Clause Elimination Procedures for CNF Formulag

Marijn Heule', Matti Jarvisald, and Armin Bieré

1 Department of Software Technology, Delft University of fiaology, The Netherlands
2 Department of Computer Science, University of Helsinkil&ind
3 Institute for Formal Models and Verification, Johannes Keplniversity Linz, Austria

Abstract. We develop and analyze clause elimination procedures cifisgfam-
ily of simplification techniques for conjunctive normal foi(CNF) formulas. Ex-
tending known procedures such as tautology, subsumpti@hpbocked clause
elimination, we introduce novel elimination proceduresdsh onhiddenand
asymmetricvariants of these techniques. We analyze the resulting(imokiding
five new) clause elimination procedures from various perthges: size reduc-
tion, BCP-preservanceonfluenceandlogical equivalenceFor the variants not
preserving logical equivalence, we show how to reconssaltttions to original
CNFs from satisfying assignments to simplified CNFs. We alsatify a clause
elimination procedure that does a transitive reductiorhefhinary implication
graph underlying any CNF formula purely on the CNF level.

1 Introduction

Simplification techniques applied both before (i.e., ingroeessing) and during search
have proven integral in enabling efficient conjunctive nakform (CNF) level Boolean
satisfiability (SAT) solving for real-world application dwins. Indeed, there is a large
body of work on preprocessing CNF formulas (see [1-11] fanegles), based on
e.g. variable elimination and equivalence reasoning Heurtwhile many SAT solvers
rely mainly on Boolean constraint propagation (i.e., um@gagation) during search,
it is possible to improve solving efficiency by applying ailtial simplification tech-
niques also during search, as witnessed e.g. by Precd®ATp(/ / f mv. j ku. at/
pr ecosat)—one of the most successful SAT solvers in the 2009 SAT Caitiqgre
Noticeably, when schedulingpmbinationf simplification techniques during search,
even quite simply ideas, such as removal of subsumed clacaesring additional
gains by enabling further simplifications by other techeigju

This work is motivated on one hand by the possibilities dfrld SAT solving effi-
ciency further by integrating additional simplificatiorckaiques to the solving process
before and/or during search, and on the other by understgrke relationships be-
tween different simplification techniques. In this papee, @@ncentrate on developing
and analyzing clause elimination procedures, a specifidyawh simplification tech-
niques for CNF formulas. Prior examples of such proceduregexplicit) tautology
elimination (removing all tautologies from a CNF), subsuimp elimination [7] (re-
moving all subsumed clauses), and blocked clause elinimtil] (removingblocked

* The first author is supported by Dutch Organization for SifienResearch under grant
617.023.611, and the second author by Academy of Finlandrugrdnt #132812.

clauseq12]). As extensions of these procedures we introduce rediralnation proce-
dures based ohiddenandasymmetricvariants of the techniques.

We analyze the resulting nine clause elimination procesifrem various perspec-
tives. One property isffectivenesgor size reductiol i.e., the ability to remove clauses
and thus reduce the size of the CNF formula. Another orthaband practically rel-
evant property iBCP-preservancei.e, the ability to preserve all possible Boolean
constraint propagations (i.e., unit propagations) thatalao be done on the original
CNF. The third propertygonfluenceimplies that a procedure has a unique fixpoint.
The fourth islogical equivalencev.r.t. the original CNF, i.e. preserving the set of sat-
isfying assignments. For the variants that do not presegieal equivalence, we show
how to efficiently reconstruct solutions to original CNFerfr satisfying assignments
to simplified CNFs; this is important since in many appliocatscenarios one needs to
extract a satisfying assignment (witness) to the origirial $istances. Furthermore,
we develop an extension of hidden tautology eliminatiorn tlwes atransitive reduc-
tion [13] (a structural property) of the binary implication ghepnderlying any CNF
formula purely on the CNF level. We also evaluate the pratéffectiveness of selected
procedures, investigating both the CNF size reduction aadlting solving times.

This paper is organized as follows. After preliminariesdfS&), we present an
overview of the results on the properties of clause elinlmaprocedures (Sect. 3).
Then detailed analysis is presented (Sect. 4—6), followexdd®ction on solution recon-
struction (Sect. 7). Then, before concluding, experimeatailts are presented (Sect. 8).

2 Preliminaries

CNF. For a Boolean variable, there are twditerals, the positive literal, denoted by
x, and the negative literal, denoted byA clauseis a disjunction of literals and a CNF
formula a conjunction of clauses. A clause can be seen asta §iei of literals and
a CNF formula as a finite set of clausesuAit clausecontains exactly one literal. A
clause is gautologyif it contains bothrz andz for somezx. A truth assignment for a
CNF formulaF is a functionr that maps variables i’ to {t,f}. If 7(z) = v, then
7(Z) = —w, where—t = f and—f = t. A clauseC is satisfied byr if 7(I) =t for some

[€ C. An assignment satisfiesF’ if it satisfies every clause if. The set of literals
occurring in a CNF formuld’ is denoted byits(F'). Formulas aréogically equivalent
if they have the same set of satisfying assignments overaimeon variables.

BCP and Failed Literals. For a CNF formulaF’, Boolean constraint propagation
(BCP) (or unit propagatiof) propagates all unit clauses, i.e. repeats the followirtd un
fixpoint: if there is a unit claus@) € F, remove fromF'\ {(/)} all clauses that contain
the literall, and remove the literdl from all clauses inF. The resulting formula is
referred to aBCP(F). If (I) € BCP(F) for some unit claus¢l) ¢ F', we say that
BCP assigns the literal to t (and the literall to f). If (1), (I) € BCP(F) for some
literal I ¢ F (or, equivalently) € BCP(F)), we say thaBCP derives a conflict.

For a partial assignment over the variables i, let BCP(F,7) := BCP(F U
T, U F;), whereT, = {(z) | 7(z) =t} andF; = {(Z) | 7(z) = f}. Itis easy to see
thatBCP has a unique fixpoint for any CNF formula, i.8CP is confluent

Aliteral I is afailed literal if BCP(F U {(1)}) contains the empty claugeimply-
ing that F' is logically equivalent taBCP(F U {(I)}). For a formulaF’, failed literal
elimination[1-3] (FLE) repeats the following until fixpoint: if there is a faileddrall

in ', let F' := BCP(F U {(l)}). We denote the formula resulting from applying failed
literal elimination onF’ by FLE(F'). SinceBCP is confluent, so i¥LE, too.

Binary Implication Graphs and Equivalent Literal Substitu tion. Given a CNF
formula F', we denote in the following by the set of binary clauses containedAn
For anyF', one can associate with, a unique directedinary implication graph(or
simply BIG(F)) with the node selits(F) and edge relatiod(1, '), (I',1) | (IV1') €
F»}. In other words, for each binary clau€e/ ") in F, the two implicationg — I’ and
I' — 1, represented by the binary clause, occur as edgB#G(F). The strongly con-
nected components (SCCs)BIG(F') describe equivalent classes of literals (or simply
equivalent literals) infy. Equivalent literal substitutiofELS) refers to substituting in
F, for each SCQ7 of BIG(F), all occurrences of the literals occurring@with the
representative literal a. Similar definitions occur in [8]. Notice th&LsS is confluent
modulo variable renaming.

3 Overview of Contributions

Before more detailed analysis, we now give an overview oftlaén results of this pa-
per. We focus on nine different clause elimination proceduhat are based on three
variants éxplicit, hidden and asymmetriy of clause elimination techniques that re-
movetautological subsumegdandblockedclauses. For (explicifautology elimination
(TE), we have the variantidden tautology eliminatio(HTE) andasymmetric tautol-
ogy elimination(ATE). For (explicit)subsumption eliminatio(6E), we introduce the
hiddenandasymmetriocvariantHSE and ASE, respectively, and for (explicit)locked
clause eliminatiofBCE), thehiddenandasymmetrivariantsHBCE andABCE, resp.

A relevant aspect of simplification techniques is the qoestf how much a specific
technique reduces the size of CNF formulas. In this papematyae theelative effec-
tivenes®f the considered clause elimination procedures basedeotidlises removed
by the procedures. For this we apply the following naturdiinition of effectiveness.

Definition 1. Assume two clause elimination procedufgsand S, that take as input

an arbitrary CNF formulaF' and each outputs a CNF formula that consists of a subset
of F' that is satisfiability-equivalent té'. ProcedureS; is at least as effective & if,

for any F' and any outpuf5; (F') and So(F’) of S; and .S, on inputF, respectively, we
have thatS; (F) C S2(F'); Sy is not as effective as if there is anF for which there

are outputsS; (F') and Sz (F') of Sy and S, respectively, such theft; (F) C S2(F);
and.S; is more effective tharb, if (i) S, is at least as effective &, and (ii) S, is not

as effective as’;.

Our definition of relative effectiveness takes into accowmmn-confluenelimination
procedures, i.e., procedures that do not generally havégai@ifixpoint and that may
thus have more than one possible output for a given inputrésdt of a non-confluent
simplification procedure can be very unpredictable duegamtin-uniqueness of results.

|
ASE [ATE |<——] ABCE]
|

logically ' satisfiability
equivalent HSE | HTE | HBCE' equivalent

|
|

Fig. 1. Relative effectiveness hierarchy of clause eliminatioocpdures. An edge from X to Y
means that X is more effective than Y. A missing edge from X tn&ans that X is not as effective
as Y. However, notice that transitive edges are missing frenfigure for clarity.

Our analysis on relative effectiveness results in an effecess hierarchy (Fig. 1)
for the considered elimination procedures. For exampleshesv that for each of the
known explicit techniques, thaéiddenandasymmetriczariants are more effective, the
latter of which being the most effective one of the threehlia sense, the novel variants
are proper generalizations of the known explicit techniquiealso turns out that the
most effective technique is the asymmetric variant of béstklause elimination.

The further analysis presented in this paper considergtipepties listed in Table 1.
While each of the techniques preserves satisfiability (aadtaus sound), it turns out
that the variants of blocked clause elimination do not preskgical equivalence; this
is the motivation for demonstrating in Sect. 7 how one cawiefitly reconstruct origi-
nal solutions based on satisfying assignments for CNFslgietpusing these variants.
A further property of simplification techniquesBs_P-preservance, which implies that
relevant unit propagation (restricted to the remainingaldes in the simplified CNF
formula) possible in the original CNF is also possible in siaplified CNF under any
partial assignment. This property is solver-related angt weuch practically relevant,
sinceBCP is an integral part of a vast majority of SAT solvers today.

Definition 2. For a formula F', a preprocessing procedurg preserve3CP on F if
under any partial assignment over the variables inF" and for any formulaS(F')
resulting from applyingS on F', we have that (i) for any literal occurring in S(F),
(1) € BCP(F, 7) implies(l) € BCP(S(F),7), and (ii)) @ € BCP(F,7) implies? €
BCP(S(F),) (the empty clause is obtained, i.BCP derives a conflict)S is BCP-
preservingf S preserve83CP on every CNF formula.

Notice that our definition is similar tdeductive poweas defined in [10]. Also notice
thatBCP-preservance implies that logical equivalence is alsoguves!.

Interestingly, in turns out thdBCP-preservance is quite a strict property, as only
the basicSE andTE have it. However, by naturally combinidgTE with a restricted
version of FLE andELS, we identifyextended hidden tautology eliminati@HTE)
which is both BCP-preservingand confluent (denoted in Table 1 with), using con-
ditions under whichHTE does atransitive reductio{13] on the binary implication
graphs underlying CNF formulas.

We proceed by giving detailed analysis of each of the vasiaftautology, sub-
sumption, and blocked clause based elimination procedures

Table 1.Properties of clause elimination procedures

| SE|HSE | ASE | TE| HTE | ATE | BCE | HBCE | ABCE |
satisfiability-equivalentyes| yes | yes | yes| yes yes | yes | yes yes

logically equivalent |yes| yes | yes | yes| vyes yes | no no no
BCP-preserving yes| no | no |yesino/yes}{ no | no no no
confluent yes| no | no |yesino/yes{ no | yes no no

4 Tautology-Based Clause Elimination Procedures

We begin by considering tautology elimination, introduits hidden and asymmetric
variants, and analyzing these procedures in more detaik Goven formulaF’, tautol-
ogy eliminationTE) repeats the following until fixpoint: if there is a tautologl clause

C € F,letF := F\ {C}. We refer to the reduced formula after applying tautology
elimination onF’ asTE(F). Itis easy to see th&tE is confluent an@CP-preserving,
and also that for any CNF formulg, TE(F) is logically equivalent taF.

4.1 Hidden Tautology Elimination

For a given claus€’ and a CNF formulaF’, we denote byHidden literal additior)
HLA(F, C) theuniqueclause resulting from repeating the following clause esitm
steps until fixpoint: if there is a literdh € C such that there is a claugg Vv I) €
F» \ {C} for some literal, let C := C' U {I}. Notice thatiLA(F, C) = HLA(F, C).
Furthermore, notice that for afiye HLA(F, C)\ C, there is for somé&, € C a chain of
binary clausegloViy), (I1VI2), . . ., (I_1 Vi) with I = 1., equivalent to the implication
ChainSl_o — l_l,l_l — l_Q, .. .,l_k,1 — l_k andlk — lkfl,lkfl — lk,Q, .. .,ll — l(), in
F>, (equivalently, paths iBIG(F)).

Lemma 1. For any CNF formula F and claus€ € F, (F'\ {C}) U{HLA(F,C)} is
logically equivalent taF'.

Proof. For any literall € HLA(F, C) \ C, by the definition o ILA(F, C), there is a
i > 0suchthat — [;,...,l; — lpwithly € C. Hence(ly) € BCP((F\{C}HU{()}),
which implies that for any satisfying assignmentor (£ \ {C}) andHLA(F, C), if
7(l) = tthent(lp) = t. Thusr satisfies”' and therefore als@'. O

Alternatively, observe that each extension step in comgiLLA is an application of
self-subsuming resolution [7] in reverse order.

For a given CNF formuld”, a clauseC' € F'is ahidden tautologyf and only
if HLA(F, C) is a tautologyHidden tautology eliminationepeats the following until
fixpoint: if there is a claus€’ such thafILA(F, C) is a tautology, letF" := F \ {C}.
A formula resulting from this procedure is denotedlBYE(F).

Lemma 2. HTE is more effective thafE.

Proof. HTE is at least as effective a8E due toC' C HLA(F, C): if C' is a tautology,
soisHLA(F, C'). Moreover, letF" = (aVb)A(bVe)A(aVe). SinceHLA(F, (aVe)) =
(avavbVvbVeVe), HTE can removéa V ¢) from F, in contrast tol'E. O

Proposition 1. HTE is not confluent.

Proof. Consider the formuld& = (@Vb) A (@Ve)A(aVve)A(bVe)A(b Vv ¢). Now,
HLA(F,(a Vb)) = HLA(F,(@aVc)) = HLA(F,(bVe) = (avVavbVvbVeVe).
HTE can remove eithef@ Vv b) or both(a Vv ¢), (b V). O

Proposition 2. For any CNF formulaF', anyHTE(F') is logically equivalent ta?'.
Proof. Follows from the fact thal'E preserves logical equivalence and Lemma 1
Proposition 3. HTE is notBCP-preserving.

Proof. Consider the formuld = (a vV b) A (bV ¢) A (bV ¢). HTE can remove clause
(aV b). Consider the assignmentvhich assigns (a) = f. We have(b) € BCP(F, 7).
However,(b) ¢ BCP(F \ {(aV b)}, 7). O

AlthoughHTE is not confluent and does not preseB€P in general, we identify
eHTE, a natural variant oHTE which is bothBCP-preserving and confluent.

For some intuition, consider again the forma= (a vV b) A (bV ¢) A (b V ¢).
Notice thath € HLA(F, (b)) = (@aV bV bV ¢V ¢). Recall thatITE can only remove
(a Vv b) from F. However, sincé € HLA(F, (b)), b is a failed literal. Consequently,
we can removed(l) clauses containing the literafrom F and add a unit claug@). In
general, we have the following.

Lemma 3. Given a CNF formula, for any literal it holds that/ is a failed literal in
F,ifand only if [€ HLA(F>, (1)).

Proof. There is a path fromto [in BIG(F) if and only if [€ HLA(Fb, (1)). O

Based on this observation, given a CNF formblainary-clause restricted failed literal
eliminationFLE; repeats the following until fixpoint: if there is a literale lits(F3)
with I € HLA(F, (1)), let F := BCP(FU{(l)}). SinceFLE is confluent, so i§LEo.
Refer to [8] for algorithmic aspects in computif@.E-.

It turns out that for any CNF formula it holds that after apptyFLE,, HTE does
the equivalent of &ansitive reductiofiof the binary implication grapBIG(FLE, (F)).

Lemma 4. Given a CNF formular’, let F’ := FLE(F'). Let F};1x stand for any for-
mula resulting from applyingITE on F’. It then holds thaBIG(F};1g) is a transitive
reduction ofBIG(F").

Proof. SinceBIG(F") is only influenced byF;, we focus on binary clauses removed
from I/ by HTE. For such a binary clausg = (I v I'), there are the edgés— I’ and

I' = 1in BIG(F"). Since neithet nor!’ is a failed literal inF”’, there are also two paths
l—...—candl’ — ... = ¢inBIG(F"\ C) such that,e € HLA(F',C). Hence
there are also the pathhs— ... = ¢ — ... > l'andl’ = ... = ¢ — ... = [,and
hence botth — I’ andl’ — [are transitive edges BIG(E”). This shows thali TE only
removes transitive edges BIG(F"). Applying HTE until fixpoint, all such transitive
edges are removed froBIG(F"), since any sucld’ = (I v I’), such that there are the
pathsl — ... ¢ — ... »'andl’ — ... - & — ... — [, is a hidden tautology.C]

4 A directed graphG’ is a transitive reduction [13] of the directed graplprovided that ()G’
has a directed path from nodeto nodev if and only if G has a directed path from nodeto
nodew, and (ii) there is no graph with fewer edges th@nsatisfying condition (i).

Notice that for every formuld& such thaBIG(F) is acyclic, it holds thaBIG(F’) has a
unique transitive reduction, since the transitive reductf any directed acyclic graph
is unique [13]. In this case, there are no non-trivial SCC8IG(F). Furthermore,
even for directed graph with cycles, the transitive reducis unigue modulo node
equivalence classes [13]. This implies that applyingdgbmbinationof FLE,(F") and
ELS beforeHTE, i.e., additionally substituting equivalent literals vihe representa-
tives of the literal equivalence classes (non-trivial stfly connected components) in
BIG(FLEy(F)), a unique transitive reduction (module variable renamisigptained.
With this intuition, for a formulaF’, extended hidden tautology eliminatiatH{TE)

does the following two steps:

1. Repeatuntilfixpoint: (la) Let := FLEy(F). (1b) LetF := ELS(F).
2. ApplyHTE on F.

By the discussion aboveHTE is confluent.
Theorem 1. eHTE is confluent.

Furthermore, it turns out that by applyifil’E on FLE,(F'), BCP is preserved in
general; that is, even without applying equivalent litexastitution (Step 1b), we have
aBCP-preserving variant o TE.

Lemma 5. For any CNF formulaF’, HTE preserve8CP onFLE;(F) w.r.t. F.

Proof. Consider an arbitrary CNF formulB, and letF := FLE(F'). Assume that
HTE removesaclaus€ = (I; V--- Vi) € F from F; henceC'is a hidden tautology
in ', i.e.,, HLA(F, C) is a tautology.

Due to first applying"LE5, C' can not be a unit clausé,): otherwise,(I;) would
be a failed literal inF'. The only way forBCP on all clauses of’ to useC' is that we
have an assignmenmtwith 7(l;) = --- = 7(lx—1) = f, in which caséBCP on F' can
derive the unit clausély), i.e., assigr to t; hence the case théat is a tautology is
trivial. If C'is a binary clausél; V l2), then by Lemma 4 the implications representing
C are transitive edges iBIG(F' \ {C}), and hence there are alternative implication
chains betwee{ ™" andii™ in F which preserva8CP overC.

Now assume thaf’ contains at least three literals afd.A(F,C) contains the
opposite literald and . Due to FLE,, by assigning only a singlg for somei €
{1,...,k — 1} to f, BCP on binary clauses only, can not derive a conflict, and
hence can not derive the unit clauggsand(!). Otherwisel; would be a failed literal.
Therefore there are two distinct literdls!” € C, based on whichand! are included in
HLA(F, C), andBIG(F) contains two implication chains — 1},1; — Iy, ..., 1, — 1
andl” — I{,1Y —14,...,1}, — 1. Now there are two cases:

1. 01" € C\ {lg}. Sincer(I') = 7(I") = f, it follows that({), (I) € BCP(F' \
{C}, 1), i.e.,BCP derives a conflict without using'.

2.1 e C\{ly} andl” = l. Thent(l') = f, and it follows that(l) € BCP(F \
{C%}, 7). Hencel is assigned to by BCP underr. Furthermore, sinc&’ = [, and
the implication chairy, — 17,1 — 1,...,1},, — [can be seen in the reversed
orderad — Ui, U — U, _q,...,1{ — i, after assigning to t it follows that
(Ix) € BCP(F \ {C}, 7). HenceBCP assigndy, to t without usingC'. O

Furthermore, sincE€LS only does variable renaming by substituting equivalent lit
erals, it can not interfere witBCP, and we have the following.

Theorem 2. eHTE is BCP-preserving.

Moreover, the following lemma follows the intuition on fad literals inHLA.
Lemma 6. eHTE is more effective thaHTE.
In fact, here Step 1b ofHTE can again be omitted without affecting this result.

4.2 Asymmetric Tautology Elimination

For a claus€' and a CNF formuld’, (asymmetric literal additiopnALA (F, C') denotes
theuniqueclause resulting from repeating the following until fixpbiifi /1, ...l € C
andthereis aclaugé, v ... VI, V1) € F\ {C} for some literal, letC := C U {i}.
A clauseC is called arasymmetric tautologly and only if ALA(F, C) is a tautology.
Given a formulaF’, asymmetric tautology eliminatidd\TE) repeats the following
until fixpoint: if there is an asymmetric tautological claus € F', let F := F' \ {C}.

Lemma 7. ALA(F,C) is a tautology if and only iBCP on (F'\ {C}) U U,cc{(D)})
derives a conflict.

As can be seen from LemmaX[TE performs what could be callesymmetric branch-
ing on clauses, which is used, e.g., in the techniqueadse distillation[9].
The example in the proof of Proposition 1 implies the follogi

Proposition 4. ATE is not confluent.
Proposition 5. For any CNF formulaF’, ATE(F) is logically equivalent taF.

Proof. For any claus&” removed byATE, (F'\ {C}) U U,cc1{(1)} is unsatisfiable.
This implies thatF" \ {C'} = C, i.e.,F'\ {C} logically entailsC. O

Proposition 6. ATE is notBCP-preserving.
Proof. Consider the following translation af = If-Then-Elset, ¢, ¢) into CNF:
(@VevVi)A(zVevVOA(@VeVe)A(zVeVe)A(zVeVi)A(TVeVi)

Notice thatATE can removdz vV eV t) and(Z V e V t). However, after removal, for
truth assignment(e) = 7(t) = f, BCP will no longer assigne to t. Also, for truth
assignment(e) = 7(¢) = t, BCP will no longer assign: to f. O

The fact thatILA(F, C') = ALA(F5, C) implies the following.
Lemma 8. For any CNF formulaF’ and clauseC' € F, HLA(F,C) C ALA(F,C).
Lemma 9. ATE is more effective thaHTE.

Proof. ATE is at least as effective @§TE due toHLA(F,C) C ALA(F,C): if
HLA(F, C) is a tautology, theALA(F, C) is a tautology. Moreover, consider the for-

mulafF = (aVbVve)A(aVbVd)A(aVeVd). ATE willremove(a Vv bV ¢) from
F', while HTE removes none of the clauses. O

5 Subsumption-Based Clause Elimination Procedures

We now turn to the explicit, hidden, and asymmetric variasftthe procedures that
eliminate subsumed clauses. Given a CNF formidjaa clauseC; € F subsumes
(another) claus€’; € F in F if and only if C; C Cs, and thenCs is subsumed
by C:. Any assignment that satisfi€s will also satisfyCs. For a given formulaF,
subsumption eliminatiofs E) repeats the following until fixpoint: if there is a subsumed
clauseC € F,let F := F \ {C}. We refer to the reduced formula after applying
subsumption elimination o’ as SE(F'). It is easy to see th&E is confluent and
BCP-preserving, and that for any CNF formutg SE(F) is logically equivalent ta~.

5.1 Hidden Subsumption Elimination

For a given formulaF’, hidden subsumption eliminatiqiiSE) repeats the following
until fixpoint: if there is a claus€' € F' for which HLA(F, C) is subsumed i, let
F:=F\{C}.

By replacingHTE with HSE in the proof of Proposition 1 we have the following.

Proposition 7. HSE is not confluent.

Lemma 10. For any CNF formulaF’, HSE(F) is logically equivalent taF.

Proof. Follows from Lemma 1 and the fact th&E preserves logical equivalencel]
Proposition 8. HSE is notBCP-preserving.

Proof. Let F = (aVbVe)A(aVbVvd) A (bVe). HSE can removea V b V d),

becaus@ILA(F, (aVbVd)) = (aVbVcVd)is subsumed bya VbV c). Consider the
assignment which assigns (a) = 7(d) = f. We have(b) € BCP(F, 7). However,
(b) ¢ BCP(F \ {(aVbVd)}, 7). O

Notice that the above proof also holds afters simplified byFLE.
Lemma 11. HSE is more effective thafE.

Proof. HSE is at least as effective &¥ since for any CNF formuld’, (i) for every
clauseC € F, C C HLA(F,C), and (ii) if C is subsumed then any clausé O C'is

subsumed. Moreover, &t = (aVbVe)A(aVbVd)A(bVE) A(aVdVd). HSE can
remove(a VbV d) becaus@ILA(F, (aVbVd)) = (aVbVeVd), in contrast tSE. O

Also notice that, given two identical claus€s andC; (i.e.,C; C Cy andCy C C1),
HSE can remove eithef’; or C, while SE cannot.

Lemma 12. It holds that (i)HSE is not as effective aHTE, and that (i) HTE is not
as effective a$ISE.

Proof. Consider the formuldysg. HTE can remove the tautology v d V d), but no
other clausedISE can removéa \V b V d), but no other clauses. O

5.2 Asymmetric Subsumption Elimination

For a given formuld’, asymmetric subsumption eliminatiGhSE) repeats the follow-
ing until fixpoint: if there is a clausé' € F' for which ALA(F, C) is subsumed irf,
let FF:=F\ {C}.

By replacingATE with ASE in the proof of Lemma 6 we have the following.

Proposition 9. ASE is notBCP-preserving.
Lemma 13. ASE is more effective thaHSE.

Proof. ASE is at least as effective d§SE since (i) for every claus€ € F we have
HLA(F,C) € ALA(F, C) (Lemma 8), and (i) ifC' is subsumed then any clausé 2

C'is subsumed. Moreover, consider the formlila= (aVbVe)A(aVbVd)A(aVeVd).
ASE will remove(a V b V ¢) from F, while HSE removes no clauses froi. O

Lemma 14. ATE is more effective thaASE.

Proof. To see thaATE is at least as effective dsSE, consider the following. If there is
aclause&” € F for whichALA(F, C) is subsumed bg” € F'\ {C}, thenALA(F, C)
is a tautology: sa\ALA(F, C) is subsumed by’ = (I; V...V l). Due to the update
rule of ALA, I4,...,lx € ALA(F,C). Moreover, consider the formuld = (a V a).
ASE will not remove this tautology, in contrast #tI'E. O

6 Clause Elimination Procedures based on Blocked Clauses

As the final family of clause elimination procedures consédein this paper, we now
introduce and analyze procedures that eliminate bloclkagsels [12].

The resolution rule states that, given two clau€gs= {l,aq,...,a,} andCy =
{l,ba, ..., by}, the implied claus€ = {ai,...,an,b1,...,b,}, called theresolvent
of C7 and(Cy, can be inferred byesolvingon the literall, and writeC' = C; ®; Cs.

Given a CNF formuld”, a claus&” and a literal € C, the literall blocksC w.r.t. F'
if (i) for each clause&’ ¢ F with [€ C’, C ®, C' is a tautology, or (iiy € C, i.e.,C'is
itself a tautology’. Given a CNF formuld’, a clauseC is blockedw.r.t. F if there is a
literal that blocksC w.r.t. F'. Removal of blocked clauses preserves satisfiability [12].

For a CNF formula, blocked clause eliminatiofBCE) repeats the following until
fixpoint: if there is a blocked clauseé € F'w.r.t. F, let F := F'\{C'}. The CNF formula
resulting from applying3CE on F' is denoted b\BCE(F).

Proposition 10. For some CNF formuld’, BCE(F) is not logically equivalent td.

Proof. Consider the following CNF formula, having a structure tisadften observed
in CNF encodings of graph coloring problems.

Fecg = (aVbVve)A(dVeVv f)n@vd)AbVeE) AV f)A
(@vb)A@ve)Abve)A(dVe)AdV f)A(EVf).
®Herel € C is included in order to handle the special case that for anipkagical binary

clause(l v Z), both ! and! block the clause. Notice that, even without this additiorgrg
non-binarytautological clause contains at least one literal thatksdhe clause.

BCE can remove the last six binary clauses (the second rowkins. Consider the
truth assignment with 7(a) = 7(b) = 7(f) = tandr(c) = 7(d) = 7(e) = f.
Althoughr satisfies BCE(Ficr), the clausda Vv b) in Fpcg is falsified byr. O

6.1 Hidden Blocked Clause Elimination

For a given CNF formuld’, a clause” € F is calledhidden blockedf HLA(F, C)
is blocked w.r.t.F". Hidden blocked clause eliminatiqii BCE) repeats the following
until fixpoint: if there is a hidden blocked clauéee F', removeC from F.

Lemma 15. Removal of an arbitrary hidden blocked clause preservasftatiility.

Proof. Follows from the facts thaf is logically equivalentt¢ F\{C'}) U{HLA(F, C)}
and thaBCE preserves satisfiability. O

Proposition 11. HBCE is not confluent.

Proof. Let F = (@Vvb)A(@Vve)A(avd) A((bVd) A(EVd). F contains four
hidden blocked clause$ILA(F, (a v b)) = (a VvV bV ¢V d) with blocking literalb,
HLA(F, (@Vc)) = (aVbVevd) with blocking literale, HLA(F, (bVd)) = (aVbVcvd)
with blocking literalb, andHLA(F, (¢ V d)) = (a V bV ¢ V d) with blocking literale.

HBCE removes eithefa v b) and(b V d), or (a V ¢) and(¢ V d). O
ReplacingBCE with HBCE in the proof of Proposition 10, we have the following.
Proposition 12. For some CNF formuld’, HBCE(F) is not logically equivalent td".

Lemma 16. HBCE is more effective thaBCE andHTE.

Proof. HBCE is at least as effective @CE due toC C HLA(F, C) and that each
blocking literall € C is also blockingHLA(F, C'). HBCE is at least as effective as
HTE since tautologies are blocked clauses. MoreoveF'let (a V c) A (aV d) A (bV
e)A(bVd)A(eVvd). NowHLA(F, (a V) = (aV bV cVd) with blocking literala,
andHLA(F, (a Vv d)) = (a Vv bV ¢V d) with blocking literala. HenceHBCE removes

both(a Vv ¢) and(a Vv d), while neithelBCE nor HTE can remove any clause &f. [J

6.2 Asymmetric Blocked Clause Elimination

For a given CNF formul&’, a claus&” € F'is called asymmetric blocked XLA(F, C)
is blocked w.r.t.F'. Asymmetric blocked clause eliminatiohBCE) repeats the follow-
ing until fixpoint: if there is an asymmetric blocked claGes F, let F := F'\ {C}.

Lemma 17. Removal of an asymmetric blocked clause preserves satii¢fiab

Proof. Follows from the facts thaf is logically equivalentt¢ F\{C'})JU{ALA(F,C)}
and thaBCE preserves satisfiability. O

Proposition 13. ABCE is not confluent.

Proof. Let F = (@aVvb)A(@Vve)A(avd AVd A(eVd). F contains four
asymmetric blocked clausesLA(F, (aV b)) = (a VbV ¢V d) with blocking literalb,
ALA(F, (aVe)) = (aVvbVevd) with blocking literale, ALA(F, (bvd)) = (aVbVcvd)
with blocking literalb, andALA(F, (¢ vV d)) = (a V bV ¢ V d) with blocking literalc.
ABCE removes eithefa v b) and(b Vv d), or (a V ¢) or (¢ V d) from F. O

ReplacingBCE with ABCE in the proof of Proposition 10, we have the following.
Proposition 14. For some CNF formuld’, ABCE(F) is not logically equivalent td".
Lemma 18. ABCE is more effective thaHBCE and ATE.

Proof. ABCE is at least as effective d§BCE due toHLA(F,C) C ALA(F,C)
(recall Lemma 8): iHHLA(F, C) is a tautology, theLA(F, C) is a tautologyABCE

is at least as effective dsI'E since tautologies are blocked clauses. Moreover, consider
the formulaFapce = (@VbVe) A (bVeVvd) A(aV d)A(bVd) A (EVd). Now
ALA(Fapcr, (@avbVve)) = (aVbVevd) in whichb ande are blocking literals. Hence
ABCE can removéa V b V ¢) (and in fact all clauses iffapcr). NeitherHBCE nor

ATE can remove any clause frof\gcg. O

7 Reconstructing Solutions afterHBCE and ABCE

Since the elimination procedures based on blocked clausesot preserve logical
equivalence, a truth assignmentsatisfyingBCE(F') may not satisfyF. However,
a satisfying assignment fdr can be constructed based oras follows [14]. Add the
clauses” € F'\ BCE(F) back in the opposite order of their elimination. In c&sés
satisfied byr, do nothing. Otherwise, assuming ttiat C'is blockingC, flip the truth
value ofl in 7 to t. After all clauses have been added, the modifieatisfiest'.

We now show that this procedure can be used to reconstrutise for formulas
simplified usingdBCE or ABCE. The lemmas will focus oALA, but becausélLLA
is a restricted version AL A, all lemmas also hold wheALA is replaced byHLA.

Lemma 19. Given a claus&€ € F, if ALA(F, C) is blocked and not a tautology, then
there is a literall € C blocking it.

Proof. By construction, for each literdle ALA(F,C) \ C, here is a claus€’ € F
that containd andC’ \ {I} C ALA(F,C). Therefore, becaus&LA(F,C) is not a
tautology,C’ ®; ALA(F,C) = ALA(F,C) \ {l} is not a tautology either. Hendas
not blockingALA (F, C). O

Lemma 20. Given a CNF formula and a truth assignment satisfyingF’, if C' ¢ F
is falsified byr, thenALA(F, C) is falsified byr.

Proof. From Lemma 7 follows thaf" U {ALA(F, C)} is logically equivalent taF" U
{C?}. Therefore ALA(F, C) is satisfied by if and only if 7 satisfiesC. O

Lemma 21. Given a CNF formula and a truth assignment satisfyingF’, if C' ¢ F
is falsified byr and ALA(F), C) is blocked w.r.tF" with blocking literall € C, thent
satisfies at least two literals in each clauséc F withl € C".

Proof. First, suchC’ € F contain a literal which is satisfied by. Second, becausés
blocking, each clausé€’ must contain one more liter#ll+ [such thal’ € ALA(F, C).
Since all literals inALA (F, C) are falsified byr, I’ must be satisfied by. O

Combining these three lemmas, we can reconstruct a solfdiof’ if we have
a satisfying assignment for any ABCE(F') (and also anyHBCE(F")). The clauses
C € F \ ABCE(F) are added back in reverse order of elimination to ensure that
ALA(F,C) is blocked. IfC is satisfied byF' do nothing. Otherwise, we know that
there is a literal € C blockingALA(F, C); recall Lemma 19. Furthermore, all literals
in ALA(F,C) are falsified; recall Lemma 20. However, afy € F containingl has
two satisfied literals; (recall Lemma 21. Therefore, by fifgpthe truth assignment for
[tot, C becomes satisfied, while no su€t becomes falsified.

Theorem 3. The following holds for an arbitrary CNF formul& and truth assignment
T satisfyingF. For any clauseC' ¢ F for which C, HLA(F,C), or ALA(F,C) is
blocked w.r.t.F" with blocking literall, either (i) r satisfiesF’ U {C'}, or (ii) 7/, which is
a copy ofr except forr’ (1) = t, satisfiesF" U {C}.

The reconstruction proof provides several useful elemératscan be used to imple-
mentHBCE and ABCE more efficiently. First, since only original literalsc C' can
be blockingHLA(F, C) or ALA(F,C), we can avoid a blocking literal check for all
literals! € HLA(F,C) \ C orl € ALA(F,C) \ C. Second, it is enough to save
each removedriginal clauseC. None of the additional literals in thextendectlause
HLA(F,C) (or ALA(F, C), resp.) not occurring i@’ have to be flipped.

8 Experimental Evaluation

We shortly present initial experiments results on the déffeness of selected clause
elimination procedures, focusing on the current impleragons of HTE and HBCE.
The benchmarks set used consists of the 2009 SAT Compeditiplication instances
(292 in total), with each instance processed beforehand BtP. A comparison of
the effectiveness oBCE, HTE, andHBCE (all until fixpoint) is shown on the left
in Fig. 2, illustrating the percentage of clauses remaiiftgr applying the individual
techniques (with original number of clauss¥%). Here data for each plot is sorted
according to the reduction percentage, with the percestaiggauses remaining on the
y-axis. We includeBCE due to recent encouraging results presented in [11]. In line
with our analysis (recall Fig. LHBCE is clearly the most effective technique. There is
not that clear a winner betwe®&CE andHTE, althoughHTE does prevail in the end.
The hidden clause elimination procedures are probably th& mteresting novel
techniguesin practice, because they can be implementei@effy. In particulare HTE
is expected to be useful, since it also prese®®€¥P. Since we have no efficient im-
plementation oFLE,; andELS at this time, the experiments on practical use focus on
HTE instead.
As can be seen on the right in Fig. 2 (time as a function of numbénstances
solved), HTE gives gains w.r.t. solution times for MiniSAT 2.0. Here weedghe ver-
sion of MiniSAT without the built-in preprocessor to see #ffect of HTE on its own.

100%

800 P
80% i w/oHTE — /
with HTE -
600+ .
60%]
0% | 400+ .
BCE ‘
HTE I |
20% - HBCE — 1 200
| | 0 — |
0% 100 200 50 100

Fig. 2. Comparison of the effectiveness of various clause elirongtrocedures on the size of
SAT 2009 benchmark instances (left). Also, the number ddimses solved in less thaseconds
by MiniSAT 2.0 without and witHHTE as preprocessing step (right).

Notice that we also conducted an additional experiment iichvive first preprocessed
all instances using SatELite [7]; this resulted in similarformance gains.

For most benchmarks in the SAT 2009 application suit, thé abapplyingHTE
is less then a second. However, on instances in WBIGH{ F') contains large SCCs, the
computational cost is on averagé seconds. We expect that by combinii@’E with
ELS, as ineHTE, HTE will be quite efficient also for these instances.

Applying any of the asymmetric clause elimination procedunntil fixpoint will
hardly be useful in practice. The most important reason as &l these procedures
are very costly. Also, because they do not preserve BCPgfa@ral instances they can
decrease performance even in case these costs are negttmtaVer, the asymmetric
procedures will probably be of practical use when they astricted. For instance, by
only applying them on long clauses or for a short time (i.et,until fixpoint).

Our implementation o i TE does not explicitly computéILA(F, C) for each
C € F. Instead, for each literdl € lits(F'), we computeHLA (F, (1)). Elimination
of clauses is realized as follows: First, mark each litérédr which’” € HLA(F, (1))
with labell. Second, for all clauseS with [€ C' we check whether there is a literal
" € C marked with label. If there is, therC is a hidden tautology. In order to make
this procedure sound, we need to add a unit cldlisen casel € HLA(F, (I)). No-
tice that this ‘trick’ cannot be used féiBCE. So,HLA(F, C') needs to be explicitly
computed to check wheth&LA (F, C) is a hidden blocked clause. This makes our
current implementation diBCE much more costly (compared #TE). Also, while
performingHBCE, some clauses can become hidden blocked clauses. Therefame
run until fixpoint, multiple loops through the clauses amguieed (in contrast tdéITE).
As aresult of this, our currentimplementationttiBCE is on average ten times as slow
as the implementation diTE, makingHBCE at the moment impractical. However,
as stated above, the costi®T'E andHBCE can be reduced by first applyi.S.

9 Conclusions

We introduced novel clause elimination procedures as hiddel asymmetric vari-
ants of the known techniques of tautology, subsumption,ldacked clause elimina-
tion. We analyzed all of the variants from various perspesti—relative effectiveness,
BCP-preservance, confluence, logical equivalence—highhghntricate differences
between the procedures. This also resulted in a relatieetdféness hierarchy, in which
the asymmetric variant of blocked clause elimination dates all other procedures.
As one of the most interesting results, we developHd'E, a variant of hidden
tautology elimination, that is botBCP-preserving and confluent, and at the same time
more effective than the other procedures (tautology andwsuaption elimination) that
have both of these properties. In faeHHTE does a transitive reduction (a structural
property) of the binary implication graph underlying any Eformula purely on the
CNF level. Furthermore, we showed how to reconstruct smhstifor the procedures,
and presented experimental results on the practical eféeess of selected procedures.
Efficient implementations of the introduced proceduresiatefration of the most
practical ones with other simplification techniques reraais important further work.

References

1. Freeman, J.: Improvements to propositional satisfigéiearch algorithms. PhD thesis,
University of Pennsylvania (1995)
2. Le Berre, D.: Exploiting the real power of unit propagatlookahead. Electronic Notes in
Discrete Mathematic8 (2001) 59-80
3. Lynce, I., Marques-Silva, J.: The interaction betweenpdification and search in proposi-
tional satisfiability. In: CP’01 Workshop on Modeling ancoBlem Formulation. (2001)
4. Bacchus, F.: Enhancing Davis Putnam with extended bimtayse reasoning. In:
Proc. AAAI, AAAI Press (2002) 613-619
5. Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasirgaie elimination resolution for
preprocessing SAT instances. In: Proc. SAT. Volume 3542NES., Springer (2005) 276—
291
6. Gershman, R., Strichman, O.: Cost-effective hyperintiom for preprocessing CNF for-
mulas. In: Proc. SAT. Volume 3569 of LNCS., Springer (200834429
7. Eén, N., Biere, A.: Effective preprocessing in SAT tlghwariable and clause elimination.
In: Proc. SAT. Volume 3569 of LNCS., Springer (2005) 61-75
8. Gelder, A.V.: Toward leaner binary-clause reasoning sasfiability solver. Annals of
Mathematics and Artificial Intelligencé3(1) (2005) 239-253
9. Jin, H., Somenzi, F.: An incremental algorithm to chedisfiability for bounded model
checking. Electronic Notes in Theoretical Computer Saeri9(2) (2005) 51-65
10. Han, H., Somenzi, F.: Alembic: An efficient algorithm f@NF preprocessing. In:
Proc. DAC, IEEE (2007) 582-587
11. Jarvisalo, M., Biere, A., Heule, M.: Blocked clausergfiation. In: Proc. TACAS. Volume
6015 of LNCS., Springer (2010) 129-144
12. Kullmann, O.: On a generalization of extended resatutiDiscrete Applied Mathematics
96-97(1999) 149-176
13. Aho, A., Garey, M., Ullman, J.: The transitive reductfra directed graph. SIAM Journal
on Computingl(2) (1972) 131-137
14. Jarvisalo, M., Biere, A.: Reconstructing solutionteablocked clause elimination. In:
Proc. SAT. Volume 6175 of LNCS., Springer (2010) 340-345

