
Learn to Unlearn1

Bernhard Gstrein #�2

University of Freiburg, Germany3

Florian Pollitt #�4

University of Freiburg, Germany5

André Schidler # �6

University of Freiburg, Germany7

Mathias Fleury #�8

University of Freiburg, Germany9

Armin Biere #�10

University of Freiburg, Germany11

Abstract12

Clause learning is a significant milestone in the development of SAT solving. However, keeping all13

learned clauses without discrimination gradually slows down the solver. Thus, selectively removing14

some learned clauses during routine database reduction is essential. In this paper, we reexamine and15

test several long-standing ideas for clause removal in the modern solver Kissat. Our experiments show16

that retaining all clauses alters performance in all instances. For satisfiable instances, periodically17

removing all learned clauses surprisingly yields near state-of-the-art performance. For unsatisfiable18

instances, it is vital to always keep some learned clauses. Building on the influential Glucose paper,19

we find that it is crucial to always retain the clauses most likely to help, regardless of whether they20

are ranked by size or LBD in practice. Another key factor is whether a clause was used recently21

during conflict resolution steps. Eagerly keeping used clauses improves all unlearning strategies.22

2012 ACM Subject Classification Theory of Computation → Automated Reasoning23

Keywords and phrases Satisfiability solving, learned clause recycling, LBD24

Digital Object Identifier 10.4230/LIPIcs.SAT.2025.2625

Supplementary Material Software (Source Code): https://github.com/texmex76/kissat-cr [16]26

Dataset (Log Files): https://doi.org/10.5281/zenodo.15146408 [17]27

Acknowledgements This work was supported by the state of Baden-Württemberg through bwHPC,28

the German Research Foundation (DFG) grant INST 35/1597-1 FUGG, and a gift from Intel Corp.29

1 Introduction30

Modern SAT solvers following the conflict-driven clause learning (CDCL) paradigm [21] or31

related algorithms [28], reduce the search space by learning clauses that boost propagation32

power. Thanks to solver efficiency and hardware advances, they can now learn many more33

clauses and solve much larger instances. However, these clauses (also called “no-goods” [28])34

gradually slow down the solver because the efficiency of most algorithms depends on the size35

of their data structures. Furthermore, retaining every clause turns CDCL into an algorithm36

requiring exponential space, similar to reverting from DPLL [6] to DP [7]. Thus, reducing37

the number of clauses by unlearning is crucial for good performance. In this paper, we revisit38

established clause unlearning strategies and evaluate their impact on our state-of-the-art39

SAT solver Kissat [4], winner of all tracks of the SAT Competition 2024.40

Several research efforts have tried to mitigate this problem. Already in 1993, in parallel to41

the seminal work on CDCL [24], Ginsberg [12] presented a polynomial space variant of conflict-42

driven no-good learning, which he later adapted in 2015 to allow arbitrary restarts [13] without43

© Bernhard Gstrein. Florian Pollitt, André Schidler, Mathias Fleury, and Armin Biere;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025).
Editors: Jeremias Berg and Jakob Nordström; Article No. 26; pp. 26:1–26:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:biere@cs.uni-freiburg.de
https://orcid.org/0000-0002-2129-8817
mailto:biere@cs.uni-freiburg.de
https://orcid.org/0009-0001-4337-6919
mailto:schidler@cs.uni-freiburg.de
https://orcid.org/0000-0001-6790-7158
mailto:biere@cs.uni-freiburg.de
https://orcid.org/0000-0002-1705-3083
mailto:biere@cs.uni-freiburg.de
https://orcid.org/0000-0001-7170-9242
https://doi.org/10.4230/LIPIcs.SAT.2025.26
https://github.com/texmex76/kissat-cr
https://doi.org/10.5281/zenodo.15146408
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Learn to Unlearn

losing completeness. However, state-of-the-art solvers have not adopted this approach.44

On the practical side, various unlearning schemes have been proposed: keeping clauses up45

to a fixed size [8], using relevance-based criteria [20], combining different approaches [14,18,24]46

and more. In our experiments, we revisit size-based unlearning in particular. More recently,47

CDCL solvers have started to predict the future usefulness of a clause by measuring either48

how often it is used (its activity) [9, 14] or how recently it has been used (its age) [11, 14, 15]49

during conflict analysis. This information is then used to rank clauses for retention or50

deletion. The seminal Glucose [1] introduced the new ranking scheme literal block distance51

(LBD) and, more importantly, the idea of keeping specific (glue) clauses unconditionally.52

We highlight the importance of clause unlearning in our first experiment (Section 3),53

where we evaluate Kissat without any unlearning (a configuration previously studied by54

Chanseok Oh [23]) as well as periodically unlearning all learned clauses. The experiment55

shows that keeping all clauses degrades performance on all instance types. Interestingly, while56

periodic unlearning of all clauses yields nearly state-of-the-art performance on satisfiable57

instances, it significantly harms performance on unsatisfiable ones.58

Our second experiment (Section 4) revisits the favored approach of MiniSat [9], where59

clause activity is used to decide which clauses to unlearn. In this scheme, a clause’s activity60

increases each time it is used to derive a new clause, while unused clauses are penalized. In61

our experiments, the performance of Kissat with activity-based unlearning is unsatisfactory.62

In 2009, Glucose [1] introduced a new usefulness criterion based on the propagation63

power of clauses, approximated by LBD (the number of different decision levels in a clause64

when it is learned or propagates). While MiniSat ranks clauses based on activity and65

unlearns a fixed percentage, Glucose sorts clauses into two tiers and unconditionally keeps66

the lower-tier (critical) clauses. Our experiments in Section 5 confirm that retaining only67

critical clauses is more important than the difference between using clause size or LBD as68

the ranking metric. Similar findings regarding the indifference between ranking schemes have69

also been observed in a related experiment [10] focusing on combinatorial benchmarks.70

In 2019, a machine-learning-based approach was used to analyze clause usefulness, which71

we revisit in Section 6. In that work, the usefulness of a clause was estimated by generating72

proofs, reconstructing dependencies, and classifying core clauses as useful. Soos et al. [27]73

identified, that clauses which have been used to derive a new clause since the last unlearning74

round should be kept. This effectively reduces clause activity to a single binary indicator.75

While this metric alone performs poorly, combining it with other criteria consistently improves76

solver performance. In fact, such a combination is one of our best configurations and achieves77

performance similar to the base version of Kissat while being much easier to implement.78

Finally, in Section 7, we discuss the state-of-the-art and Kissat. Since Kissat uses LBD79

as a key metric for estimating a clause’s usefulness, we analyze the actual distribution of80

LBDs in used clauses. While the distribution usually shows peaks that match our definition81

of critical clauses, some instances have a minimal LBD far above our critical threshold. We82

address this by proposing a new dynamic tier system with adaptive thresholds to identify83

critical clauses, though this scheme does not improve performance.84

2 Background and Experimental Setup85

We refer the reader to the corresponding chapter of the Handbook of satisfiability [21] for an86

introduction to conflict-driven clause learning (CDCL), i.e., CDCL applies unit propagation87

after decisions, finds conflicts and then learns new clauses to change the focus of the search,88

interleaved with restarts, inprocessing [19], as well as unlearning, the focus of this paper.89

B. Gstrein. F. Pollitt, A. Schidler, M. Fleury, and A. Biere 26:3

unlearn (some sub-set of the learned clauses F)
1 backtrack to decision level zero (root-level) // make sure all clauses can be deleted
2 optionally update critical tier limits dynamically // Sect. 7
3 initialize G as an empty list of candidate clauses to unlearn
4 for all learned clauses C ∈ F

5 check the used flag of C, i.e., whether C was used during learning since the last unlearn
6 if used continue but reset used flag of C in any case // Sect. 6
7 if C is considered critical continue // Sect. 5 (2-tier system)
8 otherwise add C to candidate set G

9 sort G by “predicted usefulness” ranking function // Sect. 4 (activity), Sect. 5 (LBD)
10 remove from F the least useful fraction f · |G| of clauses in G // Sect. 3

// where f is the target fraction to remove, e.g., f = 50% removes half of G,
// f = 0% no clause (no-unlearn) and f = 100% all remaining candidates (unlearn-all)

11 Schedule next unlearning

Algorithm 1 Unlearning is part of the unlearn function, scheduled regularly within the CDCL loop
after a certain number of conflicts occurred and clauses have been learned. We want to understand
which clauses in unlearn should be thrown-away, i.e., “unlearned”, and which should be kept. More
aspects on the Kissat implementation of unlearn (in reduce.c) are discussed in appendix A.

In Alg. 1 we show pseudo-code for the implementation of unlearn, which is called90

periodically from the CDCL loop according to some unlearning schedule. Clauses are only91

removed during unlearning, so even unlearn-all keeps clauses for some time: it only throws92

away all learned clauses in each unlearning round. In this paper, we vary different parts of93

this Alg. 1. Changes and their effects are outlined in the respective sections below.94

As initial starting point of our investigations we used the competition version of the award-95

winning SAT solver Kissat [4] from the SAT Competition 2024. It won all main-tracks of96

this most recent competition and thus is considered the state-of-the-art. In order to reduce97

influence on and by other heuristics while varying aspects of unlearning, we have simplified98

the competition version in two ways. First, we let Kissat restart before unlearning clauses,99

as otherwise, the solver is forced to keep clauses which are used as reasons for assigned100

variables. Second, we fix the fraction of removed clauses to be the same for the entire run of101

the solver, specifically 75%. In the competition version it slowly increases from 60% to 90%.102

The resulting base version is the actual starting point for the other variants considered.103

Throughout this paper, all experiments are conducted with the 400 problems from the104

SAT Competition 2024, following The SAT Practitioner’s Manifesto [5] and solved on the105

bwForCluster Helix with AMD Milan EPYC 7513 CPUs, a memory limit of 16 GB per solver106

run and a time limit of 5000 s. We consistently present results as cumulative distribution107

functions (CDFs), where the x-axis gives the time and the y-axis shows the number of solved108

problems (400 total for the entire benchmark set or 200 total when only UNSAT or SAT).109

3 Importance of Unlearning110

We first evaluate the configurations unlearn-all and no-unlearn which periodically unlearn all111

and never unlearn any clauses, respectively. We observe an interesting effect: unlearning all112

clauses is only very modestly harmful on satisfiable instances (Fig. 2b). It appears sufficient113

to guess a model to solve those instances and learned clauses only seem to be instrumental114

to locally guide the solver towards this model, and should be unlearned fast. However,115

SAT 2025

26:4 Learn to Unlearn

0 1000 3000 5000

0
50

10
0

15
0

170 competition
160 base
134 no−unlearn
134 activity
104 unlearn−all

(a) UNSAT instances only.
0 1000 3000 5000

0
50

10
0

15
0

159 competition
158 base
156 activity
154 unlearn−all
141 no−unlearn

(b) SAT instances only.

Figure 2 Comparing unlearning strategies: full competition; simplified base; no-unlearn (retain all
clauses); unlearn-all (periodically unlearn all clauses); activity-based (cf. Sect. 4).

0 1000 2000 3000 4000 5000

10
0

20
0

30
0

329 competition
318 base
290 activity
275 no−unlearn
258 unlearn−all

Figure 3 Comparing the same unlearning strategies as in Fig. 2 but on all competition instances.

unlearn-all is detrimental to solving unsatisfiable instances (Fig. 2a).116

Keeping all clauses (no-unlearn) reduces Kissat’s performance for both classes, but is117

not as harmful on unsatisfiable instances as expected. It further has a negative impact on118

memory usage of course as for no-unlearn accumulated memory usage goes from 167 GB to119

240 GB. On the other hand, the number of conflicts on the 96 shared solved unsatisfiable120

instances of the no-unlearn configuration is reduced to 0.7 the number of conflicts in the121

base configuration and goes up for unlearn-all by more than factor of 10. Chanseok Oh [23]122

reached similar conclusions for unlearn-all.123

In general, we obverse that configurations retaining more clauses perform better on124

unsatisfiable instances and worse on satisfiable instances, while unlearning more clauses tends125

to improve performance on satisfiable instances but hinders solving unsatisfiable instances.126

This might be exploited if the expected result for a particular instance is known.127

4 Activity as Usefulness Prediction128

The solver MiniSat [9] implements a common strategy for clause retention: A clause’s129

activity—reflecting how often it contributes to conflict analysis—determines its usefulness.130

Each time a clause participates in deriving a learned clause, its activity increases; new131

clauses get the current global clause activity increment. The global clause activity increments132

grows exponentially with each conflict (penalizing unused clauses), and when values become133

too large, scores are rescaled. This is akin to the (E)VSIDS heuristic [9, 22] for variables.134

Although alternative metrics like propagation counts have been explored, activity-based135

B. Gstrein. F. Pollitt, A. Schidler, M. Fleury, and A. Biere 26:5

0 1000 3000 5000

24
0

26
0

28
0

30
0

32
0

315 critical@lbd<=3
313 critical@lbd<=2
312 critical@lbd<=4
312 rank@lbd=50%
309 critical@lbd<=5
307 critical@lbd<=6
302 rank@lbd=75%

(a) LBD
0 1000 3000 5000

24
0

26
0

28
0

30
0

32
0

322 critical@size<=10
319 critical@size<=6
315 critical@size<=15
310 rank@size=50%
309 rank@size=75%
303 critical@size<=21
286 critical@size<=3

(b) size

Figure 4 Comparing critical thresholds with rank (using two target fractions f for lbd and size).

1000 2000 3000 4000 5000 6000 7000 8000

29
0

31
0

33
0

325 critical@size<=6 + rank@size=75%
323 critical@size<=10 + rank@size=75%
322 critical@size<=10
322 critical@lbd<=2 + rank@lbd=75%
319 critical@lbd<=3 + rank@lbd=75%
319 critical@size<=6
318 base
315 critical@lbd<=3
313 critical@lbd<=2

Figure 5 Effect of combining critical and rank with the best configurations from Fig. 4.

heuristics perform best. This aligns with Simon’s observation [25] that roughly 90% of136

propagations are unused, indicating resolved clauses in conflict analysis drive the search.137

We implemented an activity branch on top of the base branch (one of 42 for this study [16])138

to test how well activity predicts clause usefulness in Kissat. It keeps the aggressive139

scheduling used in all experiments but modifies the unlearn function (see Alg. 1): the target140

fraction is set to 50% as in MiniSat, but the used flag and critical metrics are ignored.141

Figure 3 shows that activity-based unlearning performs worse than our baseline. On142

satisfiable instances (Fig. 2b) its performance mirrors unlearn-all, on unsatisfiable instances143

(Fig. 2a) it resembles no-unlearn. Since satisfiable instances gain little from learned clauses,144

activity-based unlearning gives mixed results and is a weak predictor by modern standards.145

5 Critical Clauses and LBD as Usefulness Prediction146

In 2009, Audemard and Simon [1] introduced two key modifications to MiniSat, resulting147

in Glucose. These include the LBD score and a policy of always retaining high-quality148

(LBD ≤ 2) clauses—termed glue clauses by the authors, but called critical here to avoid149

confusion. These changes enabled more aggressive restarts and unlearning by keeping fewer150

clauses. This yields a 2-tier system: top-ranked clauses (tier 1) are always retained; others151

(tier 2) are ranked and selectively unlearned.152

The term “LBD” has two definitions. In [1], it counts the number of decision levels in a153

learned clause before backjumping. Later work [2, 3] updates LBD upon propagation, based154

on levels after backjumping (one less than the original). To reconcile this, Glucose adds 1155

to updated scores, while Kissat adopts the propagating definition, calling it “glue” in code.156

SAT 2025

26:6 Learn to Unlearn

Table 6 Number of solved instances for different configurations w/ and w/o the used flag.
configuration + used configuration + used configuration + used
critical@size<=10 322 328(+6) critical@size<=6 319 322(+3) critical@lbd<=3 315 324(+9)
rank@size=50% 310 322(+12) rank@lbd=50% 312 325(+13) activity 290 294(+4)

We evaluate LBD and critical clause ideas independently (Fig. 4). One set of experiments157

compares different critical thresholds (Alg. 1, line 7) across target fractions using rank (line 10);158

another uses clause size instead. Although the average size/LBD ranged from 2.05 to 2.15,159

we expected glue<=5 to behave like size<=10—but it did not.160

Still, surprisingly, LBD and size are nearly interchangeable. Retaining clauses up to size161

10 yields the best results, while rank configurations trail the best critical ones. This suggests162

that setting an appropriate critical threshold suffices to identify valuable clauses, whereas163

rank tends to retain more unhelpful ones, hurting performance.164

We also evaluated combinations of critical and rank (Fig. 5) by enabling both lines 7 and165

line 10 in Alg. 1. Since critical clauses are always retained, we reverted to the default unlearn166

target of f = 75%. This significantly improved performance for lower thresholds, such as167

lbd<=2, lbd<=3 or size<=6, with smaller gains for the higher size<=10 threshold.168

6 Used Clauses are Useful169

In 2019, Soos et al. [27] and, more recently, Yang et al. [29] applied machine learning170

techniques to identify effective criteria for clause usefulness. Their approach involved running171

the solver without performing any clause unlearning while logging detailed statistical data172

for each learned clause. Subsequently, a proof checker trimmed the proof and extracted173

resolution chains using a heuristic that favored reusing existing clauses over introducing new174

ones during derivation. Their analysis confirms that the LBD is an important predictor of a175

clause’s usefulness—with LBD slightly outperforming clause size—and demonstrated that a176

clause’s recent use in deriving a conflict is a strong estimator of its future utility.177

Various solvers, including CaDiCaL, implement a used flag for clauses, set during conflict178

analysis and reset during unlearning (cf. Alg. 1). In essence, the used flag reduces clause179

activity to a single bit recording whether the clause was used since the last unlearning. It is180

very similar to the second chance algorithm or clock algorithm [26] used in page replacement181

policies, as it gives the clause a second chance to be useful before unlearning.182

We combine this used flag with each of the configurations from the previous sections and183

compare the difference in the solved instances when retaining all used clauses (+ used) versus184

the configuration without used flag (Tab. 6). Subsequently, we refer to these configurations185

as “<configuration>+used”. Keeping only used clauses performs slightly better than activity-186

based unlearning, showing that it is indeed a useful abstraction (Fig. 9). However, it still187

performs worse than the baseline. The full potential of the used flag is only realized in188

conjunction with other unlearning methods: it consistently improves each configuration’s189

performance. Hence, used clauses are important, but less so than critical clauses.190

The used flag inspired us to give clauses one more chance, namely a third chance. When191

clauses are used, we set used to 2 and decrement it during unlearning. We consider the clause192

for deletion only when we reach zero. This in essence simulates a three-tier system [23], but193

in our experiments does not yield any improvements (see Fig. 9 in the appendix).194

Another interesting question is how to update the used flag during inprocessing. We195

recommend not updating the used flag during forward subsumption, as doing so resulted in196

significant performance degradation in CaDiCaL. Specifically, in version 1.9.4 we altered197

B. Gstrein. F. Pollitt, A. Schidler, M. Fleury, and A. Biere 26:7

0 10 20 30 40 50 60 70
0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a
b

il
it

y

1-ZC-512-K-60.sanitized
Focused: 11E6 clauses Stable: 16E6 clauses

Focused

Stable

(a) Peak at LBD 1 (common distribution).
0 10 20 30 40 50 60 70

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
ro

b
a
b

il
it

y

worker 40 80 40 0.9
Focused: 22E6 clauses Stable: 79E6 clauses

Focused

Stable

(b) Peak offset at LBD 30 (rare distribution).

0 10 20 30 40 50 60 70
0.00

0.02

0.04

0.06

0.08

0.10

P
ro

b
ab

il
it

y

marg5x5.shuffled-as.sat03-1455
Focused: 29E6 clauses Stable: 43E6 clauses

Focused

Stable

(c) Two clear peaks (rare distribution).
0 10 20 30 40 50 60 70

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
ro

b
ab

il
it

y

ITC2021 Early 10.xml
Focused: 6E6 clauses Stable: 60E6 clauses

Focused

Stable

(d) Most frequent distribution with long tail.

Figure 7 LBD distribution for selected benchmarks in no-reduce (keep all clauses). Benchmark
name is shown above each graph together with how many clauses were learned during the run.

the policy for updating the used flag on successfully strengthened learned clauses—changing198

it from granting a second chance to providing a third chance. This modification led to a199

severe performance regression in incremental solving, and was reverted in CaDiCaL 1.9.5.200

7 Odd LBD Distributions and Dynamic Tier Calculations201

In order to link LBD to usefulness, we further recorded the LBD of all clauses used during202

conflict analysis on all benchmarks from the SAT Competition 2024. Note that Kissat runs203

a portfolio of two modes; focused mode (many restarts, shallow exploration of the search204

space), and stable mode (few restarts, and deep exploration of the search space with long205

assignments). Chanseok Oh [23] calls these modes “UNSAT” and “SAT” modes. Due to206

these different search characteristics, we recorded LBD statistics for both modes separately.207

We show 4 representative instances from the SAT Competition 2024 in Fig. 7. The most208

common LBD distribution shows a sharp peak at very low LBD values, followed by a steep209

decline. However, some problem families exhibit a broader distribution, or the peak is shifted210

to much higher LBD values. In certain cases, there are no used clauses with low LBDs at211

all. As a result, no critical clauses would be retained unconditionally. In such situations,212

unconditionally keeping used clauses (and ranking) helps to compensate for this issue.213

The skewed LBD distributions motivated us to replace the static tier limit for identifying214

critical clauses with a dynamic approach based on either LBD or size. Specifically, we set215

the threshold so that 50% of all clauses used since the beginning fall below this limit.216

We also observed some instances where most learned clauses have an LBD of 1. In such217

SAT 2025

26:8 Learn to Unlearn

0 1000 2000 3000 4000 5000

15
0

20
0

25
0

30
0

328 critical@size<=10 + used
324 critical@lbd<=3 + used
318 base
318 critical@size<=dynamic + used
316 critical@lbd<=dynamic + used
307 critical@size<=dynamic
305 critical@lbd<=dynamic

Figure 8 Runs with dynamically calculated tier 1 limit (50% clauses below the limit were used).

cases, using a tier threshold of LBD 2—typically seen as very good—would actually be218

problematic, as it would prevent those clauses from ever being unlearned.219

The dynamic unlearning scheme (Fig. 8) does not achieve the same performance as the220

static schemes, suggesting that the usefulness of critical clauses comes from the absolute221

size or LBD, and not the comparatively low size or LBD. The performance of dynamic222

configurations is similar to the non-dynamic configurations on satisfiable instances but223

notably worse on unsatisfiable instances. This, surprisingly, indicates that the in the dynamic224

configurations too few useful clauses are kept.225

The used flag of the previous experiment also improves dynamic configurations. Further,226

size and LBD in combination with dynamic tier limit computation perform similarly.227

Nonetheless, the dynamic configurations together with the used flag still perform worse.228

While we see as usual that the used flag improves the performance and that size is similar to229

LBD, the resulting configuration is still worse than the version where we keep all clauses of230

size 10. We have observed during earlier runs on SAT Competition 2023 bencharks that there231

were more outliers for the glue distributions compared to SAT Competition 2024 benchmarks.232

We leave the investigation of this observation as future work.233

8 Conclusion and Future Work234

We investigated which unlearning schemes are useful for the state-of-the-art SAT solver235

Kissat on SAT Competition 2024 instances. Our results show that, overall, activity performs236

the worst. Furthermore, while the difference between LBD and size based ranking is limited,237

it is important to keep either low LBD or low size clauses unconditionally, as well as used238

clauses, which consistently gives a boost for all our considered unlearning strategies. A239

vaild configuration which could replace the current strategy in Kissat could therefore be240

critical@size<=6 + rank@size=75% + used. Probably the most striking result is that frequently241

unlearning all clauses completely is in essence not harmful for solving satisfiable instances.242

As future work it would be interesting to understand whether these findings can be243

extended to other SAT solvers and persist on other benchmark sets, as the diversity of solved244

instances for the strategies is perhaps limited by the benchmark set (the virtual best solves245

351 instances, only 22 more than the single best strategy).246

B. Gstrein. F. Pollitt, A. Schidler, M. Fleury, and A. Biere 26:9

References247

1 Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers.248

In IJCAI, pages 399–404, 2009.249

2 Gilles Audemard and Laurent Simon. Refining restarts strategies for SAT and UNSAT. In250

CP, volume 7514 of Lecture Notes in Computer Science, pages 118–126. Springer, 2012.251

3 Gilles Audemard and Laurent Simon. On the Glucose SAT solver. Int. J. Artif. Intell. Tools,252

27(1):1840001:1–1840001:25, 2018. doi:10.1142/S0218213018400018.253

4 Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks, and Florian Pollitt.254

CaDiCaL, Gimsatul, IsaSAT and Kissat entering the SAT Competition 2024. In Marijn255

Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of SAT Competition256

2024 – Solver, Benchmark and Proof Checker Descriptions, volume B-2024-1 of Department of257

Computer Science Report Series B, pages 8–10. University of Helsinki, 2024.258

5 Armin Biere, Matti Järvisalo, Daniel Le Berre, Kuldeep S. Meel, and Stefan Mengel. The SAT259

practitioner’s manifesto, September 2020. doi:10.5281/zenodo.4500928.260

6 Martin Davis, George Logemann, and Donald W. Loveland. A machine program for theorem-261

proving. Commun. ACM, 5(7):394–397, 1962. doi:10.1145/368273.368557.262

7 Martin Davis and Hilary Putnam. A computing procedure for quantification theory. J. ACM,263

7(3):201–215, 1960. doi:10.1145/321033.321034.264

8 Rina Dechter. Enhancement schemes for constraint processing: Backjumping, learning, and265

cutset decomposition. Artificial Intelligence, 41(3):273–312, 1990.266

9 Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia and267

Armando Tacchella, editors, Theory and Applications of Satisfiability Testing, 6th International268

Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised269

Papers, volume 2919 of Lecture Notes in Computer Science, pages 502–518. Springer, 2003.270

doi:10.1007/978-3-540-24605-3_37.271

10 Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, Jakob Nordström, and Laurent Simon.272

Seeking practical CDCL insights from theoretical SAT benchmarks. In Jérôme Lang, editor,273

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,274

IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 1300–1308. ijcai.org, 2018. doi:275

10.24963/IJCAI.2018/181.276

11 Roman Gershman and Ofer Strichman. Haifasat: a SAT solver based on an277

abstraction/refinement model. J. Satisf. Boolean Model. Comput., 6(1-3):33–51, 2009.278

doi:10.3233/SAT190061.279

12 Matthew L Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research,280

1:25–46, 1993.281

13 Matthew L Ginsberg. Satsisfiability and systematicity. Journal of Artificial Intelligence282

Research, 53:497–540, 2015.283

14 Eugene Goldberg and Yakov Novikov. BerkMin: A fast and robust Sat-solver. Discret. Appl.284

Math., 155(12):1549–1561, 2007. doi:10.1016/J.DAM.2006.10.007.285

15 Evguenii I. Goldberg and Yakov Novikov. Berkmin: A fast and robust Sat-solver. In 2002286

Design, Automation and Test in Europe Conference and Exposition (DATE 2002), 4-8 March287

2002, Paris, France, pages 142–149. IEEE Computer Society, 2002. doi:10.1109/DATE.2002.288

998262.289

16 Bernhard Gstrein, Florian Pollitt, André Schidler, Mathias Fleury, and Armin Biere. Source290

code kissat-cr. Each configuration in the paper is one branch. URL: https://github.com/291

texmex76/kissat-cr.292

17 Bernhard Gstrein, Florian Pollitt, André Schidler, Mathias Fleury, and Armin Biere. Learn to293

unlearn, 04 2025. doi:10.5281/zenodo.15146408.294

18 Said Jabbour, Jerry Lonlac, Lakhdar Sais, and Yakoub Salhi. Revisiting the learned clauses295

database reduction strategies. International Journal on Artificial Intelligence Tools, 27, 02296

2014. doi:10.1142/S0218213018500331.297

SAT 2025

https://doi.org/10.1142/S0218213018400018
https://doi.org/10.5281/zenodo.4500928
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.24963/IJCAI.2018/181
https://doi.org/10.24963/IJCAI.2018/181
https://doi.org/10.24963/IJCAI.2018/181
https://doi.org/10.3233/SAT190061
https://doi.org/10.1016/J.DAM.2006.10.007
https://doi.org/10.1109/DATE.2002.998262
https://doi.org/10.1109/DATE.2002.998262
https://doi.org/10.1109/DATE.2002.998262
https://github.com/texmex76/kissat-cr
https://github.com/texmex76/kissat-cr
https://github.com/texmex76/kissat-cr
https://doi.org/10.5281/zenodo.15146408
https://doi.org/10.1142/S0218213018500331

26:10 Learn to Unlearn

19 Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules. In Bernhard Gramlich,298

Dale Miller, and Uli Sattler, editors, Automated Reasoning - 6th International Joint Conference,299

IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings, volume 7364 of Lecture Notes300

in Computer Science, pages 355–370. Springer, 2012. doi:10.1007/978-3-642-31365-3_28.301

20 Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve real-302

world SAT instances. In Benjamin Kuipers and Bonnie L. Webber, editors, Proceedings of the303

Fourteenth National Conference on Artificial Intelligence and Ninth Innovative Applications304

of Artificial Intelligence Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode305

Island, USA, pages 203–208. AAAI Press / The MIT Press, 1997. URL: http://www.aaai.306

org/Library/AAAI/1997/aaai97-032.php.307

21 João Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning SAT solvers.308

In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of309

Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications, pages 133–182.310

IOS Press, 2nd edition, 2021. doi:10.3233/FAIA200987.311

22 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.312

Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation313

Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages 530–535. ACM, 2001.314

doi:10.1145/378239.379017.315

23 Chanseok Oh. Between SAT and UNSAT: the fundamental difference in CDCL SAT. In Marijn316

Heule and Sean A. Weaver, editors, Theory and Applications of Satisfiability Testing - SAT317

2015 - 18th International Conference, Austin, TX, USA, September 24-27, 2015, Proceedings,318

volume 9340 of LNCS, pages 307–323. Springer, 2015. doi:10.1007/978-3-319-24318-4_23.319

24 João P. Marques Silva and Karem A. Sakallah. GRASP - a new search algorithm for320

satisfiability. In Rob A. Rutenbar and Ralph H. J. M. Otten, editors, Proceedings of the321

1996 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 1996, San322

Jose, CA, USA, November 10-14, 1996, pages 220–227. IEEE Computer Society / ACM, 1996.323

doi:10.1109/ICCAD.1996.569607.324

25 Laurent Simon. Post mortem analysis of SAT solver proofs. In Daniel Le Berre, editor, POS-14.325

Fifth Pragmatics of SAT workshop, volume 27 of EPiC Series in Computing, pages 26–40.326

EasyChair, 2014. doi:10.29007/gpp8.327

26 Alan Jay Smith. Sequentiality and prefetching in database systems. ACM Trans. Database328

Syst., 3(3):223–247, 1978. doi:10.1145/320263.320276.329

27 Mate Soos, Raghav Kulkarni, and Kuldeep S. Meel. CrystalBall: Gazing in the black box330

of SAT solving. In Mikolás Janota and Inês Lynce, editors, Theory and Applications of331

Satisfiability Testing - SAT 2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal,332

July 9-12, 2019, Proceedings, volume 11628 of Lecture Notes in Computer Science, pages333

371–387. Springer, 2019. doi:10.1007/978-3-030-24258-9_26.334

28 Richard M Stallman and Gerald J Sussman. Forward reasoning and dependency-directed335

backtracking in a system for computer-aided circuit analysis. Artificial intelligence, 9(2):135–336

196, 1977.337

29 Jiong Yang, Arijit Shaw, Teodora Baluta, Mate Soos, and Kuldeep S. Meel. Explaining SAT338

solving using causal reasoning. In SAT, volume 271 of LIPIcs, pages 28:1–28:19. Schloss339

Dagstuhl - Leibniz-Zentrum für Informatik, 2023.340

https://doi.org/10.1007/978-3-642-31365-3_28
http://www.aaai.org/Library/AAAI/1997/aaai97-032.php
http://www.aaai.org/Library/AAAI/1997/aaai97-032.php
http://www.aaai.org/Library/AAAI/1997/aaai97-032.php
https://doi.org/10.3233/FAIA200987
https://doi.org/10.1145/378239.379017
https://doi.org/10.1007/978-3-319-24318-4_23
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.29007/gpp8
https://doi.org/10.1145/320263.320276
https://doi.org/10.1007/978-3-030-24258-9_26

B. Gstrein. F. Pollitt, A. Schidler, M. Fleury, and A. Biere 26:11

A Appendix: More Details on Unlearning in Kissat341

A simplified version of the unlearning algorithm implemented in Kissat is shown in Fig. 1342

in Sect. 2. Below, we elaborate on aspects omitted from the simplified exposition. In our343

experiments, these aspects were either disabled in the evaluated base version or remained344

unchanged throughout the study.345

A key aspect not yet discussed is the scheduling of the unlearn function—the limit on346

conflicts and learned clauses required before triggering the next unlearn call. In MiniSat,347

this interval increases geometrically (e.g., starting at 10k conflicts and growing by 50% each348

time). The Glucose paper [1] suggests adopting an arithmetic schedule by retaining critical349

clauses. For example, one may start unlearning after 1000 conflicts and increment the interval350

by a fixed amount (e.g., 300 conflicts per round), lowering the frequency of unlearning.351

Under such an arithmetic scheme, the conflict interval between the n-th and next unlearn352

is 300 · n + 1000, or more generally period · n + initial. Yet, even assuming a constant target353

fraction (f = 50% in Glucose) of removed clauses and no tier system, analyzing its effect354

on the expected number of retained clauses after n rounds is non-trivial. The competition355

version instead schedules unlearning after period ·
√

n+ initial conflicts, with both parameters356

set to 1000—diverging from Glucose ’s arithmetic scheme. As scheduling adds another357

investigative dimension, we leave it unchanged and defer further analysis to future work.358

In the competition configuration version of Kissat, the target fraction f increases359

dynamically from 50% to 90%, scaling logarithmically with the number of conflicts. The360

base version uses a constant f = 75% and lacks this dynamic update.361

Additionally, the competition version adopted a three-tier system, where clauses in tier 3362

(e.g., LBD > 6) get only a second chance to survive unlearning, while medium-critical clauses363

(e.g., LBD > 2) receive a third chance, as in Sect. 6. The base version omits the extended364

used range for critical clauses in tier 1. This encoding allows even critical clauses (LBD ≤ 2)365

to be eventually unlearned if unused across many rounds. In competition, 5 bits encode used,366

so such clauses are removed after 31 unlearning rounds without use. In contrast, base sets367

used to 2, limiting the range to three values.368

Moreover, like many other solvers, the competition configuration does not restart (i.e.,369

backtrack to level zero) during unlearning (see also Sect. 3). Thus, clauses used as reasons370

on the trail must be retained. Such clauses, along with subsumed and root-level satisfied371

ones, are skipped in the loop in Fig. 1. Since restarts are more frequent in focused mode372

than stable mode, average conflict levels are lower in focused mode. Not restarting during373

unlearning thus increases the chance of retaining reason clauses in stable mode. To avoid374

this bias, the base version performs a restart before unlearning.375

Finally, as discussed in Sect. 7—the study’s starting point—the default Kissat version376

dynamically computes LBD limits for tiers. However, despite diverse observed distributions,377

we found no measurable benefit from this technique.378

SAT 2025

26:12 Learn to Unlearn

B Appendix: Additional Experiments379

0 1000 2000 3000 4000 5000

15
0

20
0

25
0

30
0

328 critical@size<=10 + used + anotherchance
328 critical@size<=10 + used
324 critical@lbd<=3 + used
324 critical@lbd<=3 + used + anotherchance
318 base
301 used + anotherchance
295 used
290 activity

Figure 9 Comparing the effect of used, activity and the effect of giving clauses another chance.

0 2000 4000 6000 8000

26
0

28
0

30
0

32
0

329 competition
328 critical@size<=10 + used + anotherchance
328 critical@size<=10 + used
325 rank@lbd=50% + used
325 critical@size<=6 + rank@size=75%
324 critical@lbd<=3 + used
324 critical@lbd<=3 + used + anotherchance
323 critical@size<=10 + rank@size=75%
322 critical@size<=6 + rank@size=75% + used
322 critical@lbd<=2 + used
322 rank@size=50% + used
322 critical@size<=10
322 critical@size<=6 + used
322 critical@lbd<=2 + rank@lbd=75%
319 critical@lbd<=3 + rank@lbd=75%
319 critical@size<=6
318 base
318 critical@size<=dynamic + used
317 rank@lbd=75% + used
316 critical@lbd<=dynamic + used
315 critical@lbd<=3
315 rank@size=75% + used
315 critical@size<=15
313 critical@lbd<=2
313 critical@lbd<=7
312 critical@lbd<=4
312 rank@lbd=50%
310 rank@size=50%
309 critical@lbd<=5
309 rank@size=75%
307 critical@lbd<=6
307 critical@size<=dynamic
305 critical@lbd<=dynamic
303 critical@size<=21
302 rank@lbd=75%
301 used + anotherchance
296 critical@lbd<=1
295 used
294 activity + used
290 activity
286 critical@size<=3
275 no−unlearn
258 unlearn−all

Figure 10 Cumulative distribution function (CDF, 100% = 400 instances) of all interesting runs.

	1 Introduction
	2 Background and Experimental Setup
	3 Importance of Unlearning
	4 Activity as Usefulness Prediction
	5 Critical Clauses and LBD as Usefulness Prediction
	6 Used Clauses are Useful
	7 Odd LBD Distributions and Dynamic Tier Calculations
	8 Conclusion and Future Work
	A Appendix: More Details on Unlearning in Kissat
	B Appendix: Additional Experiments

