatchegate. The clauses in
the Tseitin encoding of the circuit are shown on the left. Plested-Greenbaum encoding
produces only the underlined clauses. In the figure, thesekand literals removed by unit
propagation are crossed over with lines.

2 Given a CNF formulaF, while there is a unit claus@) in F, unit propagation removes frof (i) all
clauses irF in which | occurs, and (ii) the literakl from each clause if.

Je)
(o (cavts]

(serViyV—itp)
(t1V—ts Vo) (=00 V13V Co)
(-t Vta) (—0p V 3V —Co)
(—t1 Vo) (0o Vi3V —Co)
- (00 V—it3 V Co)
(t2 V—ap V —hp) (~t3Vao Vo)
(—t2Vag) (-t V—ag Vv —hy)
(—t2 vV bo) (tzVagV —bp)

(t3V—ag V ho)

Fig. 2 The polarities assigned by the subset-minimal polaritycfiom minpol’, to the gate of the circuit in
Example 1 (right) and the Tseitin CNF encoding of the cir¢leift). The Plaisted-Greenbaum encoding of the
circuit consists of the underlined clauses. The clausedi@mndls removed by unit propagation are crossed
over with lines.

Given a constrained Boolean circtt, we denote the CNF formula resulting from the
Plaisted-Greenbaum encoding®@f by PG 7).
Relevant additional concepts related to polarities are

— monotone gategjateg is monotone ifminpol’(g)| = 1; and
— redundant gatesgateg is redundant ifninpol’.(g) = 0.

Example 3Recall the circuit in Example 2. The gates t3, tp, t3, andcy are monotone,
while the gateng is redundant.

3 Resolution and Simplification based on Variable Eliminaton

The resolution rule states that, given two clal@es {x,ay,...,a,} andCy = {—x,by,...,bn},
the implied claus€ = {ay, ..., an, b1, ...,bm}, called theresolveniof C; andCy, can be in-
ferred byresolvingon the variablex. We writeC = C; ® C,. This notion can be lifted to sets

of clauses: for two setS; andS x of clauses which all contair and —x, respectively, we
define

Si®Sx={C1®Cy|Cy € &,C, € S, andC; ® C; is not a tautology.

Following the Davis-Putnam procedure [14] (DP), a basigifimation technique, re-
ferred to asvariable elimination by clause distribution [19], can be defined. The elimi-
nation of a variablex in the whole CNF formula can be computed by pair-wise resglvi
each clause i with every clause i15 x. Replacing the original clauses$uU S x with the
set ofnon-tautologicalresolventsS= S, ® S« gives the CNF formuldF \ (S;US.x))US
which is satisfiability-equivalent t6.

Notice that DP is a complete proof procedure for CNF formulagh exponential worst-
case space complexity. Hence for practical applicationgaggble elimination by clause
distribution as a simplification technique for CNF formylagriable elimination needs
to be bounded. Closely following the heuristics appliedha SatElite preprocessor [19]
for applying variable eliminatich in this paper we study as a simplification technique

3 More precisely, the SatElite preprocessor [19] appliesriantiof VE calledvariable elimination by
substitution The analysis on VE in this paper applies to this variant dk we

the bounded variant of variable elimination by clause itistion, VE. In VE, a vari-
ablex can be eliminated only ifS < |S(US x| +k, i.e., when the resulting CNF formula
(F\ (5USx)) USwill not contain more thafF | +-k clauses, wherE is the formula before
the elimination step anklan integer. Notice that, given that YEay eliminate a particular
variable, then VE for anyk’ > k may also eliminate the same variable. However, the oppo-
site does not hold in general. In the following, we let VE stéor VEy, resembling closely
the threshold values typically applied in practice.

Example 4Consider a CNF formul& with
Sc=(XVe)A(xV-d)A(XxV—-aVv—b) and Sx=(-xva)A(—-xVb)A(-xV-eVf)
for the variablex. Applying variable elimination to eliminate we have

S=S®S«
= (avc)A(bve)A(av—d)A(bv—d)A
(mav-bv-evf)A(cv-evi)A(-dv-evf).
Since|S(| +|S.«x| =6 and|§ = 7, VEg can not eliminate the variablein contrast to Vg for
anyk > 0. Notice that the clausdsV —aV —b), (-xV a), and(—xV b) in F are equivalent
to the Tseitin encoding of the gate= AND(a,b). This is why resolvingdxVv —aV —b) with

(=xVa) and(—xV b) onx produces only tautological clauses that are not includ&{19].
|

The observation made in this example (and applied e.g. i) (e be formulated as fol-
lows.

Proposition 1 For any f€ {AND,OR,XOR,ITE} and gate definition of the form

g:=f(g,-.-, %),

applying variable elimination to eliminate the variable iy the Tseitin encoding of g=
f(g1,...,0«) produces only tautological clauses.

Proof Easy to check for eache {AND, OR, XOR,ITE} (recall Table 1). d

It should be noted that the result of VE can vary noticeablyeteling on the order in
which variables are eliminated. In more detail, VE does rateha unique fixpoint for all
CNF formulas, and the fixpoint reached in practice is depeinda variable elimination
ordering heuristics. Hence VE is nodnfluent

Theorem 1 VE is not confluent for any k 0.

Proof Consider the following CNF formula

Re= A (xivy)a (1)
1<i<n1<j<n
(=x1VzZ1) A (=% Vz1) A /\ (=% V =z1) A 2
3<i<n
(y1VZ)A(my2VZ) A N\ (Y Vz2).)

3<j<n

10

Notice that each variabbg andy;, where 1< i < n, occurs exactly once negatively in
FJe. Furthermore, eliminating any from Rj will replace all positive occurrences gfby
7 in the clauses of type 1 (if< 2) or respectively by-z; in the clauses of type 2 (if> 3).
Additionally the single clause of type 2 containing the niegeoccurrence of; is removed.
For example, eliminating the variabte from R results in the formula

A @vypr A vy)A
1<j<n 2<i<n1<j<n
(eVz)A N (=% V-z)A
3<i<n
(YiVZ)A(my2VZ) A N\ (Y V-z2).
3<j<n
Similarly, eliminating anyy; from R replaces the positive occurrencesyay z; (or —z,).
Now, for anyn andk > 0, let us consider any total orderon the variables ifj such
thatx; < z1,zp andy; < 73,2 for all 1 <i < n. Itis not difficult to see that applying Eon
eachx; andy; in the order given by will result in the formula

(Zl \ 22) A (Zl V —|22) A (—|Z]_V 22) A (—|Zl V —|22).
Applying VE on this reduced formula will result in the empty clause, ndteravhich one
of z; andz is eliminated first.

On the other hand, fik > 0 to an arbitrary value and consider the formE\fg“. Take
any total order on the variables if}z such thati,z» <" x andz;,z <’ y; forall 1 <i <n.
Using any such variable ordetr’, VEk can eliminate the variableg andz: both variables
occur positively in exactly two clauses and negativeli#n2 clauses. Hence, eliminating a
singlez, wherei € {1, 2}, will produce Zk+2) —2— (k+2) = k new clauses. For example,
eliminating the variable; from R\t will result in the formula

A (VYDA

1<i<k+4,1<j<k+4

A xvax)A A (X VX)) A

3<i<k+4 3<i<k+4
(YiVZ)A(y2vZ2) A N\ (Y Vz),
3<j<k+4

after which, following the ordex’, the variablez, can still be eliminated in a similar fashion,
resulting in the formula

A (VYDA

1<i<k+4,1<j<k+4

A xvax) A A (XY xe) A

3<i<k+4 3<i<k+4
A xvay) A A (X VoY),
3<i<k+4 3<i<k+4

However, we notice that after eliminatirmg and z,, all remaining variables occur at least
twice negatively anét+4 times positively. In fact, VEcannot remove any of these variables
because they will introduce at leagk2-4) — 2 — (k+4) = k+ 2 clauses. Therefore, by
eliminating thez variables first according te’, VE, does not result in the empty clause, in
contrast to the case in which the ordemas used. O

11

4 Blocked Clause Elimination

The main analysis presented in this paper involves what Wélmaked clause elimination
(BCE), a CNF-level simplification technique removes soezililocked clausef36] from
CNF formulas.

Definition 1 (Blocking literal) A literal | in a clauseC of a CNF formulaF blocksC (with
respect tdF) if for every clauseC’ € F with =l € C', the resolven{C\ {I}) U (C'\ {-1})
obtained from resolvin@ andC’ onl is a tautology.

With respect to a fixed CNF formula and its clauses we have:
Definition 2 (Blocked clause)A clause is blocked if it has a literal that blocks it.
Example 5Consider the formula

Folocked= (aV b) A (aV =bV —c) A (—aVc).

Only the first clause ofyjockeqiS NOt blocked. Both of the literalsand—c block the second
clause. The literat blocks the last clause. Notice that after removing eitlaer -b\ —c)

or (—maV c), the clausgaV b) becomes blocked. This is actually an extreme case in which
BCE can remove all clauses of a formula, resulting in a tliyisatisfiable formula. |

As a side-remark, notice that a litedatannot block any clause in a CNF formufaif F
contains the unit clausg-l }, and hence in this case no clause contaiingn be blocked
with respect td-. An important fact is that BCE preserves satisfiability.

Proposition 2 ([36]) Removal of an arbitrary blocked clause preserves satidifiabi

which follows immediately from the following proposition

Proposition 3 ([36]) Assume that literal | blocks C w.r.t. F. Lete a satisfying assignment
for F\ {C}. If T does not satisfy C, then satisfies both K {C} and C and thus F.

Additionally, we have the following.

Lemma 1 Given a CNF formula F, let clause € F be blocked with respect to F. Any
clause C e F, where C # C, that is blocked with respect to F is also blocked with respe
to F\ {C}.

Proof If the clauseC where blocked with respect but not with respect t& \ {C}, then
there should be & € F \ {C} which cause€ not to be blocked with respect)\ {C}.
However, since we know th&’ € F, the clause& can not be blocked with respectfo [

Therefore the result of blocked clause elimination is iredefent of the order in which
blocked clauses are removed, and hence blocked clauseafiari has a unique fixpoint
for any CNF formula, i.e., BCE is confluent.

Theorem 2 BCE s confluent.

12

5 Circuit-Level Simplifications

In this section we review the circuit-level simplificatioachniques—ron-shared inputs
elimination monotone input reductigrand cone of influence reductiofi6]—considered
in this work.

For the following, we consider an arbitrary constrained IBaa circuit¢’™.

Non-shared inputs elimination (NSI): While there is a (non-constant) gajevith the def-
inition g:= f(gs,...,0n) such that each; is an input gate with fanout one (non-shared)
in €7, remove the gate definitiop:= f(g1,...,gn) from &.

Monotone input reduction (MIR): While there is a monotone input gagen &7, extend
T by assigningg to minpoll(g).

Cone of influence reduction(COI): While there is a redundant gagen 7, remove the
gate definitiorg := f(g1,...,0n) from %.

These circuit-level simplifications, along with the Pla$tGreenbaum encoding, are
implemented e.qg. in thbc2cnf circuit simplifier and CNF encoder that is part of the BC
package implemented by Tommi Junttila.

Example 6Recall the circuit in Example 2. The definition of the gateis removed by
COl sinceqy is redundant. The gate) is assigned td by MIR sincecy is a monotone
input. As an interesting example of the behavior of NSI, adgrsa chain ofxoRr-gates,
03 := XOR(02,01),05 := XOR(04,03), ... in which the gateg; and eacltgy, wherei > 0,
are non-shared input gates (as illustrated on the left inr€i@). As long as eactp; 1,
wherei > 0, is non-shared, NSI will remove the whole chain, first remguhe definition
03 := XOR(dz,01) and so forth (as illustrated on the right in Figure 3). |

g3 := XOR(02,01),05 := XOR(94,03),- -

Fig. 3 An xoR chain in which the gateg; and eachyy;, wherei > 0, are input gates (left); the chain after
the gategs has been removed by NSI (right).

6 Overview of Main Results

The main results of this section show the surprising effeatess of the CNF-level simplifi-
cation of blocked clause elimination and variable elimima{when applied until fixpoint).

4 Seehttp://users.ics.tkk.fi/tjunttil/circuits/.

13

For the analysis, we will apply the following definition ofethielative effectiveness of
CNF encodings and both circuit and CNF-level simplificatiechniques.

Definition 3 Assume two method3; and T, that take as input an arbitrary constrained
Boolean circuité’™ and output CNF formulad;(¢") and T>(4"), respectively, that are
satisfiability-equivalent t&’*. We say thafT; is at least as effective as T, for any €7,
T1(€") contains at most as many clauses and variablds&8") does. IfT; is at least as
effective asl, and vice versa, thef, andT, areequally effectivelf there is a&’* for which
T2(¢T) contains more clauses or variables tffa(ic’") does, therT, is not as effective as
T1. Finally, if Ty is at least as effective ds, andT; is not as effective a§;, thenT is strictly
more effective thanyT

Notice that, considering BCE, a stricter variant of this wi&fin, based on clause elimi-
nation, could be applied; is at least as effective & , if for every circuit4™ we have
Ti(€T) CTo(€T). However, for VE this stricter definition cannot be naturalpplied, since
in general VE produces non-tautological resolvents whielmat subsumed by the original
clauses. Because of this inherent property of VE, we wilkfamplicity in the following use
the “weaker” version, as in Definition 3. All the results prated not concerning VE also
hold under the stricter version of the definition. Also nettbat the “at least as effective”
relation is analogously defined for two CNF-level simplifioa methods which, instead of
Boolean circuits, take CNF formulas as input.

When considering the effectiveness of VE in this paper, viyagnon-deterministic in-
terpretation which allows faanyvariable elimination order, i.e., we say that VE can achieve
the effectiveness of another simplification techniquehdré is some elimination order for
which VE achieves the same effectiveness. Finally, noteiththe following we always
assume that formulas are closed under standard unit propaiga

An overview of the main results of this section is presenteéig. 4. An edge from
X toY implies thatX is as least as effective & Notice that transitive edges are omitted:
for example, BCE is at least as effective as the combinatfoR® and the circuit-level
simplification techniquesone of influence reductiof€Ol), non-shared inputs elimination
(NSI), andmonotone input reductiofMIR). On the left sideXpc means the combination of
first applying the Plaisted-Greenbaum and then the CNH-$&wglification techniqueX on
the resulting CNF formula. Analogously, R@neans the combination of first applying the
circuit-level simplificationX and then the Plaisted-Greenbaum encoding. On the right side
the standard Tseitin encoding is always applied. The poiditeles around COI, MIR, and
NSI on the left and right represent applying the combinatibthese three simplifications
and then the Plaisted-Greenbaum (left) or Tseitin encofiggt). Additionally, BCE+ VE
refers to all possible ways of alternating BCE and VE untipdint.

6.1 Pure Literal Elimination by BCE and VE

Before turning to the main results, relating BCE with citdevel simplification techniques,
we begin by first arguing that both BCE and VE actually achieeesame simplifications as
the well-knownpure literal elimination first introduced in [17,14]. Given a CNF formula
F, a literall occurring inF is pureif —I does not occur iff.

Pure Literal Elimination (PL): While there is a pure literdlin F, remove all clauses con-
tainingl from F.

Notice that the following two lemmas apply for all CNF forrag| and are not restricted
to CNF formulas produced by the TST or PG encodings.

14

I
[BCE+ VE]pg : BCE+VE

CNF-level simplification

Circuit-level simplification

Plaisted—Greenbaum encoding Tseitin encoding

Fig. 4 Relative effectiveness of combinations of CNF encodingth wbth circuit and CNF-level simpli-
fication techniques. An edge frol to Y implies thatX is as least as effective & Transitive edges are
omitted. Notice that these results are dependent on thenassun that formulas are closed under standard
unit propagation.

Lemma 2 BCEis at least as effective d2L.

Proof A pure literal blocks all clauses which contain it by defimitji and hence clauses
containing a pure literal are blocked. O

Notice that a similar observation to Lemma 2 (that clauses tbntain pure literals are
blocked) was already made in [36,42].

Lemma 3 VE is at least as effective d3L.

Proof Let! be a pure literal. By definitiors, (the set of clauses containing) is empty.
HenceS ® S| = 0, and therefore VE removes the clause§in O

It is also evident—as will become clear in the following—ithlaere are examples on
which both BCE and VE can remove clauses not removed by agpBAi. Hence both BCE
and VE are in fact strictly more effective than PL.

7 Effectiveness of BCE on Circuit-Based CNF Formulas

In this section we show that BCE, starting from the Tseitioagting of any Boolean circuit,
achieves all of the simplifications achieved by the cirdenel techniques NSI, COI, and
MIR, and also removes those clauses that do not appear ingis¢gd-Greenbaum encoding
of the simplified circuit. Before proceeding, let us remihd teader again th#ttese results
are dependent on the assumption that formulas are closeerstandard unit propagation.

First, we observe that the Plaisted-Greenbaum encodinglfcachieves the effective-
ness of COl.

15

Lemma 4 PGis at least as effective d&Gco)

Proof For any redundant gatgminpol.(g) = 0 by definition. Hence the Plaisted-Greenbaum
encoding does not introduce any clauses for such a gate. O

On the other hand, blocked clause elimination can achiey®thisted-Greenbaum en-
coding starting with the result of the Tseitin encoding. Ba result, the following small
lemma is useful.

Lemma5 Forany fe {AND, OR, XOR,ITE} and gate definition of the form:g f(gy,...,0),
applyingBCE on the Tseitin encoding of:g- f(g1,...,0«) removes all clauses.

Proof For anyf € {AND,OR,XOR,ITE} andg:= f(g,...,0), it is easy to check that the
literals associated with (recall Table 1) block each of the clauses in the Tseitin dimzp
of g:= f(gi,...,09«), and hence all of the clauses are blocked. O

Lemma 6 BCErsT is at least as effective &G,

Proof We claim that BCE removes all clauses in TST) \ PG%") from TST(¢"). There
are two cases to consider: redundant and monotone gatdstRarases, BCE works implic-
itly in a top-down manner, starting from the output gatestidééothat BCE has no and does
not need explicit knowledge of the circ@t’ underlying TST%"). Since BCE is confluent
it will remove all blocked clauses independent of the elimination order.

Consider an arbitrary redundant output gate definijos f(gs,...,0n). Sinceg is not
constrained under, all clauses in TST#") in which g occurs are related to this defini-
tion. By Lemma 5, BCE removes all clauses in whighccurs. On the circuit level, this is
equivalent to removing the definitiam:= f(gi,...,0n).

Now consider an arbitrary monotone output gate definigos f(g,...,gn) with po-
larity minpolf,(g) = {v}, wherev € {t,f}. Theng must be constrained:(g) = v. Hence
unit propagation org removes all clauses produced by TST for the casewWit poll,(g)”
in Table 1 and removes the occurrencegydfom the clauses produced for the case “if
v € poll(9)”. To see how BCE removes in a top-down manner those clausaedeto
monotone gate definitions which are not produced by PG, densiie gate definitiog; :=
f'(dy,...,9y). Assume that unit propagation @nhas no effect on the clauses produced
by TST for this definition, thatinpol.(gi) = {v}, and that BCE has removed all clauses
related to the parents of in TST(¢") \ PG(¢"). Now one can check that the literals asso-
ciated withg; block each of the clauses produced by TST for the caseViE poll(gi)".
This is because all the clauses produced by TST for the defisibf gi’'s parents and in
which g; occurs have been already removed by BCE (or by unit propagatience all the
clauses produced by TST for the case-if € pol’.(g)” in Table 1 are blocked. O

Example 7 Recall the circuit and the CNF formula resulting from apptythe Tseitin en-
coding on this circuit in Example 2. BCE can remove the claubat are not produced by
applying the Plaisted-Greenbaum on this circuit (thatie,dlauses that are not underlined)
for instance in the following order:

(—0p V13V €p), —0p blocking
—0p V —t3V =Cp), ~0p blocking
0p Vi3V —1Cp), Op blocking

0p V —it3V Cp), Op blocking

t1 vV =tz vV —Cp), t1 blocking

agpwNPE
o

16

. (—t2Vag), —t2 blocking
. (—t2Vbo), —t2 blocking
. (t3VvagV —hp), t3 blocking
. (t3Vv —apV bp), t3 blocking

© 00o~NO®

Combining Lemmas 4 and 6, we have
Lemma 7 BCErstis at least as effective d&Go.
Next, we consider non-shared inputs elimination.
Lemma 8 BCErsT is at least as effective 83Gyg;.

Proof Assume a gate definitiog := f(gs,...,gn) such that eacly; is a nhon-shared input
gate. It is easy to check from Table 1 that for eacheach clause produced by TST for
g:= f(g1,...,0n) is blocked byg;. The result now follows from Lemma 6 and Proposition 1
(notice that PG#") is always a subset of TSE7)). O

Example 8 Consider a chain of OR-gatesgs := XOR(g2,01),0s := XOR(g4, 03), - - - in which
the gateg; and eaclyy;, wherei > 0, are non-shared input gates (recall Figure 3, illustrated
on the left). The clauses in the Tseitin encodin@®f= XOR(g,0;1) are

(—G3V =01V —02),(—03V g1V 2),(93V —01V02),(93V 01V ~02).

Since the gateg; and g, are non-shared, they do not appear in any other clauses of the
Tseitin encoding. Now botly; andgy block each of these clauses. Seeing the Tseitin en-
coding on the circuit-level after removing these four ciaislauses, the result is the circuit
on the right in Figure 3, which corresponds exactly to NSllmndateys.

Notice that, in fact, BCE can remove all the four aforemargibclauses even in the case
that only one of the gateg andg; is non-shared. In this case, the non-shared one blocks
all the four clauses.

Related to this example, we note that in [26)R chains are explicitly detected on
the CNF-level. Detected chains are removed if they contaiarashared input gate (i.e., a
variable that does not occur in the other clauses). Moredavariable occurs only iKOR
chains, the variable is substituted in all but one chaingigior reasoning. The remaining
XOR chain in which it occurs is removed. |

On the other hand, notice that PL cannot achieve the eftawtiss of NSI when applying
PG: since PG produces the same set of clauses as TST for any with minpol, (g) =
{t,f}, no literal occurring in these clauses can be pure.

We now turn to the monotone input reduction. Notice that Mil& proper generalization
of PL: given a CNF formuld=, any pure literal inF is monotone in the straight-forward
circuit representation of where each clausé € F is represented as an outpok-gate
the children of which are the literals @. On the other hand, a monotone input gate in
a circuit €7 is not necessarily a pure literal in T8&T): TST introduces clauses which
together contain both positive and negative occurrencesl afates, including monotone
ones. Hence we have the following.

Proposition 4 TSTyr is strictly more effective thaRLtsr.

17

However, it actually turns out that, when applying the R&dsGreenbaum encoding, PL
and MIR are equally effective (and hencegRlis also strictly more effective than Rgr).

Lemma 9 PLpg andPGyr are equally effective.

Proof Assume a gate definitiog:= f(g,...,0n), where somej, is a monotone input gate.
To see that P(PG(%")) is at least as effective as PKBIR (4")), first notice that sinceg; is
monotoneg is monotone. Now, it is easy to check (recall Table 1) thatccurs only either
negatively or positively in the clauses introduced by PCgfoe f(gi,...,0n), and hence
is pure.

To see that PGMIR (%)) is at least as effective as FRG(%")), notice that in order to
be a pure literal in PG£'"), a gate has to be both monotone and an input. O

Using this lemma, we arrive at the fact that BCE on TST caneaehthe combined
effectiveness of MIR and PG.

Lemma 10 BCErstis at least as effective 8Gyr.

Proof Since BCE can remove all clauses in T3T) \ PG¢") by Lemma 6, after this
BCE can remove all clauses containing some monotone ingeiggaince BCE is at least
as effective as PL (Lemma 2). The result then follows by Ler@ma O

Combining Lemmas 6, 7, 8, and 10, we arrive at the following.

Lemma 11 BCErsris at least as effective as first applying the combinatio€©ol, MIR,
andNSI on the circuit-level until fixpoint, and then applyifgs on the resulting circuit.

As an interesting side-remark, we also have the following.
Proposition 5 The combination diSI, MIR, andCOl is confluent.

Moreover, BCE is more effective than applying the comboratf COI, MIR, and NSI
on %" until fixpoint, and then applying PG on the resulting circuit

Lemma 12 First applying the combination a2OI, MIR, andNSI on the circuit-level until
fixpoint, and then applyin§G on the resulting circuit, is not as effective BEErsr.

Proof Consider a gate definitiog := XOR(gs,...,0n), Whereg hasminpol.(g) = {t,f}
(hence COI and MIR cannot remove/assign this gate definitiod the TST and PG CNF
encodings produce exactly the same clauses for this defihitind only asingle g is a
non-shared input gate (hence NSI cannot remove the defijiti@. it occurs only in the
definition ofg. However, in this case the clauses in T&T) in which g; occurs are blocked.
([l

Combining Lemmas 11 and 12, we finally arrive at our main tegor
Theorem 3 BCEygr is strictly more effective than first applying the combioatof COlI,

MIR, and NSI on the circuit-level until fixpoint, and then applyi®G on the resulting
circuit.

18

fodf

(serViyV—itp)
(—t1Via)
(t2V -V —hy) (—t3Vag Vo)
(—t3 v —ag V —bg) t

Fig. 5 The circuit of Example 2 after applying COI, NSI, and MIR, at&lPlaisted-Greenbaum encoding
after unit propagation. the clauses and literals removeghiitypropagation are crossed over with lines.

Example 9Recall the circuit and the CNF formula resulting from apptythe Tseitin en-
coding on this circuit in Example 2. The circuit after applyiCOI, NSI, and MIR, along
with its Plaisted-Greenbaum encoding after unit propagatis shown in Figure 5 (notice
that the unit clauses are shown for clarity only).

In contrast, after removing those clauses in the Tseitiméing of the original circuit
that are not produced by applying the Plaisted-Greenbauith@mriginal circuit (recall
Example 7), BCE can remowl the remaining clauses in the following order by simulating
PL.

1. (t1Vt2) and(tz vV —ap VvV —byg), t2 is pure

2. (—tyVtg), ity is pure
3. (—tz3VagVhbp) and(—tz VvV —agV —by), -tz is pure

8 VE and Circuit-Level Simplifications

We will now show that VE, using an optimal elimination ordeyj can also achieve the
effectiveness of many of the considered circuit-level ifications.

Proposition 6 VEtgsT is at least as effective as (INSTcoy; (i) TSTns

Proof

(i) Assume a redundant output gate definitn= f(gs,...,0n). Now §®S ¢ = 0 since
all resolvents are tautologies when resolvinggdinecall Table 1).

(i) Assume a gate definitiog:= f(gs,...,0n) such that each; is a non-shared input gate.
For oR (similarly for AND), §, ® S.q, = 0. After resolving org; we are left with the
clausewfzz(gv —0i), where eachg; is then a pure literal. FotoRr, simply notice that
Sy, ®S.g, = 0. ForITE, notice thatsy, ® S.g, = (—~gV g2V gs), and therg, andgs are
both pure literals.

O
Proposition 7 VEpg is at least as effective agErsr.

Proof Follows from PG#") C TST(%7). O

19

Proposition 8 VEpg is at least as effective as ®Ccoy; (i) PGysi; and (i) PGuir.

Proof (i) Follows directly from Lemma 4.
(i) By a similar argument as in the proof of Proposition 6rt{a).
(i) Follows directly from Lemmas 3 and 9.
O

Evidently, there are also examples on whichpéEor VErst, when mentioned) can
remove more clauses than the techniques considered inrtieeffopositions above. Hence
VEpgis in fact strictly more effective than any of these techesjuHowever, there are cases
in which VE is not as effective as BCE. In fact, as we will shoexth compared to applying
only BCE or VE, one can benefit from applying tbembinationof BCE and VE.

9 Benefits of Combining BCE and VE

We will now consider aspects of applying BCE in combinatiathwE.
There are cases in which VE is not as effective as BCE. Nand@&yannot achieve the
effectiveness of MIR when applying TST, in contrast to BCE.

Proposition 9 VEtsT is not as effective aBBCErs.

Proof To see this, notice that an input gate can have arbitrarigyeléinite fanout and still be
monotone. On the other hand, ¥Eannot be applied on gates which have arbitrarily large
fanout and fanin, since the elimination boukdan then be exceeded (number of clauses
produced would be greater than the number of clauses removed

For a concrete example, consider the following circuit:

CKF’G,ﬂ = {Xl :AND(927“'7gﬂ)7"'7)(i = AND(glv'"7giflagi+17'“7gn)a
...;Xn = AND(Q1,--.,0n-1),
Y1 = OR(X1,X2),...,Yn-1 = OR(Xn-1,%n),Yn = OR(Xn,X1) }

T={(y,1),...,(Yn,) }.

Now, the Tseitin encoding &3, 5 after unit propagation (on thg variables) is

R = N v\ g A A (xivg) A A (6 VXis1) A (Xers V Xa).
1<i<k45 1<j<k+5, | 1<i, j<k+5,i#] 1<i<k+5

For anyk > 0, VE, can not eliminate any variables froﬁ@?: each of the variables
occurs three times positively akd-4 times negatively, so that eagloccurs in exacthk+7
clauses. Eliminating any, the number of distinct new non-tautological resolventsiidde
2(k+4); we have Zk+4) — (k+7) = k+1> k. Each of theg; variables occurk+ 4 times
positively andk + 4 times negatively. By eliminating any;, the number of distinct new
non-tautological resolvents would lfke+ 3)(k+ 4); we have(k+ 3)(k+4) —2(k+4) =
k% 45k 44 > k.

On the other hand, for any, BCE can removaill clauses of~s; by eliminating the
clauses in chronological order. First, all literalsin the non-binary clauses are blocking.
(this step is essentially applying Plaisted-Greenbaurfigrahis, allg; literals are blocking
and pure (this step is essentially applying MIR). After ddiuses that contain songg literal
are removed, all thg literal are blocking the remaining clauses. O

20

In general, a main point to notice is that for VE, in order thiaue the effectiveness of
BCE (on the standard Tseitin encoding), one has to applyldist®d-Greenbaum encoding
before applying VE. In addition, since VE is not confluent ontrast to BCE, in practice
the variable elimination ordering heuristics for VE has &éodgwod enough so that it forces
the “right” elimination order. In addition, there are casesvhich BCE is more effective
than VEsg.

Theorem 4 VEpgis not as effective aBBCErsr.

Proof For some intuition, consider a clauSewith blocking literall. Notice that the result
of performing VE onl is not dependent on wheth€ris removed. However, for any non-
blocking literall’ € C the number of non-tautological clauses after applying VE evould
be smaller if BCE would first remov@.

For a concrete example in which BCE can remove more clauses\ti, consider the
following formula.

F = (avbvc)A(-aVv-b)A(-aVv-c)A(=bVv-c) A
(avdve)A(avdVv—-e)A(av-dve) A(av—-dv—e) A
(bvd)A(bve)A(=bv—-d)A(=bv—-e)A(cvd)A(cVve)A(-cV—d)A(-CcV—e).

Notice thatF can be seen as a Boolean circuit in which each clauge ismrepresented
by anor-gate that is constrained to for example, the clauséaV bV c) is represented
as giavbve) ‘= OR(&,b,c). In fact, unit propagation on both the Tseitin and the Pdaist
Greenbaum encoding of this circuit gives back exak€tly

Now, it can be checked that VE cannot eliminate any of theatdes inF. However,
BCE can removéaV bV c) because the literal is blocking the clause. O

On the other hand, there are also cases in which the continatiBCE and VE can
be more effective than applying BCE or VE only. For instarimeapplying VE on a CNF
formula, new blocked clauses may arise.

Theorem 5 [BCE+ VE]rgsr is strictly more effective thaBCErsr.

Proof Consider a circuit with arxOR-gateg := XOR(g1,02) Whereg; and g, are input
gates with fanout one (non-shared). Assume ¢hat XOR(gs,0p) is rewritten as amND-
OR circuit structureg := AND(a,b), a:= OR(g1,02), b := OR(NOT(g1),NOT(02)), wherea
andb are newly introduced gates with fanout one (see Fig. 9).ddatiatg; andg, now
have fanout two. In the Tseitin encoding of this structur€Ecannot see thag andg, are
non-shared in the underlyingor. However, by first eliminating ther-gatesa andb with
VE, BCE can then remove the clauses containing the variahlaadg, (the gates become
implicitly “non-shared” again). O

In other words, there are cases in which variable elimimagsults in additional clauses
to be blocked. On the other hand, since BCE can remove theedanot produced by
the Plaisted-Greenbaum encodifBCE+ VE|pg can not be more effective thgdBCE+
VE]rsT.

Proposition 10 [BCE+ VE]rst and [BCE+ VE]pg are equally effective.

21

g:= XOR(01,02)

g:= AND(a,b),
a:= OR(Q1,02),
b:= OR(NOT(g1),NOT(g2))

Fig. 6 An XOR-gate (left) andxOR rewritten as am\ND-OR circulit structure (right)

10 Implementing BCE and Reconstructing Solutions

Before proceeding with results of an experimental evadumatin the effectiveness of BCE
and VE, we will now explain how we have implemented BCE as parbur PrecoSAT
solver pitt p: //fnv.jku. at/ precosat). Furthermore, we will address the related
and practically relevant question of how to reconstruagioel solutions to CNF formulas
when applying BCE and VE (among other simplification techei).

10.1 Implementing BCE

As explained in the following, BCE can be implemented in ailsimway as VE in the
SatElite preprocessor, which is described in [19]. Impdozed simplified implementations
of SatElite can be found in the source codes of MiniSAT 20t(p: / / m ni sat . se/)
and PrecoSAT.

Basically the BCE algorithm is implemented as follows. Fitsuch” all literals. Then,
as long as there is a touched litetalfind clauses that are blocked bymark| as not
touched any more, remove these blocked clauses, and toectegation of all literals in
these clauses. Touched literals are kept in a priority fiat ts ordered by the number of
occurrences. Literals with few occurrences are to be tried. flThis algorithm, pseudo-
code of which is given in Fig. 7, is in essence the basis foiirtiementation of BCE in
PrecoSAT starting with version 465.

10.1.1 Some Practical Aspects

In practice, we have noticed that BCE, implemented as justriteed, takes far less time
than the mentioned implementations of VE. In the common thata literal does not
block a clause, on average only a few tautological resaistare performed before a non-
tautological one is found. Thus in most application scersaBCE can almost always be run
until fixpoint (at least once).

Notice also that, similar to on-the-fly self-subsuming ftegon [24], BCE can also be
applied on-the-fly during VE. If elimination of a candidateriable would add too many re-
solvents and the variable is not eliminated, some of thecadents could still have produced
only tautologies. Such antecedents are thus blocked andeceemoved by BCE.

22

touch(F,Q,l)
determine number of occurrences of | in F
if there are no occurrences of | in F then return
if | £ Qthen enqueue(Q,l)
update position of | in Q accordingly

bce(F)
Q = new empty priority queue of literals /I sorted by number of occurrences
foreach literal | in F do touch(F,Q,I)

while Q#0do
| = dequeue(Q) /I dequeue minimum
foreach clause C € F with | e C do /I start of outer loop

foreach clause D € F with - € D do
if resolvent of C with D is non-tautological then
continue with next C in outer loop
/I all resolvents of C on | in F are tautologies and thus C is blocked
F=F\{C}
save C on stack for solution reconstruction Il see Sect. 10.2
foreach literal k € C do touch(F,Q, k)

return F

Fig. 7 Pseudo-code for implementing BCE for a CNF formEla

10.2 Reconstructing Original Solutions

For many real application scenarios of SAT it is importanbéoable to extract a full satis-
fying assignment for original SAT instances from a satisfiyassignment for the instances
after preprocessing. For instance, notice that in ExampieSgction 4, although BCE alone
can show that the original formula is satisfiable, a solutmthe original CNF formula is
not directly available. We will now show how such full solutis can be efficiently recon-
structed from solutions to the CNF formulas resulting fropplsting the combination of
BCE and VE. Furthermore, we will show thatjuivalence reasonin, 3,22], which is a
further important simplification technique (and also inmpémnted in e.g. PrecoSAT), does
not interfere with the BCE reconstruction. The presentedmstruction techniques are both
time and space wise linear, and hence have no real overheadalving.

We begin by describing how to reconstruct solutions for VE BEE techniques sepa-
rately, and then explain reconstruction in the combine@ ca®ng with an explanation of
why equivalent literals do not interfere with this process.

10.2.1 Reconstruction for Variable Elimination

We start with variable elimination for which reconstructican be seen as part of the com-
pleteness proof of DP. For the following, let Vi x) denote the result of applying variable
elimination toF w.r.t. x.

23

Proposition 11 Let T be a satisfying assignment fME(F,x). Either 74 or 7_x satisfies
S«US.x, and, the one that does, also satisfies=FWE(F,x) U (S(US.x).

To reconstruct a solution after VE has been applied repbldtadhe variablesq, . . ., Xm,
it is enough to save (remember) the clausBgU S,), ..., (S U Sx,). Assume thatr
satisfies VE---VE(VE(F,X1),X2) - -+, Xm). Let T = 1, and, iteratively fromi = mto 1,
definet' as the one of}* andt' ! which satisfiegS,, US x,). Proposition 11 guarantees
that ! is a satisfying assignment for the original forméla

If the application only requires to reconstruct one sohytiben in practiceit is enough
to only save eithe§, or S,. W.l.o.g. assum&, is saved. Then, ififxi1 satisfies the saved
S, we pickT = rij(il, since this truth assignment obviously satisfeg as well. Otherwise
x; is forced to be and we must set' = rj(fl. This case occurs if and only if there is a clause
in S for which 7'+1 assigns all literals except to f.

In an actual implementation only the smaller of the two setsved. Thus this technique
is also efficient in the case where VE is used for pure liteliahieation as discussed in
Section 6.1. In addition to plain VE, it also works for furarial substitution [19] as in the
SatElite preprocessor. The only difference between VE andtional substitution is that the
latter removes some redundant clauses f&m S x while maintaining the set of satisfying
assignments.

10.2.2 Reconstruction Blocked Clause Elimination

Now consider solution reconstruction for BCE. In analogyh® case of VE, the proof [36]
which shows that removal of a blocked clause does not turmaatisfiable formula into a
satisfiable formula, gives us grounds to reconstruct smistfor BCE (see Proposition 3).

In practice it is enough to save all removed blocked cla@es. .,Cy, together with
their blocking literald, . ..,1m.6 Let T be a satisfying assignment &, whereF, = F\
Uij:l{C,-} fori=1...mandRy =F. If 7' satisfiesC;, we pick 7'~ = 7/, and otherwise
7'~ =1/ . Using Proposition 3, one can show by induction tHagatisfies, and thust® is
a satisfying assignment fér.

10.2.3 Combined Solution Reconstruction

First, BCE and VE can be combined by saving clauses for récarisg solutions after
BCE resp. VE on the same reconstruction stack. Recongiruatorks in reverse order in
which these clauses have been saved. This also works nfd@¥H is applied on-the-fly
during VE: while counting the non-tautological resolveots, ® S to determine whether
VE is applied tax, it may occur that a clause € (S(U S x) has only tautological resolvents
w.r.t. x, even though the overall number of non-tautological remuly exceedsS,U S |,
which prevents< from being eliminated. Ye€ can be removed as a blocked clause and is
saved on the reconstruction stack.

5 By private communication with Niklas Sérensson.
6 A space efficient way to save this information is to maintaias the first literal in the saved clauge
This also allows to keep track of eliminated variables in VE.

24

10.2.4 Equivalent Literals and Solution Reconstruction

In addition to BCE and VE, various other simplification teitjues can be exploited within
the SAT solving process. One well-known and often useflirteques isequivalent literal
reduction

For two literalsl; andly, letl; = I, denote the CNF formuld1 Vv —l2) A (—l1 V1), For
a given CNF formuldF, if F - 11 =1, (that is, both of the clausé€$; V —l,) and (=11 V13)
can be derived fronk), the equivalent literall, andl, can be exploited by the equivalence
reduction in which all occurrences bfare substituted bl (or vice versa), eliminating the
variable ofl, (orI7).

In order to combine VE and equivalent literal reduction ieiugh to make sure that
VE is only attempted after all equivalent literals have béest substituted. Enforcing this
order of using equivalent literal reasoning and VE makes that variables eliminated with
VE are always representatives and the only remaining Vasatf their equivalence class.
Eliminating a representative through VE will eliminatevtlole equivalence class, and after
this it is not possible that further equivalent literals icbbie added to the equivalence class
of an eliminated variable.

In contrast to the case of combining BCE and VE, when comiBiGE with equivalent
literal reduction, the question of solution reconstructeEppears more intricate: at some
point after removing a blocked clau€ea literall which blockedC may become equivalent
to another literal and may even become a representative @jjitivalence class. On the other
hand, it could be that one would be forced to flip the valuledafring solution reconstruction
since BCE removed (recall Section 10.2.2). Hence the values of all the ligialthe
equivalence class should be flipped, which does not seemdou& in general, since this
could make some other clause unsatisfied. However, we will sltow that the value of
such d will neverhave to be flipped in such a situation during the BCE recoostnu step.
The following example highlights this fact.

Example 10Consider the CNF formula
F=(XVY)AXVaZ)A(=XVZ) A(-XVyVZ)A(YVZ).

Notice that the clausgxVy) is blocked byy w.r.t. F. Assume that BCE removég\y) from
F. Now, resolving ory, one can derive from the clausesxVv —yV z) and(yV z) the clause
(—xV z). Together with(xV —z) € F\ {(xVy)}, (-xV z) forms the equivalence= z

Consider the truth assignmentwvhich assigng (x) =f, 7(y) =t, and1(z) = f. Notice
thatt satisfies \ {(xVVy)}. Moreover, it also satisfig V' y), and hence one does not need
to flip the assignment oxin the BCE reconstruction step fax\V'y). However, if one would
still flip the assignment or to T(x) = t, one would then need to flip the assignmentzdo
7(z) =t due to the equivalence= z. Notice that these flips together result in the assignment
7(X) = 1(y) = 1(2) =t that does not satisfy the clausexV —z) € F. |

Especially, equivalent literals detected and applied impsifying a CNF formula after
removing blocked clauses cannot make the removed blockedes to not to be satisfied un-
der a satisfying assignment for the rest of the formula. Favipg this result, we recall some
well-known concepts related to resolution proofs. A segeeuf clause$Cy,Cy,...,Cp) is
a resolution derivation of the clau§sfrom a CNF formulaF if (i) C, = C, and (ii) eaclC;,
where 0< i < n, is either a clause iR (in this caseC; is called arinput clausg, or C; is the
resolvent of two clauseS; andCy, wherej,k < i. We denote by - C the fact that there is
a resolution derivation of the clau€efrom the CNF formula~. A well-known refinement
of resolution is tree-like resolution, where derivatiomsé to be representable as trees.

25

Theorem 6 Assume a CNF formula F, a clausec<CF which is blocked for kE C w.r.t. F,
and aliteral I. If F\{C}1=1",then (F\{C}Hu(l=I') E=C.

In other words, any satisfying assignment {6t \ {C}) U (I =1') also satisfies the
blocked claus€. This means that binary equivalences detected during geepsing can
be exploited when applying BCE, at the same time guarargesdirthe blocked clauses re-
moved by BCE will be satisfied by any satisfying assignmentte resulting preprocessed
CNF formula. Notice that this lemma is independent of thénégues used for deriving the
clausesid =1".

Proof (of Theorem 6Assume a CNF formul&, a clauseC = (I VIV --- V) € F which

is blocked forl € C w.r.t. F. Denote byB C F the set of clauses which contain the literal
=l. Hence each clause B contains at least one of the literald,, ..., —lx. Assume that
F\{C} -1 =Ifor some literal’, and hence there is a resolution derivatiorjlof —I") and
(=l vI") from F\ {C}.

If F is unsatisfiablef- \ {C} is also unsatisfiable sin€is blocked, and hence trivially
(F\{CHU(l =I') =C. Now consider the case th&tand (thus) als¢- \ {C} and (F \
{CHu (I =) are satisfiable. Take an arbitrary satisfying assignméot (F \ {C})U (I =
I’). We will show that any such also satisfie€.

The case in whiclt(I) =t (that is, T satisfied) is trivial. Now assume () = f. Then
1(lI’) =f sincer satisfied =I’. Consider an arbitrary resolution derivatios= (Cy, ...,Cn)
of Cn= (=l VI") from F\ {C}. Assume w.l.0.g. thatris tree-like. We claim that there is an
input clauseC’ = (-l vI{ V- V1) € Bin rrsuch thatr (1) = f for all i. SinceC’ € B, it then
follows that one of thé/s is one of the literalsil4, ..., =ly, and hence satisfiesC (recall
thatC=(IvIy V.- Viy)).

To prove the claim, we show that there is a pth .., P, of clauses int (seen as a tree)
from the root of the treeR) = C;)) to a leaf &, is an input clause afi), such that each clause
P on the path containsl andt assigns all literals if?, except-l tof.

First notice that fol?, = C,, we know thatt(—l) =t and (') = f. Now assume that
R = {-l}UD, whereD is a set of literals such that assigns every literal i to f, was
directly derived from clauses, andCy, in 11 resolving on the variable. Notice that at least
one ofC; andCy, must contain-l. First consider the case th@ contains—| andC, does
not. Sincer assigns all literals i to f, T must satisfy the literal fok in Cy,. (Otherwiser
does not satisf, which would imply thatr does not satisfy an input clauserirand hence
T cannot be a satisfying truth assignment &r\ {C}) U (I =1"), in contradiction to our
assumption.) Hence assigns all literals ilC; apart from—l to f. In this case leB, 1 = C,.
The case thdt;, contains—l andC, does not is identical.

Now consider the case that baf andC,, contain—l. Sincet assigns a unique truth
value tox, T assigns all literals in eitheZ, or Cy, apart from—l to f. In this case leB, 1 be
this particular clause. O

11 Experiments

In this section we present results of experiments on how medhction can be achieved
using BCE in combination with VE and various circuit encagtachniques. Here reduction
is measured in the size of the CNF formula before and aftgrpoessing, and on the other
hand, as gain in the number of instances solved.

26

11.1 Experiment Setup

We used all formulas of SMT-Libht t p: // snt | i b. or g) over the theory of bit-vectors
(QF_BV) made available on July 2, 2009, as a practice benchmarfoséhe SMT com-
petition 2009. From these we removed the large number oflyntstial SAGE exam-
ples. The remaining 3672 SMT problems were bit-blasted td-Awerter Graphs (AIGs)
in the AIGER format lat t p: // fmv. j ku. at / ai ger) using our SMT solver Boolec-
tor [10]. Furthermore, we used the AIG instances used in, [@@hsisting of two types of
instances: (i) AlGs representing BMC problems (with stepriabk = 45) obtained from
all the 645 sequential HWMCC'O&(t p: // fnmv. j ku. at / hwntc08) model check-
ing problems, and (ii) 62 AlGs from the structural SAT tradkitee SAT competition. We
have made the SMT-Lib instances publicly availablatat p: / / f mv. j ku. at / ai ger/
smt gf bv- ai gs. 7z (260MB); the others cannot be distributed due to licenséices
tions. However, the HWMCC’08 instances can easily be regeee using publicly avail-
able toold and the model checking benchmarks availabléntat p: / / f nv. j ku. at /
hwnrcc08.

11.2 Results on Achieved Simplifications

We encoded these 4379 structural SAT instances with foaritthgns: the standard Tseitin
encoding [47], the Plaisted-Greenbaum polarity-basedding [43], the Minicirc encoder
based on technology mapping [20] and VE, and the most redeeDRG encoder [40, 13].
The NiceDAG implementation was obtained from the authows. Minicirc, we used an
improved implementation of Niklas Eén.

In order to additionally experiment with application benwrks already in CNF, we
also included 292 CNF formulas of the application track @& AT competition 2009 to
our benchmark set. All resulting CNF formulas were prepssee with VE alone (further
abbreviated e), and separately first with BCE (b), followgdME (e), and both repeated
again, which altogether gives 6 versions of each CNF forrfndeBCE or VE, €, b, be, beb,
bebe). We call such an application of one preprocessingitiigg either BCE or VE, which
is run to completion, @reprocessing phase

The results are presented in Table 2. The first column ligsbdgnchmark family: S
= SAT’09 competition, A = structural SAT track, H = HWMCC'08 = bit-blasted bit-
vector problems from SMT-Lib. These are all AIGs except fig CNF formulas in S. The
next column gives the encoding algorithm used: T = Tseitia,Maisted-Greenbaum, M =
Minicirc, N = NiceDAG, and U = unknown for the S family alreadyCNF. The t columns
give the sum of the time in seconds spent in one encodingfprepsing phase. The columns
V and C list in millions the sum of numbers of variables andisks over all produced CNF
formulas in each phase.

We applied a time limit of 900 seconds and a memory limit ofgldB for each encoder
and each preprocessing phase. Thus 139 out of 106884 - 4379+ 292) CNF formulas
were not generated: HM encoding ran out of memory on 5 vegel&MC instances, one
large CNF formula in S could not be preprocessed at all, aeckttvas a problem with the
parser in NiceDAG, which could not parse 14 actually ratheals AIGs in BN. Further-
more, there were 10 timeouts for various preprocessinggstiaghe A family: 2 in AT/beb,

7 Notice that COIl is performed already in the generation psdsy these tools. However, we did not
implement the non-trivial NSI or MIR for the experiments.

27

Table 2 Effectiveness of BCE in combination with VE using variouseders. Values in the table are sums over all instances isgéeific benchmark family: S = SAT'09

competition, A = structural SAT track, H = HWMCC’08, B = bitdsted bit-vector problems from SMT-Lib. Circuit encodefs= Tseitin, P = Plaisted-Greenbaum, M =
Minicirc, N = NiceDAG, and U = unknown for the S family alreadyCNF. Columns: t = sum of running times over all instanceth@specific benchmarks family, V = sum of
numbers of variables in the resulting CNF formulas in milipC = sum of numbers of clauses in the resulting CNF forminlasllions. The CNF-level preprocessors run after

the circuit encoders: encoding = no CNF-level preprocesdin- BCE, e = VE, be = BCE followed by VE, beb = be followed by B®Ebe = beb followed by VE.

encoding b be beb bebe e
t V C t V C t V C t V C t V C t V C

S U 0 46 256 | 2303 29 178| 1042 11 145] 1188 11 145| 569 11 144| 2064 11 153
AT 12 9 27| 116 7 18| 1735 1 8| 1835 1 6 34 1 6| 244 1 9

A P 10 9 20 94 7 18| 1900 1 6 36 1 6 34 1 6 | 1912 1 6
A M 190 1 8 42 1 7| 178 1 7| 675 1 7 68 1 7 48 1 8

A N 9 3 10 50 3 10| 1855 1 6 36 1 6 34 1 6 | 1859 1 6
H T 147 121 347| 1648 117 277| 2641 18 118| 567 18 118| 594 18 116| 3240 23 140
H P 130 121 286| 1398 117 277| 2630 18 118| 567 18 118| 595 18 116| 2835 19 119
H M 6961 16 91| 473 16 84| 621 12 78| 374 12 77| 403 12 76| 553 15 90
H N 134 34 124| 573 34 122| 1185 17 102| 504 17 101| 525 17 100| 1246 17 103
B T 577 442 1253| 5799 420 1119 7023 57 321| 1410 56 310| 1505 52 294| 8076 64 363
B P 542 442 1153| 5461 420 1119 7041 57 321| 1413 56 310| 1506 52 294| 7642 57 322
B M 10024 59 311| 1252 58 303| 1351 53 287| 1135 53 286| 1211 52 280| 1435 55 303
B N 13148 196 643| 2902 193 635| 4845 108 508| 2444 107 504| 2250 105 500| 5076 114 518

28

2 in AN/be, 2 in AN/e, 2 in AP/be, and 2 in AP/e. However, exceptthe one large CNF
formula, where also VE run out of memory, there is not a simglee where BCE did not
run until completion within the given time and memory limits

The results show that the combination “be” of BCE and VE abvgiyes better results
than VE (e) alone, with comparable speed. Using a seconethab) of BCE gives further
improvements, even more if VE is also applied a second tirebep The CNF sizes after
applying BCE (b) for the P encoder and the T encoder are egsaxpected. Further pre-
processing, however, diverges: since clauses and literalpermuted, VE is not confluent,
and thus VE phases can produce different results.

Notice that BCE on the Tseitin encoding (row T, column b) reesomore clauses and
variables than what are removed by the Plaisted-Greenbaoodmg (row P, column “en-
coding”) for each of the three AIG instance families A, H, @dwvhich is in line with out
analysis on the effectiveness of BCE. A further intereséisgect to notice is that the com-
bination bebe of BCE and VE compares well against the Mioiaivd NiceDAG encoders.
Especially, on the bit-vector AlG instances (rows B), theéeombination on the Tseitin en-
coding (row T, column bebe) removes more clauses and vagaban both of Minicirc (row
M, column “encoding”) and NiceDAG (row N, column “encodingrhis is true even when
VE is run after these circuit encoders (rows M and N, columé#)ile the remaining num-
bers of clauses and variables are in the same range as faritdjrihe difference between
bebe and NiceDAG is notable: the numbers of clauses andolesiaroduced by NiceDAG
are close to double the numbers for bebe. For the implenmensatised in this experiment,
the total running time on the bit-vector AIG instances fa tombination of Tseitin encod-
ing and applying bebe was around @60 seconds, compared to aroundd and 13000
for Minicirc and NiceDAG, respectively, without VE, and ared 11500 and 18000 with
VE, respectively.

An alternative view to the reduction achieved by BCE, VE, #melr combinations is
given in Figures 8 and 9. The plot in Figure 8 shows the absaiues of the original and pre-
processed CNF formulas. The horizontal axis ranges ov&Nif formulas sorted for each
preprocessing phase individually with respect to the nurobelauses in the CNF formulas
(similarly as in “cactus” plots used in presenting the ressaf the SAT competitions). The
vertical axis gives the number of clauses in the sorted ftasad he plot in Figure 9 shows
the percentage of clauses remaining after preprocessmthedplots shows blocked clause
elimination (“b”) already reduces CNF size. Variable ehaion alone (“e”) is consider-
ably more effective, but can be improved by combining it watbcked clause elimination
(“be™). This trend continues if these preprocessing tegphes are applied repeatedly (twice
in “bebe”)8

Notice that, in addition to “be”, “beb”, and “bebe”, one cdullso study the effect of the
variants “eb”, “ebe”, and “ebeb”. However, we do not consitteese variants here due to
the following reasons. First, notice that by eliminatingudes using BCE can onilycrease
the number of possible variable eliminations by M&r anyk, since removing clauses does
not increase the number of variable occurrences. Secotideribat the property of a clause
being blocked is maintained by VE in the sense that any reabbf a blocked clause either
remains blocked (in case the eliminated variable does natribate to the fact that the
clause is blocked) or is a tautology (otherwise). HenceyapgIBCE after each round of
VE can eliminate resolvents of blocked clauses and als@ase the benefit of the next
round of VE, actually re-enabling VE.

8 VE and BCE are idempotent: “ee = ¢” and “bb = b”.

29

1e+08 T T T T T T T

1le+07 F

1le+06 F

100000

10000

1000

Number of clauses

100

10 F |

1 H L L 1
0 500 1000 1500 2000 2500 3000 3500 4000

Index

Fig. 8 Number of clauses in preprocessed CNF formulas starting fhe Tseitin encoding (“none”), fol-
lowed by one round of blocked clauses elimination (“b”), anand of variable elimination (“e”), combi-
nation blocked clause and variable elimination once (“lzf)l twice (“bebe”). The horizontal axis ranges
over CNF formulas sorted for each preprocessing phaseiddilly with respect to the number of clauses in
the CNF formula(similarly as in “cactus” plots used in preieg the results of the SAT competitions). The
vertical axis gives the absolute number of remaining claiuseach CNF formula on a logarithmic scale.

11.3 Results on the Effect on Solving Times

Reducing the size of a CNF formula by preprocessing does exegsarily lead to faster
running times. In this section we address the question ofdyaplying BCE can affect state-
of-the-art CDCL and local search SAT solvers.

11.3.1 Effect o BCEon CDCL Solvers

Although it was impossible to run all structural instancathva large time limit, we per-
formed preliminary experiments with a time limit of 90 sedenWe used PrecoSAT v236,
the winner of the application track of the SAT competitior©20The results were inconclu-
sive. Running preprocessing until completion takes a clemable portion of the 90 seconds
time limit, even if restricted to VE.

It should be noted that the success of PrecoSAT showsiripaicessingi.e., inter-
leaving preprocessing with CDCL search (and thus not runpireprocessing until com-
pletion) is a much better strategy than typical run-to-clatipn preprocessing, particularly
if preprocessors are run during inprocessing repeatedtlly, emough time spent on search
in-between. However, this strategy is difficult to evaluabgectively when many prepro-
cessing techniques are combirfe@herefore, for these experiments, we decided to stick

9 In PrecoSAT we have failed literal preprocessing, varimrmé of equivalence reasoning, explicit pure
literal pruning, BCE, VE, combined with on-the-fly subsuropt

30

100

80

60

Percentage of clauses remaining

20

bebe
O | - J | - 1 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500 4000
Index

Fig. 9 Size reduction by preprocessing after one round of blockadses elimination (“b”), one round
of variable elimination (“e”), combination blocked clauard variable elimination once (“be”) and twice
(“bebe”). The horizontal axis ranges over CNF formulasesbifor each preprocessing phase individually
with respect to the size reduction measured in the numbezméining clauses. The vertical axis gives the
percentage of clauses remaining in each CNF formula.

with the run-to-completion approach, which also gives satear indication of how much
CNF size reduction can be achieved through BCE.

For the 292 SAT competition instances we were able to rundXA&E with a more
reasonable timeout of 900 seconds. The cluster machind$ardbe experiments, with Intel
Core 2 Duo Quad Q9550 2.8-GHz processor, 8-GB main memanmpimg Ubuntu Linux
version 9.04, are around two times as fast as the ones uskd first phase of the 2009
SAT competition. In the first phase of the competition, witkimilar time limit, PrecoSAT
solved many more instances than competitors. The resuhgsaxperiment show that using
BCE is somewhat beneficial: PrecoSAT solves 176 originghimses, 177 preprocessed by
BCE and VE alone (b and e, respectively), 179 be instancésb&B instances, and 183
bebe instances. If we accumulate the time for all the pregmsiog phases and add it to the
actual running time, then 181 instances can be solved iragiease. For the other cases the
number of solved instances does not change.

These numbers are confirmed by similar experiments with$Ami2.2.0 as the backend
solver. Plain MiniSAT without preprocessing solves 154tanses. Enabling the internal
preprocessor of MiniSAT, which implements a variant of Viveg 169 solved instances.
Combining blocked clause elimination with this versionvesl 171 instances. In this last
experiment we used PrecoSAT 465 as BCE preprocessor (camnimarswitch “ k - p”)
and the result was fed into MiniSAT. The time is measured lmiraglup preprocessing time
and the time of running MiniSAT.

31

11.3.2 Effect oBCE on Local Search

We now turn to the question of the effect of applying BCE on GB\el stochastic local
search (SLS) for SAT. It is well-known that, at present, Cle¥el SLS solvers are most
often highly inferior to CDCL solvers on real-world appliza instance families. Examples
of such families of instances include the instances reguftiom CNF encodings of AIGs
as well as the SAT competition application benchmarks whiehused in Sections 11.2
and 11.3.1 for evaluating the simplification power of BCE afte, and the performance
of state-of-the-art CDCL solvers when applying BCE. Thus, dvaluating the effect of
BCE on the efficiency of CNF-level SLS solvers, we need to iclamslternative sources of
instances.

It is well-known that SLS solvers show strong performanceramdomly generated
SAT problems. However, we have noticed that randeBAT instances contain almost no
blocked clauses, especially when considering the mostudliffinstances taken from the
satisfiability threshold.

For a possible alternative source of benchmark instanedssttisfy both of our re-
quirements that (i) state-of-the-art SLS solvers perforell wn the instances, and (i) the
instances contain a non-negligible number of blocked elsuse analyzed the results of the
crafted satisfiable instance category of the 2011 SAT Catigretht t p: / / sat conpeti ti on.
or g/ 2011). Among those instance families, we were able to pinpointehinteresting
families of instanced:r b, r bsat , andsr hd.

We solved these instances with the adaptg2wsat+p SLS tgof88] using the imple-
mentation available in the UBCSAT SLS version 1.1 solvel [#6t p: / / www. sat | i b.
or g/ ubcsat /). To the best of our knowledge, adaptg2wsat+p is among teedoerent
SLS solvers for such crafted SAT instances. We ran the solverach instance 1000 times
using random seeds without timeout. The results of thisxeat are presented in Table 3
for representative instances from each family. In the tdfflips” and “time” represent the
median number of flips performed and the median running timaegconds used for each
instance, respectively. We note that the time needed toy&PE on these instances was
negligible (typically less than.@ seconds). The effect of BCE seems to be consistent for all
the instances: removing blocked clauses by BCE does ndiaths influence the number
of flips required to solve any of the instances. Howeverregtngly the solving times are
improved by a non-negligible amount. We suspect that thikuesto the fact the computa-
tional cost per flip is reduced after removing blocked clawsith BCE since smaller lookup
tables are needed on the implementation level for perfagrifie actual search.

The fact that BCE does not appear to have a notable influentleeonumber of flips
performed by SLS leads to the following conjecture: block&ises are often either sat-
isfied or, when falsified, easy to satisfy during local seafahr some intuition, consider
an arbitrary complete assignmenbver the variables of a CNF formula. Assume that
characterizes the current configuration of a CNF-level Shi®es. Take any blocked clause
C € F, and letl € C be a blocking literal. Now, itC is falsified byt, then we know by the
definition of blocked clauses thatsatisfies at least two literals of each claus€ iim which
the literal—I occurs. Hence by flippingto t, C becomes satisfied while all clauses satisfied
by T remain satisfied.

32

Table 3 The effect of applying BCE on the performance of the adapsg?#p SLS algorithm when solving
representative instances of three families from the alafatisfiable track of the 2011 SAT Competition. The
columns have the following explanations: size = the sizehef ENF formula (original and after applying
BCE, flips = the median number of flips performed by adaptg2wsaime = the median running time of
adaptg2wsat+p in seconds.

Original CNF formula CNF formula after BCE
CNF formula size | flips | time (s) size | flips | time (s)
frb45-21-1 61855 | 2600763 12.47 | 49961 | 2640216 9.70
frb75-13-2 34275 181756 0.50 27588 181531 0.39
frb80-14-2 43179 | 1129643 3.50 34948 | 1131352 2.77
rbsat-v1150c84314g1l 84314 | 7737733 43.24 67882 | 7042883 31.01
rbsat-v945c61409g3 61409 | 3129700 14.47 51959 | 3231077 12.23
rbsat-v945c61409gyesi 61409 | 4591362 21.17 51959 | 4273371 15.93
srhd- m27- q255- n25- p30 45238 | 3242589 13.10 36691 | 3372989 11.77
srhd- n82- g369- n30- p15 82294 | 1357707 7.39 69274 | 1369229 6.78
srhd- nB7- g446- n35- p15 | 129272 | 2100255 18.65 | 112111 | 1999134 12.93

12 Conclusions

This work addresses the important question of interplayveeh problem structure and
practical reasoning techniques for Boolean satisfiabilitye focus is on analyzing con-
junctive normal form (CNF) level reasoning techniques agldting the behavior of such
techniques with the behavior of known techniques that worknore structural representa-
tion forms of Boolean satisfiability instances, especjaltythe level of Boolean circuits. In
more detail, we analyzed the two CNF-level simplificatiochi@iques of SatElite-style vari-
able elimination (VE) and what we call blocked clause eliation (BCE). We showed that
BCE, although a simple concept, is surprisingly effectiméhout any explicit knowledge
of the underlying circuit structure, BCE achieves the saimplifications as combinations
of circuit-level simplifications and the well-known polgribased Plaisted-Greenbaum CNF
encoding. This implies that the effect of such specializiecud-level techniques can ac-
tually be systematically accomplished directly on the ABNel. Furthermore, in contrast
to specialized circuit-level techniques, BCE can be ndljuepplied on any CNF formula,
regardless of its origin. We also showed that VE can achiezrynof the same effects as
BCE (but not all). It turns out that VE and BCE are indeed jélstiorthogonal techniques,
which motivates combining these two techniques for achg@éven better simplification.
Further, we showed how witnesses to original CNF formulasheareconstructed from so-
lutions acquired after applying combinations of BCE, VEdJ @guivalent literal reduction
on the formulas. Experimental results with an implemeatatf a CNF-level preprocessor
combining BCE and VE show that BCE can be applied effectieglyg efficiently, though
the improvement due to using BCE in combination with VE wiglspect to solving more
instances appears to be at most modest.

It is also possible to improve SAT solver running timesdmding (instead ofremov-
ing by BCE) blocked clauses to CNF formulas in intelligent wayéhile motivated by
proof complexity theoretical arguments [36] as well as tleerpractical evidence presented
in [26, 34] using manually added domain-specific blockedsds, this question poses mul-
tiple challenges. For example, in contrast to BCE, addimgh®d clauses is not confluent,
and in general there is an exponential number of posséslii introduce blocked clauses
to CNF formulas. In fact, without restricting the focus orrigales that already occur in
a formula, allowing one to add arbitrary blocked clauses mformula covers the exten-

33

sion rule of the extremely powerful Extended Resolutionopsystem [47,36]. While the
possibilities of applying the extension rule within CDCL B#olvers have been studied [1,
27], the resulting implementations do not yet reach the gatiential on specific families
of CNF formulas that are known to be easy for extended rasollut hard for resolution
(including pigeon-hole formulas). This hints to the difentthat it is difficult to exploit the
potential of blocked clause addition even for formulas fdvich it is known that this tech-
nigue could—in principle—improve solving times signifitgnWe note that studying pos-
sibilities of improving SAT solver running times by deveiog novel ways oautomatically
addingblocked clauses is out of the scope of this work. Howeves atiinteresting question
whether one could benefit from developing good heuristicafiplying a combination of
restricted BCE and addition of blocked clauses. Our firgty yeeliminary experiments on
automatically adding blocked clauses, performed afteativeptance of this article, has led
us to conjecture that it is at least non-trivial to enhan@pghrformance of CDCL solvers
via adding blocked clauses. However, understanding thétylieetween eliminating and
adding blocked clauses for practical purposes remainge®sting future work.

Acknowledgements The authors thank Niklas Eén and Pete Manolios, respégtii@ providing up-to-
date versions of the Minicirc and NiceDAG encoders usedérettperiments. The first author thanks Tommi
Junttila for multiple extended discussions related to ihauit simplifications implemented in thec2cnf
tool.

References

1. Audemard, G., Katsirelos, G., Simon, L.: A restrictioneatended resolution for clause learning SAT
solvers. In: M. Fox, D. Poole (eds.) Proceedings of the 248ARConference on Artificial Intelligence
(AAAI 2010). AAAI Press (2010)

2. Bacchus, F.: Enhancing Davis Putnam with extended bidkatyse reasoning. In: Proceedings of the
18th National Conference on Atrtificial Intelligence (AAA0@2), pp. 613—619. AAAI Press (2002)

3. Bacchus, F., Winter, J.: Effective preprocessing withdmnresolution and equality reduction. In: Pro-
ceedings of the 6th International Conference on Theory goliéations of Satisfiability Testing (SAT
2003),Lecture Notes in Computer Scieneel. 2919, pp. 341-355. Springer (2004)

4. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli,Satisfiability modulo theories. In: Biere et al. [6],
pp. 825-885

5. Biere, A,, Clarke, E.M., Raimi, R., Zhu, Y.: Verifiying gy properties of a power PC microprocessor
using symbolic model checking without BDDs. In: N. Halbwach. Peled (eds.) Proceedings of the
11th International Conference on Computer Aided Verifaa{CAV 1999),Lecture Notes in Computer
Sciencevol. 1633, pp. 60-71. Springer (1999)

6. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (edslandbook of SatisfiabilityFrontiers in
Artificial Intelligence and Applicationsvol. 185. 10S Press (2009)

7. Biere, A., Lonsing, F., Seidl, M.: Quantified blocked datelimination. In: Proceedings of the 23nd
International Conference on Automated Deduction (CADE-28cture Notes in Computer Science.
Springer (2011)

8. Boy de la Tour, T.: An optimality result for clause formrigdation. Journal of Symbolic Computation
14(4), 283-302 (1992)

9. Brafman, R.l.: A simplifier for propositional formulastwimany binary clauses. |IEEE Transactions on
Systems, Man, and Cybernetics, Pai3#1), 52—59 (2004)

10. Brummayer, R., Biere, A.: Boolector: An efficient SMT &l for bit-vectors and arrays. In:
S. Kowalewski, A. Philippou (eds.) Proceedings of the 16thrnational Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACA8%),Lecture Notes in Computer Science
vol. 5505, pp. 174-177. Springer (2009)

11. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, 8ebastiani, R.: The MathSAT 4 SMT solver.
In: A. Gupta, S. Malik (eds.) Proceedings of the 20th Intéamal Conference on Computer Aided
Verification (CAV 2008),Lecture Notes in Computer Scieneel. 5123, pp. 299-303. Springer (2008)

34

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich,;The OpenSMT solver. In: J. Esparza, R. Majum-
dar (eds.) Proceedings of the 16th International Conferencrools and Algorithms for the Construction
and Analysis of Systems (TACAS 201@)ecture Notes in Computer Sciepe®l. 6015, pp. 150-153.
Springer (2010)

Chambers, B., Manolios, P., Vroon, D.: Faster SAT saglviith better CNF generation. In: Proceedings
of Design, Automation and Test in Europe (DATE 2009), pp.@58%95. IEEE (2009)

Davis, M., Putnam, H.: A computing procedure for quasdifon theory. Journal of the ACM(3),
201-215 (1960)

de Moura, L.M., Bjgrner, N.: Z3: An efficient SMT solven: IC.R. Ramakrishnan, J. Rehof (eds.) Pro-
ceedings of the 14th International Conference on Tools dgdridhms for the Construction and Analysis
of Systems (TACAS 2008).ecture Notes in Computer Scieneel. 4963, pp. 337—-340. Springer (2008)
Drechsler, R., Junttila, T., Niemela, I.: Non-clauSAT and ATPG. In: A. Biere, M.J.H. Heule, H. van
Maaren, T. Walsh (eds.) Handbook of Satisfiabilfyontiers in Atrtificial Intelligence and Applications
vol. 185, chap. 21, pp. 655-694. IOS Press (2009)

Dunham, B., Fridshal, R., Sward, G.: A heuristic progfanproving elementary logical theorems. In:
Proceedings of the International Conference on Informa@imcessing (IFIP 1959), pp. 282-284 (1959)
Dunham, B., Wang, H.: Towards feasible solutions of &wdlogy problem. Annals of Mathematical
logic 10, 117-154 (1976)

Eén, N., Biere, A.: Effective preprocessing in SAT tigh variable and clause elimination. In: F. Bac-
chus, T. Walsh (eds.) Proceedings of 8th International &enice on Theory and Applications of Satis-
fiability Testing (SAT 2005)Lecture Notes in Computer Scieneel. 3569, pp. 61-75. Springer (2005)
Eén, N., Mishchenko, A., Sorensson, N.: Applying togynthesis for speeding up SAT. In: J. Marques-
Silva, K.A. Sakallah (eds.) Proceedings of the 10th Intéonal Conference on Theory and Applica-
tions of Satisfiability Testing (SAT 2007)ecture Notes in Computer Sciene®el. 4501, pp. 272—-286.
Springer (2007)

Ganesh, V., Dill, D.L.: A decision procedure for bit-tas and arrays. In: W. Damm, H. Hermanns
(eds.) Proceedings of the 19th International ConferencEamputer Aided Verification (CAV 2007),
Lecture Notes in Computer Scieneel. 4590, pp. 519-531. Springer (2007)

Gershman, R., Strichman, O.: Cost-effective hypestotien for preprocessing CNF formulas. In:
F. Bacchus, T. Walsh (eds.) Proceedings of the 8th IntemmatiConference on Theory and Applica-
tions of Satisfiability Testing (SAT 2005)ecture Notes in Computer Sciene®l. 3569, pp. 423-429.
Springer (2005)

Han, H., Somenzi, F.: Alembic: An efficient algorithm ONF preprocessing. In: Proceedings of the
44rd Design Automation Conference (DAC 2007), pp. 582-28D7)

Han, H., Somenzi, F.: On-the-fly clause improvement. nKullmann (ed.) SATLecture Notes in
Computer Sciengevol. 5584, pp. 209-222. Springer (2009)

Heule, M.J.H., van Maaren, H.: Aligning CNF- and equévale-reasoning. In: H.H. Hoos, D.G. Mitchell
(eds.) SAT 2005 Selected Revised Papkegture Notes in Computer Scieneel. 3542, pp. 145-156.
Springer (2005)

Heule, M.J.H., Verwer, S.: Exact DFA identification si8AT solvers. In: J.M. Sempere, P. Garcia
(eds.) Proceedings of the 10th International ColloquiunGoammatical Inference: Theoretical Results
and Applications (ICGI 2010).ecture Notes in Computer Scieneel. 6339, pp. 66—79 (2010)

Huang, J.: Extended clause learning. Artificial Ingglhcel74(15), 1277-1284 (2010)

Jackson, P., Sheridan, D.: Clause form conversions doteBn circuits. In: H.H. Hoos, D.G. Mitchell
(eds.) SAT 2004 Selected Revised Papkesture Notes in Computer Scieneel. 3542, pp. 183-198.
Springer (2005)

Jarvisalo, M., Biere, A.: Reconstructing solutionteablocked clause elimination. In: O. Strichman,
S. Szeider (eds.) Proceedings of the 13th Internationafe@emce on Theory and Applications of Sat-
isfiability Testing (SAT 2010)Lecture Notes in Computer Sciena®l. 6175, pp. 340-345. Springer
(2010)

Jarvisalo, M., Biere, A., Heule, M.J.H.: Blocked clawgimination. In: J. Esparza, R. Majumdar (eds.)
Proceedings of the 16th International Conference on TawmdsAlgorithms for the Construction and
Analysis of Systems (TACAS 2010).ecture Notes in Computer Scienosl. 6015, pp. 129-144.
Springer (2010)

Jha, S., Limaye, R., Seshia, S.A.: Beaver: Engineenirgffacient SMT solver for bit-vector arithmetic.
In: A. Bouajjani, O. Maler (eds.) Proceedings of the 21stinational Conference on Computer Aided
Verification (CAV 2009),Lecture Notes in Computer Scieneel. 5643, pp. 668-674. Springer (2009)
Jin, H., Somenzi, F.: An incremental algorithm to cheatis§iability for bounded model checking. Elec-
tronic Notes in Theoretical Computer Scierice)(2), 51-65 (2005)

Jussila, T., Biere, A.: Compressing BMC encodings wiiFQElectronic Notes in Theoretical Computer
Sciencel74(3), 45-56 (2007)

35

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Kautz, H.A., Ruan, Y., Achlioptas, D., Gomes, C.P., $ginB., Stickel, M.E.: Balance and filtering in
structured satisfiable problems. In: B. Nebel (ed.) Proogsdof the 17th International Joint Conference
on Artificial Intelligence (IJCAI 2001), pp. 351-358. Morg&aufmann (2001)

Kullmann, O.: New methods for 3-SAT decision and woestecanalysis. Theoretical Computer Science
2231-2), 1-72 (1999)

Kullmann, O.: On a generalization of extended resafutiDiscrete Applied Mathematic®6-97 149—
176 (1999)

Le Berre, D.: Exploiting the real power of unit propagatiookahead. Electronic Notes in Discrete
Mathematics9, 59—-80 (2001)

Li, C.M., Wei, W., Zhang, H.: Combining adaptive noiseldook-ahead in local search for SAT. In:
J. Marques-Silva, K.A. Sakallah (eds.) Proceedings of @itk International Conference on Theory and
Applications of Satisfiability Testing (SAT 2007), Lectunotes in Computer Science, pp. 121-133.
Springer (2007)

Lynce, |., Marques-Silva, J.: The interaction betweemp$fication and search in propositional satisfia-
bility. In: CP’01 Workshop on Modeling and Problem Formidat(2001)

Manolios, P., Vroon, D.: Efficient circuit to CNF conviers. In: J. Marques-Silva, K.A. Sakallah (eds.)
Proceedings of the 10th International Conference on ThaondyApplications of Satisfiability Testing
(SAT 2007),Lecture Notes in Computer Scieneel. 4501, pp. 4-9. Springer (2007)

Mishchenko, A., Chatterjee, S., Brayton, R.K.: DAG-evAIG rewriting: A fresh look at combinational
logic synthesis. In: E. Sentovich (ed.) Proceedings of el Design Automation Conference (DAC
2006), pp. 532-535. ACM (2006)

Ostrowski, R., Grégoirds., Mazure, B., Sais, L.: Recovering and exploiting strradténowledge from
CNF formulas. In: P.V. Hentenryck (ed.) Proceedings of ttiel8ternational Conference on Principles
and Practice of Constraint Programming (CP 20Q2%ture Notes in Computer Sciene®l. 2470, pp.
185-199. Springer (2002)

Plaisted, D.A., Greenbaum, S.: A structure-preserdiiagise form translation. Journal of Symbolic
Computation2(3), 293-304 (1986)

Purdom, P.W.: Solving satisfiability with less searghinEEE Transactions on Pattern Analysis and
Machine Intelligences(4), 510-513 (1984)

Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasenigble elimination resolution for preprocess-
ing SAT instances. In: H.H. Hoos, D.G. Mitchell (eds.) SATOZ0Selected Revised Papet®cture
Notes in Computer Scienceol. 3542, pp. 276—291. Springer (2005)

Tompkins, D.A., Hoos, H.H.: UBCSAT: An implementationdaexperimentation environment for SLS
algorithms for SAT & MAX-SAT. In: Online Proceedings of théh7international Conference on Theory
and Applications of Satisfiability Testing (SAT 2004) (2004

Tseitin, G.S.: On the complexity of derivation in projiosal calculus. In: J. Siekmann, G. Wrightson
(eds.) Automation of Reasoning 2: Classical Papers on Ctatipoal Logic 1967-1970, pp. 466-483.
Springer (1983)

Van Gelder, A.: Toward leaner binary-clause reasomraysatisfiability solver. Annals of Mathematics
and Artificial Intelligence43(1), 239—-253 (2005)

