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Abstract. Over the last years, innovative parallel and distributed SAT
solving techniques were presented that could impressively exploit the
power of modern hardware and cloud systems. Two approaches were par-
ticularly successful: (1) search-space splitting in a Divide-and-Conquer
(D&C) manner and (2) portfolio-based solving. The latter executes differ-
ent solvers or configurations of solvers in parallel. For quantified Boolean
formulas (QBFs), the extension of propositional logic with quantifiers,
there is surprisingly little recent work in this direction compared to SAT.
In this paper, we present ParaQooba, a novel framework for parallel
and distributed QBF solving which combines D&C parallelization and
distribution with portfolio-based solving. Our framework is designed in
such a way that it can be easily extended and arbitrary sequential QBF
solvers can be integrated out of the box, without any programming effort.
We show how ParaQooba orchestrates the collaboration of different
solvers for joint problem solving by performing an extensive evaluation
on benchmarks from QBFEval’22, the most recent QBF competition.

1 Introduction

Quantified Boolean formulas (QBFs) extend propositional logic by quantifiers
over the Boolean variables [2]. As a consequence, the decision problem of QBF
(QSAT) is PSPACE complete, which is potentially harder than the NP-complete
decision problem of propositional logic (SAT). Hence, the quantifiers allow for
an efficient encoding of many reasoning problems from formal verification, syn-
thesis, and planning [26] that most likely do not have a compact formulation
in propositional logic. Over the last decade, considerable progress has been
made in sequential QBF solving [22,21]. In contrast to SAT, where conflict-
driven clause learning (CDCL) [19] is the predominant solving paradigm, in
QBF solving different approaches of orthogonal strength have been presented.
Besides QCDCL, the QBF variant of CDCL, which is implemented for example
in the solver DepQBF [17], clausal abstraction as implemented in the solver
Caqe [23] and abstraction-refinement based expansion as implemented in the
solver RaReQs [13] are particularly successful [22,21]. All of these QBF solving
approaches considerably benefit from preprocessing, i.e., an extra step before
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the actual solving in which certain redundancies of a formula are eliminated in
a satisfiability-preserving way with the aim to make it easier for the solver [10].

Despite the vivid development in sequential QBF solving, only few approaches
have been presented for parallel and distributed QBF solving [18]. The most
recent parallel QBF solvers are HordeQBF [1] which integrates sequential
QCDCL-based solvers to obtain a parallel QBF solver and, more recently, a
basic implementation of a QBF module based on the parallel SAT solver Para-
Cooba [6] with DepQBF as its only backend solver. To the best of our knowl-
edge, besides these two approaches no other parallel QBF solver has recently
been presented. The situation in SAT is different: several very powerful parallel
and distributed SAT solvers like Mallob [24], Painless [5], and the afore men-
tioned solver ParaCooba [7] have been released. They show the potential of
parallel and distributed approaches impressively by solving hard SAT instances,
for example from multiplier verification [15].

In this paper, we present ParaQooba, a novel framework for parallel and
distributed QBF solving that integrates search-space splitting based on the
Divide-and-Conquer paradigm with portfolio solving. Our framework is built
on top of the ParaCooba SAT solving framework and extends its basic non-
portfolio QBF solving module. ParaQooba reuses most of ParaCooba’s mod-
ules providing management and distribution of solver tasks. In addition, we im-
plemented a very generic interface that allows the easy integration of any QBF
solver binary into our framework.

Our main contributions are as follows:

– we present a new flexible framework for parallel and distributed QBF solving
that combines D&C search-space splitting with portfolio solving;

– we show how different QBF solvers that are based on different solving ap-
proaches can be integrated seamlessly into our framework;

– we provide our framework as open-source project;
– we perform an extensive evaluation that demonstrates the power of our ap-

proach on various kinds of benchmarks.

ParaQooba is integrated into ParaCooba’s and available on GitHub:

https://github.com/maximaximal/paracooba

This paper is structured as follows: First we introduce some preliminaries re-
quired for the rest of the paper in the following section. We continue with related
work in section 3. After that, section 4 summarizes concepts of the ParaCooba
solver framework used in our work. Then we introduce how we apply Divide-
and-Conquer to solving QBF in section 5. Having introduced the background,
we present our portfolio ParaQooba module in detail in section 6 and provide
an extensive evaluation in section 7. Finally, we summarize our findings and
conclude in section 8.

https://github.com/maximaximal/paracooba
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2 Preliminaries

We consider QBFs Q.φ in prenex conjunctive normal form (PCNF) where the
prefix Q is of the form Q1x1, . . . , Qnxn with Q ∈ {∀, ∃}. The matrix φ is a propo-
sitional formula over the variables x1, . . . , xn in conjunctive normal form (CNF).
A formula in CNF is a conjunction (∧) of clauses. A clause is a disjunction (∨)
of literals. A literal is a variable x, a negated variable ¬x or a (possibly negated)
truth constant ⊤ (true) or ⊥ (false). For a literal l, the expression l̄ denotes x
if l = ¬x and it denotes ¬x otherwise. We sometimes write a clause as a set of
literals and a CNF formula as set of clauses. Further, it is often convenient to
partition the quantifier prefix into quantifier blocks, i.e., maximal sets of consec-
utive sets of variables with the same quantifier type. For example, for the QBF
∀x1∀x2∃y1∃y2.φ we also write ∀X∃Y.φ with X = {x1, x2} and Y = {y1, y2}.
With upper case letters X,Y, . . . (possibly subscripted), we usually denote sets
of variables, while with lower case letters x, y, . . . (also possibly subscripted), we
denote variables. If φ is CNF formula, then φx←t is the CNF formula obtained
from φ by replacing all occurrences of variable x by truth constant t ∈ {⊤,⊥}.
Depending on the value of t, variable x is either set to true (if t is ⊤) or to false
(if t is ⊥). We define the semantics of QBFs as follows:

– a QBF ∀XQ.φ is true iff both QBFs ∀X ′Q.φx←⊥ and ∀X ′Q.φx←⊤ are true
where x ∈ X and X ′ = X \ {x};

– a QBF ∃YQ.φ is true iff at least one of ∃Y ′Q.φy←⊥ and ∃Y ′Q.φy←⊤ is true
where y ∈ Y and Y ′ = Y \ {y}.

Note that we assume that all variables of a QBF are quantified, i.e., we are
considering closed formulas only. Further, we use standard semantics of con-
junction, disjunction, negation, and truth constants. For example, the QBF
ϕ1 = ∀x∃y.((x∨ y)∧ (¬x∨¬y)) is true, while ϕ2 = ∃y∀x.((x∨ y)∧ (¬x∨¬y)) is
false. As we see already by this small example, the semantics impose an ordering
on the variables w.r.t. the prefix. Given a QBF Q.φ, we say that x <Q y iff x
occurs before y in the prefix. If clear from the context, we write x < y. In ϕ1,
we have x < y, while in ϕ2, we have y < x.

3 Related Work

In practical QBF solving, attempts to parallelize and distribute QBF solvers
have a long history (cf. [18] for a survey). Already more than 20 years back, the
first distributed QBF solver PQSolve [4] was presented, in a time when QCDCL
had not been invented yet. With the advent of QCDCL, several attempts have
been made to build parallel QCDCL solvers and implement knowledge-sharing
mechanisms for learned clauses and cubes. One example of such a solver is
PAQuBE [16]. Unfortunately, the code of most of the early approaches is not
available anymore. Following the success of Cube-and-Conquer-based search-
space splitting, the QBF solver MPIDepQBF has been presented [14]. While
MPIDepQBF does not implement any sophisticated look-ahead mechanisms,
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it could demonstrate that even without knowledge-sharing considerable speedup
could be achieved. These results serve as motivation for the approach presented
in this paper. Unfortunately, MPIDepQBF is implemented in an older version
of OCaml that does not run on recent systems and relies on now deprecated li-
braries, making a comparison impossible. As indicated by its name, it is tailored
around the sequential QBF solver DepQBF [17]. Another recent MPI-based
QBF solver is HordeQBF [1] which implements knowledge sharing for QCDCL
solvers. It is designed in such a way that it allows the integration of any QCDCL
solver. In order to integrate a solver, it requires that it implements a certain in-
terface, i.e., programming effort is necessary to add a new solver. To the best of
our knowledge, it includes the QBF solver DepQBF only. HordeQBF does not
perform search-space splitting, but it is a parallel portfolio solver with clause-
and cube sharing. It diversifies the parallel solver instances by different param-
eter settings. This is different than in sequential portfolio solvers as presented
in [12], which select among different solvers based on some properties of the input
formula. Overall, a very strong focus on QCDCL-based solvers can be observed
for parallel QBF solving frameworks. Because of this, many chances for better
solving performance are missed, as nowadays there are many other solvers of
orthogonal strength. With ParaQooba we provide a simple way of exploiting
the power of the different solving approaches without any integration effort.

4 ParaCooba

Our novel framework ParaQooba (with q in the middle of its name) builds on
top of the SAT solver ParaCooba (with c in the middle of its name). In this
section, we describe the parts of ParaCooba that are relevant for the remainder
of this work for our extension of ParaCooba to ParaQooba.

ParaQooba will be made available publicly during the artifact evaluation
under the MIT license, similar to ParaCooba [7,6] which is publicly available
on GitHub also under the MIT license3. ParaCooba is a distributed Cube-
and-Conquer (C&C) solver that implements a proprietary peer-to-peer based
load balancing protocol. In contrast to standard D&C solvers the splitting of
the search-space can both be done upfront by using a look-ahead solver that
produces n cubes or online during solving by lookahead or other heuristics.
Amongst other information, the cubes are stored in a binary tree, the solve tree.

Solver module. A solver module manages the sequential solver that is responsible
for solving a subproblem. Different solver modules have different code-bases,
but they also generally share common concepts. A solver module implements a
parser task, which is created directly after the module was initiated and serves
as its starting point. It parses the input formula in its own worker thread and
instantiates a solver manager based on the fully parsed formula. The parser task
also creates the first solver task as the root of the solve tree.
3 github.com/maximaximal/Paracooba

https://github.com/maximaximal/Paracooba
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Solver Tasks. For ParaCooba, solver tasks are paths in the solve tree, whith a
parser task being used to generate the tree’s root. Solver tasks are usually started
as children of other tasks, saving references to their parents, with the root solver
task being the only exception. A task’s depth in the solve tree represents its
priority to be worked on: The greater the depth, the more important a task
is to be solved locally and the less important it is to be offloaded to other
compute nodes by the broker module. Only tasks that were created locally may
be distributed.

Broker module. The broker module handles relations between solver tasks and
processes their results. While the solver module generates tasks, the broker sched-
ules them based on their priorities (their depths) and offloads them if a different
compute node has less load than the current node. A task result is propagated
upwards across compute nodes, there is no conceptual difference between locally
and remotely solved tasks. The broker module is generic and does not rely on a
specific solver module, instead providing the environment a solver module works
in. It is already provided by ParaCooba and stays the same for different solver
modules.

Cube Sources. For generating concrete subproblems, cube sources provide as-
sumption literals to leaf solver tasks. A cube source decides whether a given
solver task should split again, based on the current configuration (mainly the
splitting depth) and the given formula. Every solver module can implement
its own cube source, hence there are different kinds of cube sources for differ-
ent solver modules. On this basis, very flexible mechanisms for the selection of
splitting variables can be implemented, ranging from a simple count of literal
occurrences to advanced look-ahead heuristics.

Task Tree. The task tree built lazily, i.e., only once a leaf is visited, the leaf is
either expanded into a sub-tree, or solved. We picture such a tree in Figure 1.
This tree has a depth of 1, because the path from the tree’s root solver task
to the leaf solver tasks has a length of 1. Once the active cube source stops
further splits from being carried out, the tree’s maximum depth is reached. The
worker thread currently executing a task then lends a solver instance from the
solver manager’s central store. Each solver instance is created on-the-fly once
(normally initialized based on the parser task) for each worker thread, which
can also happen for multiple worker threads in parallel. After a solver instance
was created, all other tasks solved by the same worker thread use the same solver
instance.

Guiding Paths. The cubes that are given to solver instances as assumptions are
called guiding paths. They are generated from the path to the leaf being solved.
The solver instance then handles the solving internally, blocking the worker
thread until either result is generated or the task is terminated. Results are
not returned to parents, but instead handled by the broker module, which then
traverses the solve tree upwards as far as possible, based on the results already in



PARAQOOBA: Parallel and Distributed QBF Solving 431

the tree. Different kinds of evaluations can be defined on every level using a user-
defined assessment function. With the result processed by the broker module,
the solver task then finishes and the worker thread can take on the next task,
based on the next-highest priority. The broker may delete the solver task after it
finished processing, if the result was already used somewhere above it in the tree
and no information from the original solver task structure is required anymore.
Once the broker module has enough information to solve the root task, the result
of the formula was computed successfully.

Solver Handle. A solver handle wraps instances of a given solver. It must be able
to receive an Assume event, directly followed by a Solve event. While processing
these events, a correctly working handle must block its calling thread until a
result is found. Additionally, it must be fully re-entrant after finishing processing,
so that the next solver task can apply new assumptions. On top of this, a handle
must also be able to process a Terminate event, stopping the solver and early-
returning control to its calling thread. Such a termination event may happen
at any time, as it is generated by other solver tasks. This possibility of random
terminations was an issue for our extension to ParaQooba, as it complicated
synchronization of all involved threads.

QBF Solver Module. ParaCooba already provided a basic QBF solver module
similar to the approach seen in MPIDepQBF. It implemented a QDIMACS-
parser in a new solver module based on the SAT module. It realizes a simple
cube source that returns the variable at the nth position in the prefix, with
n being the current depth of a solver task. The solve tree is built using two
adapted assessment functions: one for variables quantified ∀ (requiring all sub-
trees to be true), one for ∃ (requiring at least one sub-tree to be true). The
assessment functions also use ParaCooba’s cancellation-support to terminate
unneeded siblings after results already satisfy the respective subproblem. As
backend solver, it exclusively uses DepQBF that provides an incremental API
(which no other recent solver provides, to the best of our knowledge).

Summary. With its already existing tree-based QBF solving module together
with its support for distributed solving, ParaCooba provides a stable basis
for building an advanced parallel QBF solver. While the existing QBF module
is rather uncompetitive with a few exceptions that indicate its potential, its
core infrastructure turned out to be very useful to build our novel framework
ParaQooba that offers built-in portfolio support.

The networking support mentioned above enables combining multiple com-
pute nodes by giving each peer a connection to the main node. This is achieved
with setting the --known-remote option. With this feature it becomes possible
to easily distribute larger problem instances on a cluster or in the cloud.
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5 Architecture of ParaQooba: Combining
Divide-and-Conquer Portfolio Solving

Our framework ParaQooba combines Divide-and-Conquer (D&C) search space
splitting with portfolio solving. The key feature of ParaQooba compared to
ParaCooba is to allow portfolio solving at different search depths. The idea is
illustrated in Figure 1. Both approaches are widely used to realize parallel and
distributed SAT and QBF solvers. The D&C approach has been especially suc-
cessful for hard combinatorial SAT problems [11] in a variant called Cube-and-
Conquer (C&C). The C&C approach relies on powerful, but expensive lookahead
solvers that heuristically decide which variables shall be considered for splitting.
In its original SAT version, ParaCooba builds upon this idea [7].

For a QBF Q1XQ2YQ.φ with Q1 ̸= Q2 and Q1, Q2 ∈ {∀, ∃} though, the
possible choices for variable selection are more restricted because of the quantifier
prefix. In general, only variables from the outermost quantifier block Q1X may
be considered, because otherwise, the value of the formula might change. Jordan
et al. [14] observed that for QBF following the sequential order of the variables
in the first quantifier block already leads to improvements compared to the
sequential implementation of DepQBF. The already existing QBF solver module
of ParaCooba (see section 4) relied on this observation: it traverses the prefix of
a PCNF and splits each visited leaf into two sub-trees, respecting both universal
and existential quantifiers, until a pre-defined maximum depth is reached. Hence,
it re-implements the approach of MPIDepQBF in ParaCooba.

Our framework ParaQooba generalizes the previous QBF module of Para-
Cooba not only by generalizing the interface in such a manner that any QBF
solver can be easily (without programming effort) integrated as backend solver.
Now it is also possible to run several solvers in the leaves as shown in Figure 2
for one split. Overall, ParaQooba realizes the following approach. The search-
space is split according to the variable ordering of the prefix until a given depth.
Once one of the sub-trees of an existentially quantified variable split is found to
be true, the other sibling is terminated. Only when both siblings return false,
the whole split returns false. Universal splits work in a dual manner: the result
is only true if both sub-trees are found to be true and false otherwise. This
property of QBF enables efficient termination of sub-tasks.

In ParaQooba, we now also parallelize each solver call over several QBF
solvers with orthogonal strategies. Compared to prior approaches [18], we run
a portfolio of multiple solvers in the leaves of the solve tree instead of only
parallelizing its root. Having just one tree leads to several advantages: We are
more flexible and may also call a preprocessor (e.g. Bloqqer) before each solve
call. We also only instantiate the tree once, saving memory and enabling early-
termination of sibling solver tasks.

6 Implementation

This section describes the extension of the SAT solver ParaCooba (for an
overview see section 4) to our QBF solving framework ParaQooba. As Para-
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Q1xQ2yQ.ϕ

Solver 2||Solver 1

Q2yQ.ϕx←⊥

x← ⊥

Solver 1 || Solver 2

Q2yQ.ϕx←⊤

x← ⊤Qn ∈ {∀, ∃} splitting

solving

Fig. 1: Divide-and-Conquer with arbitrary-many levels of splitting and sub-
formulas on the leaves solved by a portfolio of different sequential solvers

Cooba was originally not designed for portfolio support, several modifications
and extensions were necessary. To this end, we first present the new QBF module
of ParaQooba followed by a discussion of novel search-space pruning facilities.

6.1 The ParaQooba QBF Module

We generalized the already existing QBF solver handle to become an abstract
base class, which now can be either a single solver handle or a portfolio handle.
The latter unifies multiple handles into one, emulating a blocking and re-entrant
interface. Once a portfolio handle is initialized, it starts one thread per internally
wrapped handle. Each such thread implements a small state machine, waiting
for events on a shared queue. Once the portfolio handle receives an assumption
(a temporary truth assignment of a variable for one solver call), it is forwarded
to all internal threads and is worked on by each wrapped solver in parallel.

If a portfolio handle was terminated before a solve call was issued, the internal
handles would enter an invalid state. To circumvent this situation, an assumption
event also directly triggers the internal state machine to continue into the solve
state. Once the solve request actually arrives, it is just translated to an empty
event, which, after it finished processing, indicates that a result was computed.
A termination event is forwarded to the internal solver handles, but is limited
to only one event per solve cycle.

ParaQooba QBF Module

QBF Solver Task(s)Worker 1
Solver 1 || . . . || Solver n

Worker 2
Solver 1 || . . . || Solver n

Worker n
Solver 1 || . . . || Solver n

Fig. 2: The ParaQooba framework
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The first internal solver handle to compute a result returns and sends a
termination event to all sibling solvers. The result is saved and the portfolio
handle waits for all internal handles to be ready to receive the next assumption,
i.e., returning all solvers to a known state. Once every internal handle has reached
that, the portfolio handle finally returns to its calling thread, forwarding the
result of the inner handle. Because of thread scheduling and fast solving of trivial
subproblems, a result can be forwarded even before the other sibling has been
started, letting the broker module already complete a task before it itself has
created both child tasks. This effect lead to some issues and had to be mitigated
by adding some conditions on a task already being terminated even though it
did not yet run to completion. Because a task will only be scheduled after the
initial call to its assessment function, not many such checks were needed.

As many QBF solvers lack APIs, we have to work with their binaries that
generally only read QDIMACS files. For this, we use the QuAPI interfacing
library, that adds well-performing assumption-based reasoning support to generic
solver binaries [9]. By not relying on specialized modifications of a solver’s source
code, we are able to plug-in generic third-party solvers, completely composable
at runtime. Our ParaQooba module provides the --quapisolver parameter,
that either directly specifies the leaf solver to be used, or automatically generates
a portfolio handle to wrap multiple parallel leaf solvers. Note that our approach
works for QBFs starting with existential as well as with universal quantification.

In its standard configuration, ParaQooba returns whether a given instance
is found to be true or false. When enabling trace output using -t, it also supports
printing the specific solver and the subproblem (including its guiding path) that
produced a result. Using this machinery, one obtains an environment to experi-
ment with benchmarks and to see how multiple solvers complement each other
for the generated sub-formulas. The trace output is also useful when fully ex-
panding a QBF formula by specifying a tree-depth of -1. While not advised for
any real formulas, this was a well-received debugging aid for stress-testing new
features. The opposite to this can also be done, by applying a tree-depth of 0.
This directly solves the root task, without splitting the formula. This was also
how the configuration PQ Portfolio with depth 0 (as discussed in the experimen-
tal evaluation below) was executed.

6.2 Search-Space Pruning

Preprocessing in the leaves. We modified the QBF preprocessor Bloqqer to
allow forwarding output directly into a given solver binary by adding a -p argu-
ment. Internally, this writes the complete formula with added assumptions into
the standard input of Bloqqer’s preprocessing pipeline.

To plug e.g. Caqe into such a processing chain and then into ParaQooba,
one may use our QBF solver module’s command line option --quapisolver
bloqqer-popen@-p=caqe. Deferring preprocessing until solving the leaves pre-
serves the original formula structure of a formula during the split phase. We
discuss the effects of this later in subsection 7.4.
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Integer-Split Reduction. In many planning and verification encodings, the vari-
ables of a quantifier block QX are interpreted as bitvectors representing m nodes
of a graph. Assume that n = |X| bits with m ≤ 2n are used for modeling the
states of the graph. Then 2n − m assignments to X are not relevant, but as a
solver is agnostic of this information, it has to consider all assignments.

If m is known to the user, ParaQooba can be called with the option
--intsplit (once or multiple times, once for each layer). One integer-split is
counted as one layer in the task tree, so a tree-depth of two would split another
quantifier into two more tasks for each state encoded in the previous integer-
based split. To provide an example: Setting --intsplit 5 creates 5 child-tasks
in the task tree, spanning over the first ⌈log2 5⌉ = 3 boolean variables from the
quantifier prefix. When not using doing an integer-based split, these 3 variables
would have to be expanded over 3 layers in the task tree, each inner task being
split into two child tasks, resulting in 8 leaves , opposed to the 5 from before.
Thus, integer-based splits require less intermediate splitting tasks to model the
same formula, reducing the work to be done by the load-balancing mechanism in
the Broker module. These integer splits are efficiently distributed over the net-
work by relying on both the config-system and an extended QBF cube source.
The cube source always saves the current guiding path, applying new splits, and
in turn new assumptions, by appending to that path. The cube source itself is
automatically serialized when a task is chosen to be offloaded to another com-
pute node. While the possible savings are large, one has to exert great caution
when using this feature, as it might change the semantics of a formula.

7 Evaluation

In this section, we evaluate ParaQooba on recent benchmarks and compare it
to (sequential) state-of-the-art QBF solvers. As sequential backend solvers, we
use the latest versions of DepQBF [17] as QCDCL solver, Caqe [23] as clausal-
abstraction solver, and RaReQs [13] as recursive abstraction refinement solver.
For preprocessing, we use Bloqqer [3] (version 31). All of these solvers were top-
ranked in the most recent edition of QBFEval’22 [22]. For our experiments we
used the benchmarks of the PCNF-track of this competition. The main questions
we want to answer with our evaluation are as follows:

– how does the parallel portfolio-leaf approach of ParaQooba perform in
comparison to the individual sequential solvers?

– how does the parallel portfolio-leaf approach of ParaQooba perform in
comparison to the virtual portfolio solver of the sequential solvers?

– what is the impact of performing the preprocessing in the leaves instead on
the original input formula?

We ran our experiments on machines with dual-socket 16 core AMD EPYC
7313 processors with 3.7GHz sustained boost clock speed and 256GB main
memory. Each task was assigned as many physical cores as its setup required,
except for tasks with more than 32 concurrent threads, which were exclusively
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assigned a whole node each as to not be slowed down by other loads. The ef-
fects of over-committing in case of three concurrent portfolio solvers (48 threads
running in parallel with only 32 physical cores available) are discussed below in
subsection 7.3.

Please note that in this evaluation we do not use the networking features
provided by ParaCooba, as we focus on applicability to QBF and not on the al-
ready presented scalability of the networking component (for the details see [3]).

7.1 Overall Performance Comparison

In order to exploit our hardware with 32 physical cores and 64 logical cores in the
best possible way, we mainly focus on a splitting depth of four in the following.
With this depth, 16 worker threads are generated for each problem and with
three sequential backend solvers, overall 48 processes are started. We call this
configuration PQ Portfolio, Depth 4. For understanding the impact of splitting,
we also consider other depths as well. With PQ Portfolio, Depth 0 we refer to
the configuration in which splitting is disabled. This configuration is particularly
interesting, because compared to the virtual best solver (VBS), it reveals the
overhead introduced by our framework (see also the discussion below). In order to
show the improvements of ParaQooba compared to the QBF module without
portfolio solving that was already available in ParaCooba [6], we also included
the configuration PQ DepQBF, Depth 4.

Figure 3 shows the overall results of our evaluation without preprocessing.
Both configurations of ParaQooba, PQ Portfolio, Depth 0 and PQ Portfolio,
Depth 4 are considerably better than the single sequential solvers as well as the
basic non-portfolio QBF module of ParaCooba only solving with DepQBF
(PQ DepQBF, Depth 4). However, compared to the virtual portfolio, 28 in-
stances less are solved in total (for an explanation see below). On the positive
side, 33 formulas can be solved by our new approach that could not be solved by
any sequential solver. The situation changes when preprocessing is applied (cf.
Figure 4). Now ParaQooba in configuration PQ Portfolio Preprocessed For-
mulas, Depth 4 is able to solve most formulas. It even solves more formulas than
the Preprocessed Virtual Portfolio, indicating the potential of our approach.

A detailed analysis is given in Figure 5. By comparing the number of solved
instances to the solve time of individual (preprocessed) problem instances, we
see a small average speedup when using ParaQooba with depth 4 compared
to a virtual portfolio solver in Figure 5a. The more trivial instances tend to be
solved quicker using a sequential solver, while the harder to solve instances tend
to be solved faster with the Divide-and-Conquer approach of ParaQooba.

Next, we used the preprocessed leaves functionality introduced in subsec-
tion 6.2. Here ParaQooba generates its guiding paths using the original formula
and applies Bloqqer only in the leaves of the solve tree. In this configuration,
some problem instances take longer to solve than when preprocessing the full for-
mula, while others can be solved quicker. We present these results in Figure 5b.
Such a result was expected, as it is conceptually similar to inprocessing.
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(d) ParaQooba with Depth 4 compared
to Virtual Portfolio on Hex formulas

Fig. 5: Detailed comparison of ParaQooba against the virtual portfolio of De-
pQBF, Caqe, and RaReQs in a, b, d. In a, ParaQooba solves 45 instances
that no sequential solver could solve. In b, ParaQooba solves 38 instances no
sequential solver could solve, 8 of which also could not be solved with portfolio
over preprocessed formulas as in a. d focuses only on preprocessed formulas from
the Hex benchmark family. In c, we directly compare preprocessing in the leaves
to preprocessing in the input formula.
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Fig. 6: Preprocessed formulas of the Hex positional game planning [20,25] bench-
marks from the QBF22 benchmark set. Also compared to HordeQBF [1] as
available state-of-the-art parallel QBF solver.

When considering the formulas that were exclusively solved by ParaQooba,
then the variant with preprocessing the full formula up-front performed best
followed by the variant with preprocessing in the leaves. These formulas include
verification and synthesis benchmarks with 2–3 quantifier alternations as well
as many encodings of the game Hex with 13, 15 or 17 quantifier alternations.
Table 1 in the appendix lists all instances (48) that were only solved with some
variant of ParaQooba. It also lists which variant was the fastest.

7.2 Family-Based Analysis

To understand which formula families benefit most from our Divide-and-Conquer
solving strategy, we compared the (wall-clock) solve time of ParaQooba to the
virtual portfolio solver. We calculated the speedup by dividing the solve time
of the sequential solver by the solve time of ParaQooba. The instances with
the highest speedups were some reachability queries (up to 18.09), the Hex game
planning family (17.64), multipliers (16.46), and the formula_add family (15.16).
More detailed results are appended in Table 2. Together with the number of
Hex instances only ParaQooba solved (21), this makes Hex game planning the
benchmark family with the best overall results in our evaluation. A comparison
between ParaQooba and other solvers is shown in Figure 6.

7.3 Scalability of our Approach

As already discussed above, using 16 workers leads to overcommitting cores
when solving with a portfolio of more than two solvers. To quantify this, we did
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Fig. 7: Hex Scalability with preprocessed formulas. Depth 4 suffers from over-
committing the available CPU-cores on our hardware and is relatively slow for
the first few problems, but still solves more instances overall.

a scalability experiment with different worker counts. Because the Hex planning
benchmarks had the most predictable performance, we focused this experiment
on these formulas. Figure 7 shows the scalability graph, where the X-axis has
been multiplied by the number of workers used, to visualize the cost of in-
creased CPU-time compared to reduced wall-clock solve time. The impact of
over-committing CPU cores can be clearly observed in the results of the portfo-
lio with depth 4. This curve solves more compared to the others and takes longer
to solve the first 140 instances, until the curves become more similar again.

7.4 Preprocessed Leaves compared to Preprocessed Formulas

We compared preprocessing the whole formula at once using Bloqqer to calling
Bloqqer using bloqqer-popen in each leaf after first splitting on the unchanged
formula. The first variant modifies the original prefix, including the quantifier or-
dering. Because the used splitting algorithm generates guiding paths by following
this quantifier ordering, the different approaches lead to vastly different results.
Figure 5c visualizes these differences by scattering both variants together.

Looking at the specific benchmarks benefiting from the two variants, we
often observed improvements to one variant per family. This strongly suggests
that adaptive preprocessing and inprocessing techniques could further improve
solving performance, even without otherwise changing solvers themselves.

7.5 Lessons Learned

One would expect that for any given problem, parallel portfolio solvers are as
fast as the fastest used solver. While this statement is conceptually true, we
encountered some formulas where PQ-Portfolio gave comparatively bad results,
while a solver alone could solve the same formula quicker or even instantly.
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We investigated this in more detail and found several segmentation faults in
Caqe and API inconsistencies in DepQBF that were encountered because of
some corner-case structures of the generated subproblems (e.g., by enforcing the
values of certain variables). We reported these issues to the solver developers
and hope to obtain fixes soon. Having this issues fixed would lead to a more
performant general solution and to a more robust user experience. In sequential
execution of these solvers, we did not encounter any problems on the unmodified
competition benchmarks without added unit clauses.

Currently, we adopt the following work-around. Segmentation faults of the
sequential solvers are handled in our QBF module using the indirection provided
by QuAPI. Once an unrecoverable error occurs in the solver child process, it
exits and returns the error up through QuAPI’s factory process and into the
solver handle. There, such a result is interpreted as Unknown, which is invalid
and therefore ignored, letting the portfolio wait for other results. We provide all
affected formulas that we found in the artifact submitted alongside this paper.

We also observed that calling a solver via its API might lead to a consider-
ably different behavior than calling a solver from the command line, i.e., different
optimizations are activated when calling a solver through its API compared to
using the command-line binary. Such behavior can be mitigated by not using the
API directly, and instead relying on QuAPI, even if an API would be available.
This fixes the issues with DepQBF, which solves some formulas (with assump-
tions supplied as unit clauses) in under one second if used as a solver binary,
but not when applying assumptions through its API. We also supply all found
formulas that triggered this issue in the submitted artifact.

8 Conclusions

We presented ParaQooba, a parallel and distributed QBF solving framework
that combines search-space splitting with portfolio solving. We designed the
framework in such a way that any sequential QBF solver binary can be eas-
ily integrated without any implementation effort. Our experiments demonstrate
that this approach in combination with sequential preprocessing lead to consid-
erable performance improvements for certain formula families.

With our framework, we provide a stable infrastructure that has the po-
tential for many future extensions. For example, we did not incorporate any
advanced splitting heuristics as in modern Cube-and-Conquer solvers. We ex-
pect that with more advanced heuristics, combined with adaptive but possibly
non-deterministic re-splitting of leaves, even more speedups could be achieved.

In addition to the presented experiments, we also evaluated the novel integer-
split feature (cf. subsection 6.2) with the Hex benchmark family. By providing
the number of valid game states to ParaQooba, we could increase the split-
ting depth as well as the number of solved instances. We see much potential of
providing encoding-specific or domain-specific knowledge to the solver and will
investigate this in future work.
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Data Availability Statement

Data used for benchmarking the described software, including source code, are
made available permanently under a permissive license in a public artifact on
Zenodo. Raw source data for the figures presented in this paper are also in-
cluded [8].

A Instances Only Solved by ParaQooba

Name Clauses Variables QA Time [s] Res Variant
b21_C_3_206 242896 3270 3 265.77 ⊤ full
c1_Debug_s3_f1_e1_v1 1775758 379113 3 3164.34 ⊤ full
c2_Debug_s3_f1_e1_v2 431970 98425 3 1834.27 ⊤ full
cache-coherence-2-fixpoint-2 10648 3686 2 0.56 ⊥ leaves
cmu.dme1.B-f3 4540 1795 3 0.2 ⊤ leaves
cmu.dme2.B-f3 6151 2342 3 818.3 ⊤ leaves
LoginService 21667 5289 2 1086.07 ⊥ orig
query64_query42_1344n 3423 1426 2 86.73 ⊤ full
hex_compact_goal_witness_
based_hein_03_6x6-13.pg

3401 1056 15 2594.27 ⊥ leaves

hex_compact_goal_witness_
based_hein_05_6x6-13.pg

3493 1071 15 3102.97 ⊤ full

hex_compact_goal_witness_
based_hein_17_6x6-13.pg

3430 1060 15 1919.64 ⊥ full

hex_compact_goal_witness_
based_hein_18_7x7-13.pg

4256 1267 15 1401.12 ⊥ full

hex_compact_goal_witness_
based_hein_02_5x5-13.pg

3134 1007 15 308.99 ⊤ full

hex_compact_goal_witness_
based_hein_15_5x5-15.pg

3667 1195 17 3063.67 ⊤ full

hex_symbolic_explicit_goal_
hein_03_6x6-11.pg

3421 902 13 693.11 ⊥ full

hex_symbolic_explicit_goal_
hein_05_6x6-11.pg

3611 918 13 501.29 ⊥ full

hex_symbolic_explicit_goal_
hein_18_7x7-11.pg

3084 1021 13 447.7 ⊥ leaves

hex_symbolic_explicit_goal_
hein_02_5x5-11.pg

2480 739 13 973.33 ⊥ full

hex_symbolic_explicit_goal_
hein_16_5x5-11.pg

2376 731 13 301.31 ⊥ full

hex_symbolic_implicit_goal_
hein_03_6x6-13.pg

3069 1001 15 1830.57 ⊥ full

hex_symbolic_implicit_goal_
hein_17_6x6-13.pg

3097 1005 15 2674.38 ⊥ full



PARAQOOBA: Parallel and Distributed QBF Solving 443

hex_symbolic_implicit_goal_
hein_02_5x5-13.pg

2812 952 15 404.36 ⊤ full

hex_symbolic_implicit_goal_
hein_15_5x5-15.pg

3106 1072 17 1944.27 ⊤ full

hex_witness_based_hein_03_
6x6-13.pg

7174 1917 13 2050.04 ⊥ full

hex_witness_based_hein_05_
6x6-13.pg

7456 1962 13 1005.06 ⊤ full

hex_witness_based_hein_17_
6x6-13.pg

7353 1936 13 1572.7 ⊥ full

hex_witness_based_hein_18_
7x7-13.pg

9577 2405 13 1102.69 ⊥ full

hex_witness_based_hein_20_
6x6-13.pg

7551 1962 13 3123.99 ⊥ full

hex_witness_based_hein_15_
5x5-15.pg

7423 2136 15 2489.7 ⊤ leaves

OrgSynth_mitexams_p02_l_6 83500 23384 3 1852.22 ⊤ full
OrgSynth_mitexams_p02_l_7 97214 27239 3 2693.19 ⊤ full
OrgSynth_mitexams_p03_l_5 106413 29730 3 2897.47 ⊤ full
OrgSynth_mitexams_p07_l_5 165039 46587 3 2469.04 ⊥ leaves
OrgSynth_mitexams_p16_l_6 53448 15692 3 2169.18 ⊤ full
OrgSynth_mitexams_p16_l_7 62141 18265 3 3054.75 ⊤ leaves
OrgSynth_mitexams_p19_l_6 106252 29346 3 3489.44 ⊤ full
OrgSynth_mitexams_p20_l_7 74375 21534 3 1782.51 ⊥ full
OrgSynth_mitexams_p01_l_4 65294 17864 3 1609.48 ⊥ full
OrgSynth_mitexams_p05_l_3 79279 22897 3 2055.46 ⊤ leaves
OrgSynth_mitexams_p05_l_4 105042 30409 3 2253.59 ⊤ full
OrgSynth_mitexams_p10_l_3 44309 12864 3 870.16 ⊤ full
OrgSynth_mitexams_p10_l_4 58490 17046 3 2163.5 ⊤ full
OrgSynth_mitexams_p13_l_3 52653 14953 3 1310.32 ⊤ full
OrgSynth_mitexams_p13_l_4 69554 19819 3 2592.6 ⊤ leaves
OrgSynth_sat18_p09_l_3 52653 14953 3 1765.8 ⊤ leaves
OrgSynth_sat18_p09_l_4 69554 19819 3 2328.99 ⊤ leaves
OrgSynth_sat18_p11_l_4 85537 23860 3 2123.52 ⊥ leaves
OrgSynth_sat18_p12_l_4 82734 23155 3 2803.72 ⊥ leaves

Table 1: 48 instances that were only solved by a ParaQooba configuration.
QA: Quantifier Alternations, Res: Result, Variant: ParaQooba configuration
that solved the problem the fastest (preprocess full formula, preprocess leaves,
original formula).
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B Instances Solved faster by ParaQooba

Name PQ [s] VPS [s] Speedup Res
nreachq_query71_1344n 2.21 39.97 18.09 ⊥
hex_witness_based_hein_08_5x5-11.pg 0.22 3.88 17.64 ⊤
mult9.sat 2.11 34.73 16.46 ⊤
add5_COMPLETE 1.78 26.98 15.16 ⊤
hex_symbolic_explicit_goal_hein_10_5x5-11.pg 32.23 465.43 14.44 ⊥
hex_compact_goal_witness_based_hein_10_
5x5-13.pg

144.98 1853.09 12.78 ⊤

hex_symbolic_explicit_goal_hein_11_5x5-09.pg 1.79 22.53 12.59 ⊥
hex_symbolic_implicit_goal_hein_03_6x6-11.pg 47.52 538.03 11.32 ⊥
reachqu_query60_1344n 7.57 77.4 10.22 ⊥
query71_query36_1344n 11.38 105.83 9.30 ⊥
hex_symbolic_explicit_goal_hein_08_5x5-09.pg 1.18 10.94 9.27 ⊥
hex_symbolic_implicit_goal_hein_20_6x6-11.pg 140.49 1282.38 9.13 ⊥
hex_witness_based_hein_06_4x4-11.pg 3.41 30.9 9.06 ⊥
hex_compact_goal_witness_based_hein_10_
5x5-11.pg

13.97 121.04 8.66 ⊥

hex_symbolic_implicit_goal_hein_19_5x5-11.pg 1.69 14.29 8.46 ⊤
hex_symbolic_implicit_goal_hein_16_5x5-11.pg 22.26 184.75 8.30 ⊥
sortnetsort10.AE.stepl.008 13.33 107.07 8.03 ⊥
add7_REDUCED 135.58 1051.44 7.76 ⊤
reachqu_query64_1344n 128.4 982.54 7.65 ⊥
hex_compact_goal_witness_based_hein_02_
5x5-11.pg

39.04 295.57 7.57 ⊥

amba4b9y.unsat 10.9 81.72 7.50 ⊥
hex_symbolic_implicit_goal_hein_15_5x5-13.pg 95.67 714.78 7.47 ⊥
hex_compact_goal_witness_based_hein_15_
5x5-13.pg

167.18 1229.74 7.36 ⊥

hex_symbolic_implicit_goal_hein_06_4x4-11.pg 1.32 9.67 7.33 ⊥
hex_compact_goal_witness_based_hein_16_
5x5-13.pg

372.26 2713.59 7.29 ⊤

Table 2: Instances that ParaQooba (PQ) solved faster compared to a virtual
portfolio solver (VPS) that also solved the same problem, ordered by the relative
speedup and limited to the top 25 entries. Res: Result, Speedup: VPS[s]

PQ[s] .
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