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Abstract. We develop and analyze clause elimination procedures, a specific fam-
ily of simplification techniques for conjunctive normal form (CNF) formulas. Ex-
tending known procedures such as tautology, subsumption, and blocked clause
elimination, we introduce novel elimination procedures based onhidden and
asymmetricvariants of these techniques. We analyze the resulting nine(including
five new) clause elimination procedures from various perspectives: size reduc-
tion, BCP-preservance, confluence, andlogical equivalence. For the variants not
preserving logical equivalence, we show how to reconstructsolutions to original
CNFs from satisfying assignments to simplified CNFs. We alsoidentify a clause
elimination procedure that does a transitive reduction of the binary implication
graph underlying any CNF formula purely on the CNF level.

1 Introduction

Simplification techniques applied both before (i.e., in preprocessing) and during search
have proven integral in enabling efficient conjunctive normal form (CNF) level Boolean
satisfiability (SAT) solving for real-world application domains. Indeed, there is a large
body of work on preprocessing CNF formulas (see [1–11] for examples), based on
e.g. variable elimination and equivalence reasoning. Further, while many SAT solvers
rely mainly on Boolean constraint propagation (i.e., unit propagation) during search,
it is possible to improve solving efficiency by applying additional simplification tech-
niques also during search, as witnessed e.g. by PrecoSAT (http://fmv.jku.at/
precosat)—one of the most successful SAT solvers in the 2009 SAT Competition.
Noticeably, when schedulingcombinationsof simplification techniques during search,
even quite simply ideas, such as removal of subsumed clauses, can bring additional
gains by enabling further simplifications by other techniques.

This work is motivated on one hand by the possibilities of lifting SAT solving effi-
ciency further by integrating additional simplification techniques to the solving process
before and/or during search, and on the other by understanding the relationships be-
tween different simplification techniques. In this paper, we concentrate on developing
and analyzing clause elimination procedures, a specific family of simplification tech-
niques for CNF formulas. Prior examples of such procedures are (explicit) tautology
elimination (removing all tautologies from a CNF), subsumption elimination [7] (re-
moving all subsumed clauses), and blocked clause elimination [11] (removingblocked
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clauses[12]). As extensions of these procedures we introduce novelelimination proce-
dures based onhiddenandasymmetricvariants of the techniques.

We analyze the resulting nine clause elimination procedures from various perspec-
tives. One property iseffectiveness(or size reduction), i.e., the ability to remove clauses
and thus reduce the size of the CNF formula. Another orthogonal and practically rel-
evant property isBCP-preservance, i.e, the ability to preserve all possible Boolean
constraint propagations (i.e., unit propagations) that can also be done on the original
CNF. The third property,confluence, implies that a procedure has a unique fixpoint.
The fourth islogical equivalencew.r.t. the original CNF, i.e. preserving the set of sat-
isfying assignments. For the variants that do not preserve logical equivalence, we show
how to efficiently reconstruct solutions to original CNFs from satisfying assignments
to simplified CNFs; this is important since in many application scenarios one needs to
extract a satisfying assignment (witness) to the original SAT instances. Furthermore,
we develop an extension of hidden tautology elimination that does atransitive reduc-
tion [13] (a structural property) of the binary implication graph underlying any CNF
formula purely on the CNF level. We also evaluate the practical effectiveness of selected
procedures, investigating both the CNF size reduction and resulting solving times.

This paper is organized as follows. After preliminaries (Sect. 2), we present an
overview of the results on the properties of clause elimination procedures (Sect. 3).
Then detailed analysis is presented (Sect. 4–6), followed by a section on solution recon-
struction (Sect. 7). Then, before concluding, experimental results are presented (Sect. 8).

2 Preliminaries

CNF. For a Boolean variablex, there are twoliterals, the positive literal, denoted by
x, and the negative literal, denoted byx̄. A clauseis a disjunction of literals and a CNF
formula a conjunction of clauses. A clause can be seen as a finite set of literals and
a CNF formula as a finite set of clauses. Aunit clausecontains exactly one literal. A
clause is atautologyif it contains bothx andx̄ for somex. A truth assignment for a
CNF formulaF is a functionτ that maps variables inF to {t, f}. If τ(x) = v, then
τ(x̄) = ¬v, where¬t = f and¬f = t. A clauseC is satisfied byτ if τ(l) = t for some
l ∈ C. An assignmentτ satisfiesF if it satisfies every clause inF . The set of literals
occurring in a CNF formulaF is denoted bylits(F ). Formulas arelogically equivalent
if they have the same set of satisfying assignments over the common variables.

BCP and Failed Literals. For a CNF formulaF , Boolean constraint propagation
(BCP) (or unit propagation) propagates all unit clauses, i.e. repeats the following until
fixpoint: if there is a unit clause(l) ∈ F , remove fromF \ {(l)} all clauses that contain
the literal l, and remove the literal̄l from all clauses inF . The resulting formula is
referred to asBCP(F ). If (l) ∈ BCP(F ) for some unit clause(l) /∈ F , we say that
BCP assigns the literall to t (and the literal̄l to f). If (l), (l̄) ∈ BCP(F ) for some
literal l /∈ F (or, equivalently,∅ ∈ BCP(F )), we say thatBCP derives a conflict.

For a partial assignmentτ over the variables inF , let BCP(F, τ) := BCP(F ∪
Tτ ∪ Fτ ), whereTτ = {(x) | τ(x) = t} andFτ = {(x̄) | τ(x) = f}. It is easy to see
thatBCP has a unique fixpoint for any CNF formula, i.e.,BCP is confluent.



A literal l is a failed literal if BCP(F ∪ {(l)}) contains the empty clause∅, imply-
ing thatF is logically equivalent toBCP(F ∪ {(l̄)}). For a formulaF , failed literal
elimination[1–3] (FLE) repeats the following until fixpoint: if there is a failed literall
in F , letF := BCP(F ∪ {(l̄)}). We denote the formula resulting from applying failed
literal elimination onF byFLE(F ). SinceBCP is confluent, so isFLE, too.

Binary Implication Graphs and Equivalent Literal Substitu tion. Given a CNF
formulaF , we denote in the following byF2 the set of binary clauses contained inF .
For anyF , one can associate withF2 a unique directedbinary implication graph(or
simplyBIG(F )) with the node setlits(F2) and edge relation{〈l̄, l′〉, 〈l̄′, l〉 | (l ∨ l′) ∈
F2}. In other words, for each binary clause(l∨ l′) in F , the two implications̄l → l′ and
l̄′ → l, represented by the binary clause, occur as edges inBIG(F ). The strongly con-
nected components (SCCs) ofBIG(F ) describe equivalent classes of literals (or simply
equivalent literals) inF2. Equivalent literal substitution(ELS) refers to substituting in
F , for each SCCG of BIG(F ), all occurrences of the literals occurring inG with the
representative literal ofG. Similar definitions occur in [8]. Notice thatELS is confluent
modulo variable renaming.

3 Overview of Contributions

Before more detailed analysis, we now give an overview of themain results of this pa-
per. We focus on nine different clause elimination procedures that are based on three
variants (explicit, hidden, andasymmetric) of clause elimination techniques that re-
movetautological, subsumed, andblockedclauses. For (explicit)tautology elimination
(TE), we have the variantshidden tautology elimination(HTE) andasymmetric tautol-
ogy elimination(ATE). For (explicit)subsumption elimination(SE), we introduce the
hiddenandasymmetricvariantHSE andASE, respectively, and for (explicit)blocked
clause elimination(BCE), thehiddenandasymmetricvariantsHBCE andABCE, resp.

A relevant aspect of simplification techniques is the question of how much a specific
technique reduces the size of CNF formulas. In this paper we analyze therelative effec-
tivenessof the considered clause elimination procedures based on the clauses removed
by the procedures. For this we apply the following natural definition of effectiveness.

Definition 1. Assume two clause elimination proceduresS1 andS2 that take as input
an arbitrary CNF formulaF and each outputs a CNF formula that consists of a subset
of F that is satisfiability-equivalent toF . ProcedureS1 is at least as effective asS2 if,
for anyF and any outputS1(F ) andS2(F ) of S1 andS2 on inputF , respectively, we
have thatS1(F ) ⊆ S2(F ); S2 is not as effective asS1 if there is anF for which there
are outputsS1(F ) andS2(F ) of S1 andS2, respectively, such thatS1(F ) ⊂ S2(F );
andS1 is more effective thanS2 if (i) S1 is at least as effective asS2, and (ii)S2 is not
as effective asS1.

Our definition of relative effectiveness takes into accountnon-confluentelimination
procedures, i.e., procedures that do not generally have a unique fixpoint and that may
thus have more than one possible output for a given input. Theresult of a non-confluent
simplification procedure can be very unpredictable due to the non-uniqueness of results.
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Fig. 1. Relative effectiveness hierarchy of clause elimination procedures. An edge from X to Y
means that X is more effective than Y. A missing edge from X to Ymeans that X is not as effective
as Y. However, notice that transitive edges are missing fromthe figure for clarity.

Our analysis on relative effectiveness results in an effectiveness hierarchy (Fig. 1)
for the considered elimination procedures. For example, weshow that for each of the
knownexplicit techniques, thehiddenandasymmetricvariants are more effective, the
latter of which being the most effective one of the three. In this sense, the novel variants
are proper generalizations of the known explicit techniques. It also turns out that the
most effective technique is the asymmetric variant of blocked clause elimination.

The further analysis presented in this paper considers the properties listed in Table 1.
While each of the techniques preserves satisfiability (and are thus sound), it turns out
that the variants of blocked clause elimination do not preserve logical equivalence; this
is the motivation for demonstrating in Sect. 7 how one can efficiently reconstruct origi-
nal solutions based on satisfying assignments for CNFs simplified using these variants.
A further property of simplification techniques isBCP-preservance, which implies that
relevant unit propagation (restricted to the remaining variables in the simplified CNF
formula) possible in the original CNF is also possible in thesimplified CNF under any
partial assignment. This property is solver-related and very much practically relevant,
sinceBCP is an integral part of a vast majority of SAT solvers today.

Definition 2. For a formulaF , a preprocessing procedureS preservesBCP on F if
under any partial assignmentτ over the variables inF and for any formulaS(F )
resulting from applyingS on F , we have that (i) for any literall occurring inS(F ),
(l) ∈ BCP(F, τ) implies(l) ∈ BCP(S(F ), τ), and (ii) ∅ ∈ BCP(F, τ) implies∅ ∈
BCP(S(F ), τ) (the empty clause is obtained, i.e.,BCP derives a conflict).S is BCP-
preservingif S preservesBCP on every CNF formula.

Notice that our definition is similar todeductive poweras defined in [10]. Also notice
thatBCP-preservance implies that logical equivalence is also preserved.

Interestingly, in turns out thatBCP-preservance is quite a strict property, as only
the basicSE andTE have it. However, by naturally combiningHTE with a restricted
version ofFLE andELS, we identifyextended hidden tautology elimination(eHTE)
which is bothBCP-preservingand confluent (denoted in Table 1 with∗), using con-
ditions under whichHTE does atransitive reduction[13] on the binary implication
graphs underlying CNF formulas.

We proceed by giving detailed analysis of each of the variants of tautology, sub-
sumption, and blocked clause based elimination procedures.



Table 1.Properties of clause elimination procedures

SE HSE ASE TE HTE ATE BCE HBCE ABCE

satisfiability-equivalent yes yes yes yes yes yes yes yes yes
logically equivalent yes yes yes yes yes yes no no no
BCP-preserving yes no no yes no / yes* no no no no
confluent yes no no yes no / yes* no yes no no

4 Tautology-Based Clause Elimination Procedures

We begin by considering tautology elimination, introducing its hidden and asymmetric
variants, and analyzing these procedures in more detail. For a given formulaF , tautol-
ogy elimination(TE) repeats the following until fixpoint: if there is a tautological clause
C ∈ F , let F := F \ {C}. We refer to the reduced formula after applying tautology
elimination onF asTE(F ). It is easy to see thatTE is confluent andBCP-preserving,
and also that for any CNF formulaF , TE(F ) is logically equivalent toF .

4.1 Hidden Tautology Elimination

For a given clauseC and a CNF formulaF , we denote by (hidden literal addition)
HLA(F,C) theuniqueclause resulting from repeating the following clause extension
steps until fixpoint: if there is a literall0 ∈ C such that there is a clause(l0 ∨ l) ∈
F2 \ {C} for some literall, letC := C ∪ {l̄}. Notice thatHLA(F,C) = HLA(F2, C).
Furthermore, notice that for anyl ∈ HLA(F,C)\C, there is for somel0 ∈ C a chain of
binary clauses(l0∨l̄1), (l1∨l̄2), . . . , (lk−1∨l̄k)with l = lk, equivalent to the implication
chains̄l0 → l̄1, l̄1 → l̄2, . . . , l̄k−1 → l̄k andlk → lk−1, lk−1 → lk−2, . . . , l1 → l0, in
F2 (equivalently, paths inBIG(F )).

Lemma 1. For any CNF formula F and clauseC ∈ F , (F \ {C}) ∪ {HLA(F,C)} is
logically equivalent toF .

Proof. For any literall ∈ HLA(F,C) \ C, by the definition ofHLA(F,C), there is a
i ≥ 0 such thatl → li, . . . , l1 → l0 with l0 ∈ C. Hence(l0) ∈ BCP((F \{C})∪{(l)}),
which implies that for any satisfying assignmentτ for (F \ {C}) andHLA(F,C), if
τ(l) = t thenτ(l0) = t. Thusτ satisfiesC and therefore alsoF . �

Alternatively, observe that each extension step in computingHLA is an application of
self-subsuming resolution [7] in reverse order.

For a given CNF formulaF , a clauseC ∈ F is a hidden tautologyif and only
if HLA(F,C) is a tautology.Hidden tautology eliminationrepeats the following until
fixpoint: if there is a clauseC such thatHLA(F,C) is a tautology, letF := F \ {C}.
A formula resulting from this procedure is denoted byHTE(F ).

Lemma 2. HTE is more effective thanTE.

Proof. HTE is at least as effective asTE due toC ⊆ HLA(F,C): if C is a tautology,
so isHLA(F,C). Moreover, letF = (a∨b)∧(b̄∨c)∧(a∨c). SinceHLA(F, (a∨c)) =
(a ∨ ā ∨ b ∨ b̄ ∨ c ∨ c̄), HTE can remove(a ∨ c) fromF , in contrast toTE. �



Proposition 1. HTE is not confluent.

Proof. Consider the formulaF = (ā ∨ b) ∧ (ā ∨ c) ∧ (a ∨ c̄) ∧ (b̄ ∨ c) ∧ (b ∨ c̄). Now,
HLA(F, (ā ∨ b)) = HLA(F, (ā ∨ c)) = HLA(F, (b ∨ c̄)) = (a ∨ ā ∨ b ∨ b̄ ∨ c ∨ c̄).
HTE can remove either(ā ∨ b) or both(ā ∨ c), (b ∨ c̄). �

Proposition 2. For any CNF formulaF , anyHTE(F ) is logically equivalent toF .

Proof. Follows from the fact thatTE preserves logical equivalence and Lemma 1.�

Proposition 3. HTE is notBCP-preserving.

Proof. Consider the formulaF = (a ∨ b) ∧ (b ∨ c) ∧ (b ∨ c̄). HTE can remove clause
(a∨ b). Consider the assignmentτ which assignsτ(a) = f. We have(b) ∈ BCP(F, τ).
However,(b) /∈ BCP(F \ {(a ∨ b)}, τ). �

AlthoughHTE is not confluent and does not preserveBCP in general, we identify
eHTE, a natural variant ofHTE which is bothBCP-preserving and confluent.

For some intuition, consider again the formulaF = (a ∨ b) ∧ (b ∨ c) ∧ (b ∨ c̄).
Notice that̄b ∈ HLA(F, (b)) = (ā ∨ b ∨ b̄ ∨ c ∨ c̄). Recall thatHTE can only remove
(a ∨ b) from F . However, sincēb ∈ HLA(F, (b)), b̄ is a failed literal. Consequently,
we can remove (all) clauses containing the literalb fromF and add a unit clause(b). In
general, we have the following.

Lemma 3. Given a CNF formulaF , for any literal l it holds thatl is a failed literal in
F2 if and only if l̄ ∈ HLA(F2, (l)).

Proof. There is a path froml to l̄ in BIG(F ) if and only if l̄ ∈ HLA(F2, (l)). �

Based on this observation, given a CNF formulaF , binary-clause restricted failed literal
eliminationFLE2 repeats the following until fixpoint: if there is a literall ∈ lits(F2)
with l̄ ∈ HLA(F2, (l)), letF := BCP(F ∪{(l)}). SinceFLE is confluent, so isFLE2.
Refer to [8] for algorithmic aspects in computingFLE2.

It turns out that for any CNF formula it holds that after applyingFLE2, HTE does
the equivalent of atransitive reduction4 of the binary implication graphBIG(FLE2(F )).

Lemma 4. Given a CNF formulaF , letF ′ := FLE2(F ). LetF ′

HTE stand for any for-
mula resulting from applyingHTE onF ′. It then holds thatBIG(F ′

HTE) is a transitive
reduction ofBIG(F ′).

Proof. SinceBIG(F ′) is only influenced byF ′

2, we focus on binary clauses removed
fromF ′ byHTE. For such a binary clauseC = (l ∨ l′), there are the edges̄l → l′ and
l̄′ → l in BIG(F ′). Since neitherl nor l′ is a failed literal inF ′, there are also two paths
l̄ → . . . → c and l̄′ → . . . → c̄ in BIG(F ′ \ C) such thatc, c̄ ∈ HLA(F ′, C). Hence
there are also the pathsl̄ → . . . → c → . . . → l′ and l̄′ → . . . → c̄ → . . . → l, and
hence both̄l → l′ andl̄′ → l are transitive edges inBIG(F ′). This shows thatHTE only
removes transitive edges ofBIG(F ′). ApplyingHTE until fixpoint, all such transitive
edges are removed fromBIG(F ′), since any suchC = (l ∨ l′), such that there are the
paths̄l → . . . → c → . . . → l′ andl̄′ → . . . → c̄ → . . . → l, is a hidden tautology.�

4 A directed graphG′ is a transitive reduction [13] of the directed graphG provided that (i)G′

has a directed path from nodeu to nodev if and only if G has a directed path from nodeu to
nodev, and (ii) there is no graph with fewer edges thanG

′ satisfying condition (i).



Notice that for every formulaF such thatBIG(F ) is acyclic, it holds thatBIG(F ) has a
unique transitive reduction, since the transitive reduction of any directed acyclic graph
is unique [13]. In this case, there are no non-trivial SCCs inBIG(F ). Furthermore,
even for directed graph with cycles, the transitive reduction is unique modulo node
equivalence classes [13]. This implies that applying thecombinationof FLE2(F ) and
ELS beforeHTE, i.e., additionally substituting equivalent literals with the representa-
tives of the literal equivalence classes (non-trivial strongly connected components) in
BIG(FLE2(F )), a unique transitive reduction (module variable renaming)is obtained.

With this intuition, for a formulaF , extended hidden tautology elimination (eHTE)
does the following two steps:

1. Repeat until fixpoint: (1a) LetF := FLE2(F ). (1b) LetF := ELS(F ).
2. ApplyHTE onF .

By the discussion above,eHTE is confluent.

Theorem 1. eHTE is confluent.

Furthermore, it turns out that by applyingHTE onFLE2(F ), BCP is preserved in
general; that is, even without applying equivalent literalsubstitution (Step 1b), we have
aBCP-preserving variant ofHTE.

Lemma 5. For any CNF formulaF , HTE preservesBCP onFLE2(F ) w.r.t.F .

Proof. Consider an arbitrary CNF formulaF , and letF := FLE2(F ). Assume that
HTE removes a clauseC = (l1 ∨ · · · ∨ lk) ∈ F fromF ; henceC is a hidden tautology
in F , i.e.,HLA(F,C) is a tautology.

Due to first applyingFLE2, C can not be a unit clause(l1): otherwise,(l1) would
be a failed literal inF . The only way forBCP on all clauses ofF to useC is that we
have an assignmentτ with τ(l1) = · · · = τ(lk−1) = f, in which caseBCP onF can
derive the unit clause(lk), i.e., assignlk to t; hence the case thatC is a tautology is
trivial. If C is a binary clause(l1 ∨ l2), then by Lemma 4 the implications representing
C are transitive edges inBIG(F \ {C}), and hence there are alternative implication
chains betweenli+1

1 andli+1
2 in F which preserveBCP overC.

Now assume thatC contains at least three literals andHLA(F,C) contains the
opposite literalsl and l̄. Due toFLE2, by assigning only a singleli for somei ∈
{1, . . . , k − 1} to f, BCP on binary clausesF2 only, can not derive a conflict, and
hence can not derive the unit clauses(l) and(l̄). Otherwisēli would be a failed literal.
Therefore there are two distinct literalsl′, l′′ ∈ C, based on which̄l andl are included in
HLA(F,C), andBIG(F ) contains two implication chains̄l′ → l̄′1, l̄

′

1 → l̄′2, . . . , l̄
′

k′ → l
andl̄′′ → l̄′′1 , l̄

′′

1 → l̄′′2 , . . . , l̄
′′

k′′ → l̄. Now there are two cases:

1. l′, l′′ ∈ C \ {lk}. Sinceτ(l′) = τ(l′′) = f, it follows that (l), (l̄) ∈ BCP(F \
{C}, τ), i.e.,BCP derives a conflict without usingC.

2. l′ ∈ C \ {lk} and l′′ = lk. Thenτ(l′) = f, and it follows that(l) ∈ BCP(F \
{C}, τ). Hencel is assigned tot byBCP underτ . Furthermore, sincel′′ = lk and
the implication chain̄lk → l̄′′1 , l̄

′′

1 → l̄′′2 , . . . , l̄
′′

k′′ → l̄ can be seen in the reversed
order asl → l′′

k′′ , l′′k′′ → l′′
k′′−1, . . . , l

′′

1 → lk, after assigningl to t it follows that
(lk) ∈ BCP(F \ {C}, τ). HenceBCP assignslk to t without usingC. �



Furthermore, sinceELS only does variable renaming by substituting equivalent lit-
erals, it can not interfere withBCP, and we have the following.

Theorem 2. eHTE isBCP-preserving.

Moreover, the following lemma follows the intuition on failed literals inHLA.

Lemma 6. eHTE is more effective thanHTE.

In fact, here Step 1b ofeHTE can again be omitted without affecting this result.

4.2 Asymmetric Tautology Elimination

For a clauseC and a CNF formulaF , (asymmetric literal addition)ALA(F,C) denotes
theuniqueclause resulting from repeating the following until fixpoint: if l1, . . . , lk ∈ C
and there is a clause(l1 ∨ . . . ∨ lk ∨ l) ∈ F \ {C} for some literall, letC := C ∪ {l̄}.
A clauseC is called anasymmetric tautologyif and only ifALA(F,C) is a tautology.

Given a formulaF , asymmetric tautology elimination(ATE) repeats the following
until fixpoint: if there is an asymmetric tautological clauseC ∈ F , letF := F \ {C}.

Lemma 7. ALA(F,C) is a tautology if and only ifBCP on (F \ {C}) ∪
⋃

l∈C
{(l̄)})

derives a conflict.

As can be seen from Lemma 7,ATE performs what could be calledasymmetric branch-
ing on clauses, which is used, e.g., in the technique ofclause distillation[9].

The example in the proof of Proposition 1 implies the following.

Proposition 4. ATE is not confluent.

Proposition 5. For any CNF formulaF , ATE(F ) is logically equivalent toF .

Proof. For any clauseC removed byATE, (F \ {C}) ∪
⋃

l∈C
{(l̄)} is unsatisfiable.

This implies thatF \ {C} |= C, i.e.,F \ {C} logically entailsC. �

Proposition 6. ATE is notBCP-preserving.

Proof. Consider the following translation ofx = If-Then-Else(c, t, e) into CNF:

(x̄ ∨ c̄ ∨ t) ∧ (x ∨ c̄ ∨ t̄) ∧ (x̄ ∨ c ∨ e) ∧ (x ∨ c ∨ ē) ∧ (x ∨ ē ∨ t̄) ∧ (x̄ ∨ e ∨ t)

Notice thatATE can remove(x ∨ ē ∨ t̄) and(x̄ ∨ e ∨ t). However, after removal, for
truth assignmentτ(e) = τ(t) = f, BCP will no longer assignx to t. Also, for truth
assignmentτ(e) = τ(t) = t, BCP will no longer assignx to f. �

The fact thatHLA(F,C) = ALA(F2, C) implies the following.

Lemma 8. For any CNF formulaF and clauseC ∈ F , HLA(F,C) ⊆ ALA(F,C).

Lemma 9. ATE is more effective thanHTE.

Proof. ATE is at least as effective asHTE due toHLA(F,C) ⊆ ALA(F,C): if
HLA(F,C) is a tautology, thenALA(F,C) is a tautology. Moreover, consider the for-
mulaF = (a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨ c ∨ d̄). ATE will remove(a ∨ b ∨ c) from
F , whileHTE removes none of the clauses. �



5 Subsumption-Based Clause Elimination Procedures

We now turn to the explicit, hidden, and asymmetric variantsof the procedures that
eliminate subsumed clauses. Given a CNF formulaF , a clauseC1 ∈ F subsumes
(another) clauseC2 ∈ F in F if and only if C1 ⊂ C2, and thenC2 is subsumed
by C1. Any assignment that satisfiesC1 will also satisfyC2. For a given formulaF ,
subsumption elimination(SE) repeats the following until fixpoint: if there is a subsumed
clauseC ∈ F , let F := F \ {C}. We refer to the reduced formula after applying
subsumption elimination onF asSE(F ). It is easy to see thatSE is confluent and
BCP-preserving, and that for any CNF formulaF , SE(F ) is logically equivalent toF .

5.1 Hidden Subsumption Elimination

For a given formulaF , hidden subsumption elimination(HSE) repeats the following
until fixpoint: if there is a clauseC ∈ F for whichHLA(F,C) is subsumed inF , let
F := F \ {C}.

By replacingHTE with HSE in the proof of Proposition 1 we have the following.

Proposition 7. HSE is not confluent.

Lemma 10. For any CNF formulaF , HSE(F ) is logically equivalent toF .

Proof. Follows from Lemma 1 and the fact thatSE preserves logical equivalence.�

Proposition 8. HSE is notBCP-preserving.

Proof. Let F = (a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (b ∨ c̄). HSE can remove(a ∨ b ∨ d),
becauseHLA(F, (a∨ b∨d)) = (a∨ b∨ c∨d) is subsumed by(a∨ b∨ c). Consider the
assignmentτ which assignsτ(a) = τ(d) = f. We have(b) ∈ BCP(F, τ). However,
(b) /∈ BCP(F \ {(a ∨ b ∨ d)}, τ). �

Notice that the above proof also holds afterF is simplified byFLE.

Lemma 11. HSE is more effective thanSE.

Proof. HSE is at least as effective asSE since for any CNF formulaF , (i) for every
clauseC ∈ F , C ⊆ HLA(F,C), and (ii) if C is subsumed then any clauseC′ ⊇ C is
subsumed. Moreover, letF = (a∨ b∨ c)∧ (a∨ b∨ d)∧ (b∨ c̄)∧ (ā∨ d∨ d̄). HSE can
remove(a∨ b∨d) becauseHLA(F, (a∨ b∨d)) = (a∨ b∨ c∨d), in contrast toSE. �

Also notice that, given two identical clausesC1 andC2 (i.e.,C1 ⊆ C2 andC2 ⊆ C1),
HSE can remove eitherC1 orC2, whileSE cannot.

Lemma 12. It holds that (i)HSE is not as effective asHTE, and that (ii)HTE is not
as effective asHSE.

Proof. Consider the formulaFHSE. HTE can remove the tautology(ā ∨ d ∨ d̄), but no
other clauses.HSE can remove(a ∨ b ∨ d), but no other clauses. �



5.2 Asymmetric Subsumption Elimination

For a given formulaF , asymmetric subsumption elimination(ASE) repeats the follow-
ing until fixpoint: if there is a clauseC ∈ F for whichALA(F,C) is subsumed inF ,
let F := F \ {C}.

By replacingATE with ASE in the proof of Lemma 6 we have the following.

Proposition 9. ASE is notBCP-preserving.

Lemma 13. ASE is more effective thanHSE.

Proof. ASE is at least as effective asHSE since (i) for every clauseC ∈ F we have
HLA(F,C) ⊆ ALA(F,C) (Lemma 8), and (ii) ifC is subsumed then any clauseC′ ⊇
C is subsumed. Moreover, consider the formulaF = (a∨b∨c)∧(a∨b∨d)∧(a∨c∨ d̄).
ASE will remove(a ∨ b ∨ c) fromF , whileHSE removes no clauses fromF . �

Lemma 14. ATE is more effective thanASE.

Proof. To see thatATE is at least as effective asASE, consider the following. If there is
a clauseC ∈ F for whichALA(F,C) is subsumed byC′ ∈ F \{C}, thenALA(F,C)
is a tautology: sayALA(F,C) is subsumed byC′ = (l1 ∨ . . . ∨ lk). Due to the update
rule ofALA, l̄1, . . . , l̄k ∈ ALA(F,C). Moreover, consider the formulaF = (a ∨ ā).
ASE will not remove this tautology, in contrast toATE. �

6 Clause Elimination Procedures based on Blocked Clauses

As the final family of clause elimination procedures considered in this paper, we now
introduce and analyze procedures that eliminate blocked clauses [12].

The resolution rule states that, given two clausesC1 = {l, a1, . . . , an} andC2 =
{l̄, b2, . . . , bm}, the implied clauseC = {a1, . . . , an, b1, . . . , bm}, called theresolvent
of C1 andC2, can be inferred byresolvingon the literall, and writeC = C1 ⊗l C2.

Given a CNF formulaF , a clauseC and a literall ∈ C, the literall blocksC w.r.t.F
if (i) for each clauseC′ ∈ F with l̄ ∈ C′, C ⊗l C

′ is a tautology, or (ii)̄l ∈ C, i.e.,C is
itself a tautology5. Given a CNF formulaF , a clauseC is blockedw.r.t.F if there is a
literal that blocksC w.r.t.F . Removal of blocked clauses preserves satisfiability [12].

For a CNF formulaF , blocked clause elimination(BCE) repeats the following until
fixpoint: if there is a blocked clauseC ∈ F w.r.t.F , letF := F \{C}. The CNF formula
resulting from applyingBCE onF is denoted byBCE(F ).

Proposition 10. For some CNF formulaF , BCE(F ) is not logically equivalent toF .

Proof. Consider the following CNF formula, having a structure thatis often observed
in CNF encodings of graph coloring problems.

FBCE = (a ∨ b ∨ c) ∧ (d ∨ e ∨ f) ∧ (ā ∨ d̄) ∧ (b̄ ∨ ē) ∧ (c̄ ∨ f̄) ∧

(ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (b̄ ∨ c̄) ∧ (d̄ ∨ ē) ∧ (d̄ ∨ f̄) ∧ (ē ∨ f̄).

5 Here l̄ ∈ C is included in order to handle the special case that for any tautological binary
clause(l ∨ l̄), both l and l̄ block the clause. Notice that, even without this addition, every
non-binarytautological clause contains at least one literal that blocks the clause.



BCE can remove the last six binary clauses (the second row) inFBCE. Consider the
truth assignmentτ with τ(a) = τ(b) = τ(f) = t and τ(c) = τ(d) = τ(e) = f.
Althoughτ satisfiesBCE(FBCE), the clause(ā ∨ b̄) in FBCE is falsified byτ . �

6.1 Hidden Blocked Clause Elimination

For a given CNF formulaF , a clauseC ∈ F is calledhidden blockedif HLA(F,C)
is blocked w.r.t.F . Hidden blocked clause elimination(HBCE) repeats the following
until fixpoint: if there is a hidden blocked clauseC ∈ F , removeC fromF .

Lemma 15. Removal of an arbitrary hidden blocked clause preserves satisfiability.

Proof. Follows from the facts thatF is logically equivalent to(F\{C})∪{HLA(F,C)}
and thatBCE preserves satisfiability. �

Proposition 11. HBCE is not confluent.

Proof. Let F = (ā ∨ b) ∧ (ā ∨ c) ∧ (a ∨ d̄) ∧ (b̄ ∨ d) ∧ (c̄ ∨ d). F contains four
hidden blocked clauses:HLA(F, (ā ∨ b)) = (ā ∨ b ∨ c̄ ∨ d̄) with blocking literalb,
HLA(F, (ā∨c)) = (ā∨b̄∨c∨d̄)with blocking literalc,HLA(F, (b̄∨d)) = (a∨b̄∨c∨d)
with blocking literalb̄, andHLA(F, (c̄ ∨ d)) = (a ∨ b ∨ c̄ ∨ d) with blocking literalc̄.
HBCE removes either(ā ∨ b) and(b̄ ∨ d), or (ā ∨ c) and(c̄ ∨ d). �

ReplacingBCE with HBCE in the proof of Proposition 10, we have the following.

Proposition 12. For some CNF formulaF , HBCE(F ) is not logically equivalent toF .

Lemma 16. HBCE is more effective thanBCE andHTE.

Proof. HBCE is at least as effective asBCE due toC ⊆ HLA(F,C) and that each
blocking literal l ∈ C is also blockingHLA(F,C). HBCE is at least as effective as
HTE since tautologies are blocked clauses. Moreover, letF = (a∨ c)∧ (ā∨ d) ∧ (b̄∨
c) ∧ (b ∨ d) ∧ (c̄ ∨ d̄). NowHLA(F, (a ∨ c)) = (a ∨ b ∨ c ∨ d̄) with blocking literala,
andHLA(F, (ā ∨ d)) = (ā ∨ b̄ ∨ c̄∨ d) with blocking literalā. HenceHBCE removes
both(a ∨ c) and(ā ∨ d), while neitherBCE norHTE can remove any clause ofF . �

6.2 Asymmetric Blocked Clause Elimination

For a given CNF formulaF , a clauseC ∈ F is called asymmetric blocked ifALA(F,C)
is blocked w.r.t.F . Asymmetric blocked clause elimination(ABCE) repeats the follow-
ing until fixpoint: if there is an asymmetric blocked clauseC ∈ F , letF := F \ {C}.

Lemma 17. Removal of an asymmetric blocked clause preserves satisfiability.

Proof. Follows from the facts thatF is logically equivalent to(F\{C})∪{ALA(F,C)}
and thatBCE preserves satisfiability. �

Proposition 13. ABCE is not confluent.



Proof. Let F = (ā ∨ b) ∧ (ā ∨ c) ∧ (a ∨ d̄) ∧ (b̄ ∨ d) ∧ (c̄ ∨ d). F contains four
asymmetric blocked clauses:ALA(F, (ā∨ b)) = (ā∨ b∨ c̄∨ d̄) with blocking literalb,
ALA(F, (ā∨c)) = (ā∨b̄∨c∨d̄)with blocking literalc,ALA(F, (b̄∨d)) = (a∨b̄∨c∨d)
with blocking literalb̄, andALA(F, (c̄ ∨ d)) = (a ∨ b ∨ c̄ ∨ d) with blocking literalc̄.
ABCE removes either(ā ∨ b) and(b̄ ∨ d), or (ā ∨ c) or (c̄ ∨ d) fromF . �

ReplacingBCE with ABCE in the proof of Proposition 10, we have the following.

Proposition 14. For some CNF formulaF , ABCE(F ) is not logically equivalent toF .

Lemma 18. ABCE is more effective thanHBCE andATE.

Proof. ABCE is at least as effective asHBCE due toHLA(F,C) ⊆ ALA(F,C)
(recall Lemma 8): ifHLA(F,C) is a tautology, thenALA(F,C) is a tautology.ABCE
is at least as effective asATE since tautologies are blocked clauses. Moreover, consider
the formulaFABCE = (ā ∨ b ∨ c) ∧ (b ∨ c ∨ d̄) ∧ (a ∨ d) ∧ (b̄ ∨ d̄) ∧ (c̄ ∨ d̄). Now
ALA(FABCE, (ā∨b∨c)) = (ā∨b∨c∨d) in whichb andc are blocking literals. Hence
ABCE can remove(ā ∨ b ∨ c) (and in fact all clauses inFABCE). NeitherHBCE nor
ATE can remove any clause fromFABCE. �

7 Reconstructing Solutions afterHBCE and ABCE

Since the elimination procedures based on blocked clauses do not preserve logical
equivalence, a truth assignmentτ satisfyingBCE(F ) may not satisfyF . However,
a satisfying assignment forF can be constructed based onτ as follows [14]. Add the
clausesC ∈ F \ BCE(F ) back in the opposite order of their elimination. In caseC is
satisfied byτ , do nothing. Otherwise, assuming thatl ∈ C is blockingC, flip the truth
value ofl in τ to t. After all clauses have been added, the modifiedτ satisfiesF .

We now show that this procedure can be used to reconstruct solutions for formulas
simplified usingHBCE or ABCE. The lemmas will focus onALA, but becauseHLA
is a restricted version ofALA, all lemmas also hold whenALA is replaced byHLA.

Lemma 19. Given a clauseC ∈ F , if ALA(F,C) is blocked and not a tautology, then
there is a literall ∈ C blocking it.

Proof. By construction, for each literall ∈ ALA(F,C) \ C, here is a clauseC′ ∈ F
that contains̄l andC′ \ {l̄} ⊆ ALA(F,C). Therefore, becauseALA(F,C) is not a
tautology,C′ ⊗l ALA(F,C) = ALA(F,C) \ {l} is not a tautology either. Hencel is
not blockingALA(F,C). �

Lemma 20. Given a CNF formulaF and a truth assignmentτ satisfyingF , if C /∈ F
is falsified byτ , thenALA(F,C) is falsified byτ .

Proof. From Lemma 7 follows thatF ∪ {ALA(F,C)} is logically equivalent toF ∪
{C}. Therefore,ALA(F,C) is satisfied byτ if and only if τ satisfiesC. �

Lemma 21. Given a CNF formulaF and a truth assignmentτ satisfyingF , if C /∈ F
is falsified byτ andALA(F,C) is blocked w.r.t.F with blocking literall ∈ C, thenτ
satisfies at least two literals in each clauseC′ ∈ F with l̄ ∈ C′.



Proof. First, suchC′ ∈ F contain a literal̄l which is satisfied byτ . Second, becausel is
blocking, each clauseC′ must contain one more literall′ 6= l̄ such that̄l′ ∈ ALA(F,C).
Since all literals inALA(F,C) are falsified byτ , l′ must be satisfied byτ . �

Combining these three lemmas, we can reconstruct a solutionfor F if we have
a satisfying assignmentτ for anyABCE(F ) (and also anyHBCE(F )). The clauses
C ∈ F \ ABCE(F ) are added back in reverse order of elimination to ensure that
ALA(F,C) is blocked. IfC is satisfied byF do nothing. Otherwise, we know that
there is a literall ∈ C blockingALA(F,C); recall Lemma 19. Furthermore, all literals
in ALA(F,C) are falsified; recall Lemma 20. However, anyC′ ∈ F containingl̄ has
two satisfied literals; (recall Lemma 21. Therefore, by flipping the truth assignment for
l to t, C becomes satisfied, while no suchC′ becomes falsified.

Theorem 3. The following holds for an arbitrary CNF formulaF and truth assignment
τ satisfyingF . For any clauseC /∈ F for whichC, HLA(F,C), or ALA(F,C) is
blocked w.r.t.F with blocking literall, either (i)τ satisfiesF ∪{C}, or (ii) τ ′, which is
a copy ofτ except forτ ′(l) = t, satisfiesF ∪ {C}.

The reconstruction proof provides several useful elementsthat can be used to imple-
mentHBCE andABCE more efficiently. First, since only original literalsl ∈ C can
be blockingHLA(F,C) or ALA(F,C), we can avoid a blocking literal check for all
literals l ∈ HLA(F,C) \ C or l ∈ ALA(F,C) \ C. Second, it is enough to save
each removedoriginal clauseC. None of the additional literals in theextendedclause
HLA(F,C) (orALA(F,C), resp.) not occurring inC have to be flipped.

8 Experimental Evaluation

We shortly present initial experiments results on the effectiveness of selected clause
elimination procedures, focusing on the current implementations ofHTE andHBCE.
The benchmarks set used consists of the 2009 SAT Competitionapplication instances
(292 in total), with each instance processed beforehand with BCP. A comparison of
the effectiveness ofBCE, HTE, andHBCE (all until fixpoint) is shown on the left
in Fig. 2, illustrating the percentage of clauses remainingafter applying the individual
techniques (with original number of clauses100%). Here data for each plot is sorted
according to the reduction percentage, with the percentages of clauses remaining on the
y-axis. We includeBCE due to recent encouraging results presented in [11]. In line
with our analysis (recall Fig. 1),HBCE is clearly the most effective technique. There is
not that clear a winner betweenBCE andHTE, althoughHTE does prevail in the end.

The hidden clause elimination procedures are probably the most interesting novel
techniques in practice, because they can be implemented efficiently. In particular,eHTE
is expected to be useful, since it also preservesBCP. Since we have no efficient im-
plementation ofFLE2 andELS at this time, the experiments on practical use focus on
HTE instead.

As can be seen on the right in Fig. 2 (time as a function of number of instances
solved),HTE gives gains w.r.t. solution times for MiniSAT 2.0. Here we used the ver-
sion of MiniSAT without the built-in preprocessor to see theeffect ofHTE on its own.
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Fig. 2. Comparison of the effectiveness of various clause elimination procedures on the size of
SAT 2009 benchmark instances (left). Also, the number of instances solved in less thant seconds
by MiniSAT 2.0 without and withHTE as preprocessing step (right).

Notice that we also conducted an additional experiment in which we first preprocessed
all instances using SatELite [7]; this resulted in similar performance gains.

For most benchmarks in the SAT 2009 application suit, the cost of applyingHTE
is less then a second. However, on instances in whichBIG(F ) contains large SCCs, the
computational cost is on average60 seconds. We expect that by combiningHTE with
ELS, as ineHTE, HTE will be quite efficient also for these instances.

Applying any of the asymmetric clause elimination procedures until fixpoint will
hardly be useful in practice. The most important reason is that all these procedures
are very costly. Also, because they do not preserve BCP, for several instances they can
decrease performance even in case these costs are neglected. However, the asymmetric
procedures will probably be of practical use when they are restricted. For instance, by
only applying them on long clauses or for a short time (i.e., not until fixpoint).

Our implementation ofHTE does not explicitly computeHLA(F,C) for each
C ∈ F . Instead, for each literall ∈ lits(F ), we computeHLA(F, (l)). Elimination
of clauses is realized as follows: First, mark each literall′ for which l̄′ ∈ HLA(F, (l))
with label l. Second, for all clausesC with l ∈ C we check whether there is a literal
l′′ ∈ C marked with labell. If there is, thenC is a hidden tautology. In order to make
this procedure sound, we need to add a unit clause(l) in casel̄ ∈ HLA(F, (l)). No-
tice that this ‘trick’ cannot be used forHBCE. So,HLA(F,C) needs to be explicitly
computed to check whetherHLA(F,C) is a hidden blocked clause. This makes our
current implementation ofHBCE much more costly (compared toHTE). Also, while
performingHBCE, some clauses can become hidden blocked clauses. Therefore, when
run until fixpoint, multiple loops through the clauses are required (in contrast toHTE).
As a result of this, our current implementation ofHBCE is on average ten times as slow
as the implementation ofHTE, makingHBCE at the moment impractical. However,
as stated above, the cost ofHTE andHBCE can be reduced by first applyingELS.



9 Conclusions

We introduced novel clause elimination procedures as hidden and asymmetric vari-
ants of the known techniques of tautology, subsumption, andblocked clause elimina-
tion. We analyzed all of the variants from various perspectives—relative effectiveness,
BCP-preservance, confluence, logical equivalence—highlighting intricate differences
between the procedures. This also resulted in a relative effectiveness hierarchy, in which
the asymmetric variant of blocked clause elimination dominates all other procedures.

As one of the most interesting results, we developedeHTE, a variant of hidden
tautology elimination, that is bothBCP-preserving and confluent, and at the same time
more effective than the other procedures (tautology and subsumption elimination) that
have both of these properties. In fact,eHTE does a transitive reduction (a structural
property) of the binary implication graph underlying any CNF formula purely on the
CNF level. Furthermore, we showed how to reconstruct solutions for the procedures,
and presented experimental results on the practical effectiveness of selected procedures.

Efficient implementations of the introduced procedures andintegration of the most
practical ones with other simplification techniques remains as important further work.
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