
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

Introducing Certificates to the
Hardware Model Checking Competition

Nils Froleyks1 , Emily Yu2 , Mathias Preiner3 ,
Armin Biere4 , and Keijo Heljanko5,6

1 Johannes Kepler University, Linz, Austria
2 Institute of Science and Technology Austria, Klosterneuburg, Austria

3 Stanford University, California, United States of America
4 University of Freiburg, Freiburg, Germany
5 University of Helsinki, Helsinki, Finland

6 Helsinki Institute for Information Technology, Helsinki, Finland

Abstract. Certification was made mandatory for the first time in the
latest hardware model checking competition. In this case study, we inves-
tigate the trade-offs of requiring certificates for both passing and failing
properties in the competition. Our evaluation shows that participating
model checkers were able to produce compact, correct certificates that
could be verified with minimal overhead. Furthermore, the certifying win-
ner of the competition outperforms the previous non-certifying state-of-
the-art model checker, demonstrating that certification can be adopted
without compromising model checking efficiency.

1 Introduction

Competitions have played a key role in advancing the state of the art in au-
tomated reasoning tools by enabling direct performance comparisons across a
wide range of solvers, offering challenging benchmarks, and fostering new re-
search. However, many of these tools operate as black boxes by providing only
true or false as an output. Certification addresses this limitation by requiring a
counterexample when verification fails and a proof when it succeeds. Since cer-
tificates can be independently validated, they significantly enhance confidence in
the correctness of verification results, thereby improving the reliability of solvers.

One goal of using certificates in hardware model checking is to repeat the
success story of proof certificates in SAT for this automated reasoning domain
with a large industrial user base. Besides increasing trust in verification results,
certificates enable more complex design optimizations, allow to continue using
legacy code and can streamline and improve efficiency of tool development in
both verification and synthesis. The simple proof certificate format used in SAT
still allows to capture a wide range of solving optimizations at industrial scale.
In this case study, we investigate whether the simple model checking certificate
format employed in the recent hardware model checking competition has the
potential to achieve the same in the field of hardware model checking.

https://doi.org/10.5281/zenodo.15119115
https://orcid.org/0000-0003-3925-3438
https://orcid.org/0000-0002-4993-773X
https://orcid.org/0000-0002-7142-6258
https://orcid.org/0000-0001-7170-9242
https://orcid.org/0000-0002-4547-2701

The Hardware Model Checking Competition (HWMCC) has its roots in a
rather lively discussion at the 2nd Alpine Verification Meeting (AVM) in 2006
among Daniel Kröning, Dirk Beyer and Armin Biere. The debated question was
if and how model checking research as well as industrial applications can benefit
from competitions in the same way the SAT competitions were instrumental in
advancing SAT. Daniel Kröning and Armin Biere argued to focus on hardware
gate-level models with simple and clear semantics.7

This argument prompted the development of the AIGER format [3] used in
the first (hardware) model checking competition, affiliated to CAV’07. This first
version of AIGER (20071012) came with a library for parsing and other essential
tools, including a translator from SMV and BLIF to AIGER. The challenge of
the first competitions in 2007, 2008 and 2010 was to collect benchmarks.

For the 2011 competition the first major revision of the AIGER 1.9 for-
mat [6] included liveness properties and constraints. The following competitions
from 2012–2015 [8] and in 2017 [4] included a deep bound track to emphasize the
common industrial practice of relying on incomplete but deep bounded model
checking. In 2019 a word-level track was established based on the BTOR 2.0
format [22] proposed at CAV’18. After focusing on word-level in 2020 the orga-
nizers decided in 2024 [5] to reintroduce a bit-level track but take the chance to
force all participating model checkers to produce certificates.

The introduction of mandatory certification in HWMCC’24 significantly im-
pacted participation and competition dynamics. The 2024 competition saw a
record nine participants, up from three in the previous edition, reflecting grow-
ing interest and accessibility. Discussions with participants revealed that new
rules, particularly the requirement for certification, leveled the playing field by
encouraging the development of verifiable solvers. Feedback indicated that par-
ticipants successfully implemented certificate generation based on our published
results [14,29,30,31]. It was also noted that implementing correct model checking
algorithms demanded substantially more effort than generating certificates.

The certificate format itself has undergone several iterations with the ulti-
mate aim of its use in the competition. In HWMCC’24, all participating model
checkers were required to produce proofs alongside the model checking results
for both safe and unsafe instances. For unsafe instances, the certificate is a trace
serving as a counterexample, which can be validated via simulation; as for safe
instances, it is a proof witness circuit. For the competition we use an extended
version of the witness format defined in [14], that supports constraints, an es-
sential feature of AIGER 1.9.

In this case study, we first describe the certificate format used in the competi-
tion, then present experimental findings. We investigate the overhead introduced
by certificate checking in model checking and results show that it accounts for
only a fraction of the total verification time. Moreover, we compare the certify-
ing winner of HWMCC’24, ric3, against the state-of-the-art model checker abc

7 Dirk Beyer proposed to use C as input language, which is much harder to master,
due to its complex semantics. Accordingly the first SV-COMP took place in 2012.

which does not support certificate generation. Results show that ric3 outper-
forms abc even when including the time required for witness validation.

2 Related Work

Certification in other competitions. Certification has been an essential part
in many other competitions. In SAT competitions [13], certification has been
mandatory for almost a decade, as a fundamental requirement. Solvers must
produce certificates for both SAT and UNSAT instances: a satisfying truth as-
signment for SAT and a proof in the DRAT [28] format for UNSAT. A solver is
disqualified from the main track if a singe certificate is found invalid. The soft-
ware verification community is following suit. At SV-COMP’24, it is the second
year of having a dedicated track for witness validation, with a range of partici-
pating witness validators [2]. The MaxSAT Evaluation [1] has also taken a step
forward in 2024 by requesting proofs for the first time. In QBF Evaluations [25],
there used to be a dedicated Evaluate & Certify track, where solvers are re-
quired to produce proofs that are easier to check than the solving task; however,
as the organizers pointed out, only a few QBF solvers support certificate gen-
eration. SMT competitions (SMT-COMP) [27] and ATP System Competitions
(CASC) [26] feature a wide variety of theories and have yet to adopt a universal
certification standard. Classical Planning is similar to verification, but usually
more focused on finding solutions (plans). Nevertheless, a deductive certificate
format [11] has been introduced, and extended to support UNSAT certificates
produced by an underlying SAT solver [10].

Related work in model checking certification. Deductive proof systems
have been used for generating proofs of model checking. For example, the au-
thor of [21] addresses µ-calculus, while the authors of [15] focus on liveness and
several pre-processing techniques. These approaches require model checkers to
provide deductive proofs. The works in [7,16] explore the use of inductive in-
variants as certificates for k-induction. Notably, the certificate format employed
in HWMCC’24 is also compatible with these inductive invariants. The authors
of [18] use liveness-to-safety reduction techniques to certify liveness properties.
The problem of certifying model checking has also been addressed in infinite-
state systems [9,19] where SMT solvers are leveraged for unbounded state spaces.
An alternative approach to providing certificates, is to formally verify the model
checker itself, as demonstrate in [12].

3 Certificate Format

We assume the standard notions and terminology of Boolean logic. In the fol-
lowing, we consider hardware designs modeled as Boolean circuits encoded as
sequential and-inverter graphs (AIGs)[3,6,17,20]. Such a Boolean circuit is given
as a tuple M = (I, L,R, F, P,C) where I is an ordered set of inputs, L is an
ordered set of latches, R defines the set of reset states, represented as a reset

predicate that holds when every latch l ∈ L equals its reset function rl; F is the
transition predicate that refers to two consecutive states, and encodes that each
latch in one state is equal to its corresponding transition function fl applied to
the previous state; P and C are predicates that define the set of good states and
the set of states valid under the constraint, respectively. These predicates, along
with the reset and transition functions, are encoded in the circuits as binary
AND-gates with possible negation at the incoming gates.

We use the notion of a reset predicate R being stratified; for space reasons
we refer to [30] for formal definitions. In essence, it means that the dependencies
that the reset functions introduce among the latches are acyclic. For K ⊆ L,
R{K} and F{K} restrict these predicates so only the latches in K are required
to be equal to their reset or transition. When referencing a sequence of states, we
use indices on the predicates to represent the corresponding copy of the predicate
at a certain state in the sequence.

A trace of length n is a sequence of n+ 1 states, where the first state needs
to satisfy R, every pair of consecutive states satisfies F (written Fi,i+1 for the
i-th and its successor state) and all states satisfy the constraint C. If the last
state violates P , the trace is bad. Thus a satisfying assignment to the following
formula certifies that a circuit is unsafe:

R0 ∧
∧

i∈[0,n)

Fi,i+1 ∧
∧

i∈[0,n]

Ci ∧ ¬Pn.

For safe instances, the certificate format employed in HWMCC’24 takes the form
of witness circuits, defined as follows.

Definition 1 (Witness Circuit). The circuit W = (I ′, L′, R′, F ′, P ′, C ′) is a
witness circuit of M = (I, L,R, F, P,C), if R′ is stratified and for K = L ∩ L′:

1. Reset: R{K} ∧ C ⇒ R′{K} ∧ C ′;
2. Transition: F0,1{K} ∧ C0 ∧ C1 ∧ C ′

0 ⇒ F ′
0,1{K} ∧ C ′

1;
3. Property: (C ∧ C ′) ⇒ (P ′ ⇒ P);
4. Base: R′{L′} ∧ C ′ ⇒ P ′;
5. Step: P ′

0 ∧ F ′
0,1{L′} ∧ C ′

0 ∧ C ′
1 ⇒ P ′

1.

The five conditions described above are simple SAT checks. An additional
polynomial-time check is required to verify that R′ is stratified. If all checks
pass, M ′ is a valid certificate for M , certifying its safety property. The first
three conditions in Def. 1 establish a simulation relation between two circuits,
such that if M ′ is safe, M is also safe. The intuition is that an initial state in
the original circuit M corresponds to an initial state in the witness circuit, and
each valid transition in M corresponds to a transition in M ′.

Property P ′ is a strengthening of P . Consequently, safety ofM ′ implies safety
of M . In summary, a bad trace in M corresponds to a bad trace in M ′. A sketch
of the traces for both M and M ′ is provided in Fig. 1. The latter two checks
(Def. 1.4 and Def. 1.5) prove P ′ to be an inductive invariant, entailing the safety
of M ′. We provide a high-level intuitive illustration of Def. 1 in Fig. 1.

This is a slight extension to the format in [14], as it supports constraints and
now covers all AIGER 1.9 [6] features except liveness. In HWMCC’24, witness
circuits are also produced as AIGER files. The witness circuit validation is im-
plemented in the certificate checker certifaiger8 used for the competition, but
has not been described in detail before. For efficient certification, certifaiger
leverages the SAT solver Kissat 4.0.0, winner of the SAT competition 2024.

C ′
0 ∧ F ′

0,1 ∧ C ′
1 ∧ F ′

1,2 ∧ C ′
2 ∧ F ′

2,3 ∧ C ′
3 ∧ F ′

3,4 ∧ C ′
4R′

0 ∧ ∧ ¬P ′
4

L
K

L′

C0 ∧ F0,1 ∧ C1 ∧ F1,2 ∧ C2 ∧ F2,3 ∧ C3 ∧ F3,4 ∧ C4R0 ∧ ∧ ¬P4

Reset

Base

P ′
0 P ′

1 P ′
2 P ′

3 P ′
4

Property

StepTransition

stratified
and R′

Fig. 1: An illustration for the correctness of Def. 1. Assuming that a circuit M
with a valid witnessM ′ has a bad trace leads to a contradiction. Depicted are the
overlapping sets of variables and how conditions of the witness check are used to
construct a bad trace in M ′, and arrive at a contradiction. For Transition and
Step only one application is illustrated.

3.1 Soundness of the Certificate Format

We present a proof that the existence of a witness circuit as defined in Def. 1
indeed certifies the safety of a model. The proof extends what is presented in [14]
by considering constraints.

Theorem 1. Given two circuits M and M ′, with M = (I, L,R, F, P,C), and
M ′ = (I ′, L′, R′, F ′, P ′, C ′). If M ′ is a valid witness circuit for M , then M is safe.

Before proving the main theorem, we first introduce some additional notation:
An assignment maps a subset of the gates to true or false, and is always consistent
with the valuation of the AND-gates. Extending an assignment means assigning
more gates while leaving previously assigned gates unchanged. We refer to the
reset gate associated with latch l as rl and the primed version r′l, when referencing
the reset gates used by R′.

Every gate g refers to the Boolean function defined by its fan-in cone, and we
write g(s) to denote that we consider the function under an assignment s, i.e.,
the variables in g which are assigned by s are replaced with the corresponding

8 https://github.com/Froleyks/certifaiger

https://github.com/Froleyks/certifaiger

constants. A function g semantically depends on a variable v if an assignment
exists under which g(sv) and g(s¬v) evaluate to different truth values.

We first show that a reset state in M corresponds to a reset state in M ′.

Lemma 1. For circuits M = (I, L,R, F, P,C) and M ′ = (I ′, L′, R′, F ′, P ′, C ′)
satisfying the reset check (Def. 1.1) and R′ stratified, any assignment to I ∪ L
satisfying R{K} ∧C, where K = L∩L′, can be extended to satisfy R′{L′} ∧C ′.

Proof. Assuming the reset check passes and R′ is stratified, let s be an arbitrary
but fixed assignment to I ∪ L satisfying R{K} ∧ C. The assumptions of the
Lemma further imply that s satisfies R′{K}∧C ′. To show that s can be extended
to satisfy R′{L′}, we first prove for each latch l ∈ K, r′l(s) has no semantic
dependency outside (I ∪L)∩ (I ′∪L′). Assume, for contradiction, there is a latch
l ∈ K with r′l(s) ̸⇔ r′l(su) where su is the same as s except for the value of some
gate u ∈ (I ′ ∪ L′)\(I ∪ L). We have l ̸⇔ r′l(su) and therefore R′{K} does not
hold under su. However, u is not in I ∪ L and R{K} ∧ C still evaluates to true
under su, thus implying R′{K}, and leading to the desired contradiction.

Since R′ is stratified, the semantic dependencies of the reset gates r′l can be
seen as a topologically sorted graph. Given the above result, when considering
r′l(s), the remaining dependency graph can be sorted topologically such that the
variables in (I ∪ L) ∩ (I ′ ∪ L′) are at the bottom. Thus, s can be extended to
satisfy R′{L′} by assigning the remaining latches in the reverse of that order.
The extended assignment still satisfies R{K} ∧ C and thereby C ′.

We can now move on to prove the correctness of the certificate format, i.e.,
the proof of the main Theorem 1. Refer to Fig. 1 for a visualization of the proof.

Proof. Suppose, for contradiction, M is unsafe. Then there is a bad trace of some
finite length n in the form of an assignment to n+ 1 copies of I ∪ L satisfying:

R0{L} ∧ C0 ∧ F0,1{L} ∧ C1 ∧ · · · ∧ Cn−1 ∧ Fn−1,n{L} ∧ Cn ∧ ¬Pn.

We extend this assignment to each copy of the gates in I ′\I∪L′\L that satisfies:

R′
0{L′} ∧ C ′

0 ∧ F ′
0,1{L′} ∧ C ′

1 ∧ · · · ∧ C ′
n−1 ∧ F ′

n−1,n{L′} ∧ C ′
n ∧ ¬P ′

n.

Let X ′ = (I ′ ∪ L′) \ (I ∪ L). The assignment satisfying R0{K} ∧ C0 can by
Lemma 1 can be extended to X ′

0 satisfying R′
0{L′} ∧ C ′. With that and the

transition check F ′
0,1{K} ∧ C ′

1 is satisfied and the assignment can be extended
to X ′

1 satisfying F ′
0,1{L′} ∧ C ′

1 by the definition of transition functions.

Applying the same argument n times yields an assignment to (I∪L∪I ′∪L′)n

satisfying F ′
i,i+1{L} for i ∈ [0, n) and Ci for i ∈ [0, n]. Lastly, the property check

guarantees ¬P ′
n, giving us the desired assignment. However, the base and step

check together ensure that the property P ′ holds on all reachable states of M ′,
thus contradicting the initial assumption that a bad trace exists in M .

4 Evaluation

In this section, we present a comprehensive analysis of the competition results 9,
focusing on the overhead of certificate generation and checking. Specifically, we
address the following three questions:

1. What is the runtime overhead associated with validating certificates?
2. What is the space overhead associated with storing certificates?
3. How do certifying model checkers compare to the state of the art?

Experimental Setup. The 2024 competition ran on a cluster of 48 compute
nodes equipped with an AMD Ryzen 9 7950X 16-core processor at 4.5 GHz
and 128 GB or RAM, running Ubuntu 20.04 LTS. For fairness, the experiment
described in Section 4.3 ran on the cluster used for the last competition in 2020.
Each node has access to two Xeon E5-2620 v4 CPUs, for a total of 16 cores
running at 2.1 GHz, and 128 GB of RAM.

We focus on (all) the 319 bit-level benchmarks of HWMCC’24, which were
translated from the word-level (BTOR/bit-vector) track of HWMCC’24. The
majority of the benchmarks (250) are new benchmarks submitted in 2024 by
three different groups, including benchmarks for checking safety properties of
open source RISC-V cores, sequential equivalence checking, branch coverage
problems, as well as software verification problems, which were translated from
SV-COMP’24 [2]. The remaining 69 benchmarks were selected randomly from
previous competition years (2019 and 2020). Each model checker had exclusive
access to a node, with a 120 GB memory limit and a one-hour wall-clock limit.
A separate limit of 10 hours was imposed for certificate checking.

Note that for precision and reliability of measurements, the competition clus-
ter uses runexec to measure resource consumption of the model checkers. We
further rely on it to properly isolate the processes and to enforce both the time
and memory resource limits.

4.1 Certificate Checking Overhead

We now evaluate the overhead introduced by certificate checking. For each solver,
we consider the model checking time, tmc, the time required to validate the
produced certificate, tcert, and the total time ttotal = tmc+tcert. The certificate
checking overhead for a model checker refers to the additional time required to
run all benchmarks when certification is enabled. Note that benchmarks unsolved
by the model checker are excluded from this metric. The results are displayed in
Figure 2 where both safe and unsafe instances are considered.

The clear winner of the competition is ric3, demonstrating superior perfor-
mance on both safe and unsafe benchmarks. When considering only safe bench-
marks, the ranking remains virtually unchanged, with fric3 narrowly outper-
forming supercar. As for unsafe instances, which constitute approximately 30%

9 https://hwmcc.github.io/2024

https://hwmcc.github.io/2024

0 2000 4000 6000 8000 10000 12000
runtime [s]

0

50

100

150

200

250

so
lv

ed
 in

st
an

ce
s

x-epic16-p057

rast-p10 eca11-26
eca16-07

x-epic16-p160 x-epic16-p102

model checking timeout

VBS
ric3
+ 34%
pavy
+ 66%
supercar
+ 15%
fric3
+ 26%
mc-zhulf
+ 2%
ncip-portfolio
+ 23%
ncip-cadicraig
+ 17%
ncip-minicraig
+ 5%
voiraig
+ 2%

Fig. 2: HWMCC’24 results (319 benchmarks). The plots show the number of
solved instances as a function of time. For each model checker, we present (1) the
model checking time and (2) the total time for model checking and certificate
validation. Diamonds represents the time taken to model check a circuit and
validate the produced witness, while dots indicate model checking time only.
Benchmarks whose certificates were especially time-consuming to verify are la-
beled. The Virtual Best Solver (VBS) indicates the top solver performance on
each instance. The legend includes the overall certification overhead. The results
clearly indicate, that certificate validation only adds minimal overhead.

of solved benchmarks, supercar slightly outperforms pavy. In both scenarios,
ric3maintains its lead and performs impressively close to the virtual best solver.

In Figure 2, we also identify six outliers where the combined model checking
and certification time exceeded the one-hour model checking timeout by more
than 5%. The difficulty in their certification seems to be related to the witness
circuit generation process within the model checker, as for each of these instances,
another model checker found a witness circuit, which could be validated under
100 seconds. An exception is the x-epic16-p057 benchmark, which was solved
exclusively by ric3. Certificate checking never exceeded the 10-hour limit.

As Figure 2 shows, the overall certification overhead only gives rise to a small
fraction of the model checking time, which is highly promising and highlights the
effectiveness of the certificate format. For instance, when using ric3 to model
check all 248 instances it solved, the total time is increased by only 34% when
all produced certificates are validated. In general, validating certificates for safe
instances is a more challenging task than validating simulation traces for unsafe

vgasim20

rast-p10
eca16-07

x-epic16-p160

x-epic16-p057

x-epic10-p23

gcdarith_93c
appnote128

dualflexpress114

piccolo_bgeu

largecounter

100

101

102

103

re
la

tiv
e

ce
rti

fic
at

e
siz

e

1.48 ric3
1.22 pavy
2.62 supercar
1.85 fric3
1.66 mc-zhulf
2.00 ncip-portfolio
2.13 ncip-cadicraig
1.96 ncip-minicraig
1.46 voiraig
1.74 overall

Fig. 3: Size of produced witness circuits relative to their original model circuit.
The x-axis represents the set of benchmarks, sorted alphabetically, whereas the
y-axis indicates the certificate size (gates) relative to the model. The legend also
shows the geometric mean of the relative certificate size for each model checker
and all produced certificates combined. Dots stacked vertically correspond to the
same benchmark. Since the x-axis is sorted by benchmark name, neighboring
instances are likely to belong to the same family. For clarity and space reasons,
only a select few benchmarks are explicitly labeled. We observe an overall relative
certificate size of 1.74, which indicates the compactness of the certificates.

ones, a trend similar as in SAT solving. In fact, simulation time accounts for
only 2% of the overhead in ric3, and even less for all other solvers.

4.2 Certificate Size

Next, we evaluate the size of witness circuits for safe instances, where circuit
size is measured in terms of gates, which includes the number of inputs, latches,
and AND-gates. The relative certificate size is defined as certificate size

model size . Figure 3
presents the relative certificate sizes for all solved instances. Note that appnote
and x-epic families, comprising 52 and 13 benchmarks respectively, depicted in
the plot, include several multi-property benchmarks. In these cases, the bench-
marks represent the same model, differing only in the property to be checked.

We observe that pavy produces smallest witnesses, with a geometric mean
ratio of 1.22, whereas supercar exhibits the highest ratio of 2.62. Overall, more
than 80% of the produced witnesses are less than twice as large as the certified
model, with a geometric mean ratio of 1.74 across all produced witness circuits.

0 500 1000 1500 2000 2500 3000 3500
runtime [s]

0

50

100

150

200

250

300

so
lv

ed
 in

st
an

ce
s

324 Benchmarks 2020
297 ric3
296 ric3 certified
261 abc

319 Benchmarks 2024
243 ric3
242 ric3 certified
227 abc

Fig. 4: Comparing ric3 (2024 winner) with abc (2020 winner). The same
HWMCC’20 hardware setup is used, for both benchmarks sets (2020 and 2024).
ric3 is also run in a fully certified mode, where each result is confirmed by
checking the certificate. Note that for these certified runs the shown run-time not
only includes model checking time but also certificate production and certificate
checking time. We observe that on both sets ric3 consistently outperforms abc,
even when accounting for certificate validation time.

It further turns out that pavy consistently generates witnesses substantially
smaller than their corresponding models. Notably, this was not possible in earlier
versions of the certificate format [29,30,31], which required the entire model to
be embedded within the witness circuit. The original format was revised in [14]
and went through another update for the competition, which is described in
Sect. 3. This version allows, beside constraints, optimized witnesses that focus
on a subset of the certified model, enabling significant reduction in witness size.

Witness size only correlates weakly with validation time. The biggest witness,
produced by supercar for the largecounter benchmark, contains over 7 million
gates for a model with fewer than 2 thousand gates, yet is verified within 900
seconds, which is 30% faster than model checking. Conversely, the two difficult-
to-check eca witnesses produced by pavy are 20% smaller than the model.

4.3 Comparison to State of the Art

Since participating model checkers in HWMCC’24 generate certificates, i.e., are
certifying model checkers, it remains to show data on how certificate generation
affects solver speed. We thus compare ric3, the HWMCC’24 winner, with the
state-of-the-art model checker abc, the winner of the previous HWMCC edition

in 2020, where witness circuits were not yet introduced. It is worth noting that
the industrial-strength model checker abc has dominated the bit-level track of
the HWMCC since its debut in 2008. However, it could not participate in the
2024 competition, as certificates are now mandatory.

For our experiment, we use the version of abc, which was submitted to
the HWMCC’20, and was tailored specifically for the competition thus distinct
from its public releases. To ensure that abc is used with the same hardware
specifications as expected by the participants in 2020 we run our experiment on
the HWMCC’20 hardware. Note that this hardware is significantly older than
the cluster used for HWMCC’24.

Note that the benchmarks from HWMCC’20 and HWMCC’24 were both
included (there was no competition in between). The two sets are mostly distinct
with only 8 benchmarks in common. This is following the SAT competition
practice: HWMCC uses mostly new benchmarks every year, adhering to the
SAT Practitioner’s Manifesto.

Figure 4 shows that ric3 convincingly outperforms abc on both benchmark
sets. Notably, in 2020, ric3 solves 36 more benchmarks and is faster on 247 out
of the 256 benchmarks solved by both model checkers. For ric3, we also include
a certified version, which represents its performance if it did internal certificate
validation, and every benchmark is only reported as solved after the certificate
has been successfully validated. Even in its certified mode, ric3 still holds a clear
lead, losing only one instance per year due to certificate validation exceeding the
remaining time before the one-hour model checking timeout.

One minor exception is the performance on the 2024 benchmarks within the
first 30 seconds, where the certificate checking adds a significant enough overhead
for abc to catch up to the certified version. Nevertheless, certificate production
introduces no measurable overhead to overall model checking performance. These
results demonstrate that ric3, is a robust and efficient model checker, that
presents superior performance while providing added benefits of certifying.

Invalid certificates. In HWMCC’24 and the experiments presented above,
producing an invalid certificate causes the benchmark to count as unsolved.
Out of the 1536 certificates generated during the competition, 44 were found
to be incorrect. They were produced by four model checkers: supercar (20),
ncip-minicraig (9), ncip-portfolio (8), fric3 (7). The incorrect certificates
produced by supercar are all simulation traces, notably 8 of them are for
benchmarks which have been proven safe by other model checkers. In addition
to 3 more incorrect simulation traces from fric3, all other invalid certificates
were witness circuits failing one of the checks outlined in Def. 1.

Many of the invalid certificates stemmed from bugs uncovered by the or-
ganizers before the competition through extensive fuzz testing. The fuzzer and
subsequent delta-debugging helped identify minimal failing circuits, shared sub-
sequently with the model checker developers for fixes. Initially, all model check-
ers produced invalid certificates. After extensive feedback, most solvers passed
thousands of fuzzer-generated test cases with correct certificates. This process
highlights the benefits of certifying model checkers to improve their robustness.

Summary of results. Our experimental evaluation entails the following key
findings. (i) Minimal overhead: certification adds only a small runtime overhead,
representing a fraction of the total model checking time. (ii) Compact certificates:
optimized certificate formats reduced storage requirements, with over 80% of
certificates being less than twice the size of the certified model. (iii) Impact on
performance: ric3, the 2024 winner, outperformed the 2020 winner abc, even
when all certificates are verified, demonstrating that certifying approaches can
simultaneously provide correctness guarantees and strong performance.

5 Conclusion

HWMCC’24 marks the first time that the Hardware Model Checking Compe-
tition has mandated certification for all participating solvers. Our case study
confirms that certification can be integrated with minimal overhead while sig-
nificantly improving confidence in verification results, illustrating the practical
benefits of mandatory certification in hardware model checking.

Looking ahead, we call on more participants and model checker developers—
both in academia and industry—to adopt and support certification. Building on
the success of HWMCC’24, we intend to extend certification to the word-level
track, for which a certificate checker Cerbotor is already publicly available.
However, challenges remain, including the need to develop techniques for gener-
ating certificates tailored to word-level-specific methods and addressing the use
of trustworthy SMT solvers, which require SMT-based certificates.

On the other hand, a certifying liveness track is under planning, although
this endeavor requires certificate generation for liveness checking algorithms,
which remains another open research challenge. Another direction concerns the
degree of trust we can place in the certificate checker. Ultimately, achieving a
fully verified certificate checker would ensure an end-to-end correctness in the
verification process, further increasing confidence.

Beyond increasing trust in model checkers, certificates have broader applica-
tions. An ongoing industry collaboration explores the integration of certifying
model checkers as hammers in interactive theorem provers such as Isabelle [23]
via Sledgehammer [24]. This entails, the theorem prover encoding an open proof
as a model checking problem, invoking a model checker, and lifting the certificate
back into the theorem prover.

Acknowledgements This work is supported in part by the ERC-2020-AdG
101020093, the LIT AI Lab funded by the State of Upper Austria, the Research
Council of Finland under the project 336092, and a gift from Intel Corporation.

Furthermore we of course also owe a big thank-you to the submitters of model
checkers and benchmarks to the competition over all these years. Without their
enthusiasm and support neither the competition nor this study would exist.

Disclosure of Interests The authors have no competing interests to declare
that are relevant to the content of this paper.

References

1. Bacchus, F., Berg, J., Järvisalo, M., Martins, R.: MaxSAT evaluation 2020: Solver
and benchmark descriptions (2020)

2. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS (3). pp. 299–329. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2 15

3. Biere, A.: The AIGER And-Inverter Graph (AIG) format version 20071012.
Tech. Rep. 07/1, Institute for Formal Models and Verification, Jo-
hannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria (2007).
https://doi.org/10.35011/fmvtr.2007-1

4. Biere, A., van Dijk, T., Heljanko, K.: Hardware model checking competition 2017.
In: Stewart, D., Weissenbacher, G. (eds.) Formal Methods in Computer-Aided
Design, FMCAD 2017, Vienna, Austria, October 02-06, 2017. p. 9. IEEE (2017)

5. Biere, A., Froleyks, N., Preiner, M.: Hardware model checking competition 2024.
In: Narodytska, N., Rümmer, P. (eds.) Proceedings 24th International Conference
on Formal Methods in Computer-Aided Design (FMCAD’24). p. 7. TU Wien Aca-
demic Press (2024). https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 6

6. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Tech. Rep. 11/2, In-
stitute for Formal Models and Verification, Johannes Kepler University, Altenberg-
erstr. 69, 4040 Linz, Austria (2011). https://doi.org/10.35011/fmvtr.2011-2

7. Bjørner, N., Gurfinkel, A., McMillan, K.L., Rybalchenko, A.: Horn clause solvers
for program verification. In: Fields of Logic and Computation II. Lecture Notes in
Computer Science, vol. 9300, pp. 24–51. Springer (2015)

8. Cabodi, G., Loiacono, C., Palena, M., Pasini, P., Patti, D., Quer, S., Ven-
draminetto, D., Biere, A., Heljanko, K.: Hardware model checking competition
2014: An analysis and comparison of solvers and benchmarks. J. Satisf. Boolean
Model. Comput. 9(1), 135–172 (2014). https://doi.org/10.3233/SAT190106,
https://doi.org/10.3233/sat190106

9. Conchon, S., Mebsout, A., Zäıdi, F.: Certificates for parameterized model checking.
In: Bjørner, N., de Boer, F.S. (eds.) FM 2015: Formal Methods - 20th International
Symposium, Oslo, Norway, June 24-26, 2015, Proceedings. Lecture Notes in Com-
puter Science, vol. 9109, pp. 126–142. Springer (2015)

10. Eriksson, S., Helmert, M.: Certified Unsolvability for SAT Planning with
Property Directed Reachability. Proceedings of the International Confer-
ence on Automated Planning and Scheduling 30, 90–100 (Jun 2020).
https://doi.org/10.1609/icaps.v30i1.6649

11. Eriksson, S., Röger, G., Helmert, M.: Unsolvability certificates for classical plan-
ning. In: Barbulescu, L., Frank, J., Mausam, Smith, S.F. (eds.) Proceedings of the
Twenty-Seventh International Conference on Automated Planning and Scheduling,
ICAPS 2017, Pittsburgh, Pennsylvania, USA, June 18-23, 2017. pp. 88–97. AAAI
Press (2017)

12. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.G.: A
fully verified executable LTL model checker. Arch. Formal Proofs 2014 (2014)

13. Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M.: SAT competition 2020.
Artif. Intell. 301, 103572 (2021)

14. Froleyks, N., Yu, E., Biere, A., Heljanko, K.: Certifying phase abstraction. In:
Benzmüller, C., Heule, M.J.H., Schmidt, R.A. (eds.) Automated Reasoning - 12th
International Joint Conference, IJCAR 2024, Nancy, France, July 3-6, 2024, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 14739, pp. 284–303.
Springer (2024). https://doi.org/10.1007/978-3-031-63498-7 17

https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.35011/fmvtr.2007-1
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_6
https://doi.org/10.35011/fmvtr.2011-2
https://doi.org/10.3233/SAT190106
https://doi.org/10.3233/sat190106
https://doi.org/10.1609/icaps.v30i1.6649
https://doi.org/10.1007/978-3-031-63498-7_17

15. Griggio, A., Roveri, M., Tonetta, S.: Certifying proofs for SAT-based model check-
ing. Formal Methods Syst. Des. 57(2), 178–210 (2021)

16. Gurfinkel, A., Ivrii, A.: K-induction without unrolling. In: 2017 Formal Methods
in Computer Aided Design (FMCAD). pp. 148–155. IEEE (2017)

17. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust boolean
reasoning for equivalence checking and functional property verification.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21(12), 1377–1394
(2002). https://doi.org/10.1109/TCAD.2002.804386, https://doi.org/10.1109/
TCAD.2002.804386

18. Kuismin, T., Heljanko, K.: Increasing confidence in liveness model checking results
with proofs. In: Bertacco, V., Legay, A. (eds.) Hardware and Software: Verifi-
cation and Testing - 9th International Haifa Verification Conference, HVC 2013,
Haifa, Israel, November 5-7, 2013, Proceedings. Lecture Notes in Computer Science,
vol. 8244, pp. 32–43. Springer (2013). https://doi.org/10.1007/978-3-319-03077-7 3

19. Mebsout, A., Tinelli, C.: Proof certificates for SMT-based model checkers for
infinite-state systems. In: FMCAD. pp. 117–124. IEEE (2016)

20. Mishchenko, A., Chatterjee, S., Brayton, R.K.: DAG-aware AIG rewriting a fresh
look at combinational logic synthesis. In: Sentovich, E. (ed.) Proceedings of the
43rd Design Automation Conference, DAC 2006, San Francisco, CA, USA, July
24-28, 2006. pp. 532–535. ACM (2006). https://doi.org/10.1145/1146909.1147048,
https://doi.org/10.1145/1146909.1147048

21. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) Computer Aided Verification, 13th International Conference, CAV 2001,
Paris, France, July 18-22, 2001, Proceedings. Lecture Notes in Computer Science,
vol. 2102, pp. 2–13. Springer (2001). https://doi.org/10.1007/3-540-44585-4 2

22. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2 , BtorMC and Boolec-
tor 3.0. In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided Verifica-
tion - 30th International Conference, CAV 2018, Held as Part of the Fed-
erated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 10981, pp. 587–
595. Springer (2018). https://doi.org/10.1007/978-3-319-96145-3 32, https://

doi.org/10.1007/978-3-319-96145-3_32
23. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: a proof assistant for higher-

order logic. Springer (2002)
24. Paulson, L., Nipkow, T.: The Sledgehammer: let automatic theorem provers write

your Isabelle scripts (2023)
25. Pulina, L., Seidl, M.: The 2016 and 2017 QBF solvers evaluations (qbfeval’16 and

qbfeval’17). Artif. Intell. 274, 224–248 (2019)
26. Sutcliffe, G.: Proceedings of the 12th IJCAR ATP System Competition (casc-j12)

(2024)
27. Weber, T., Conchon, S., Déharbe, D., Heizmann, M., Niemetz, A., Reger, G.:

The SMT competition 2015–2018. Journal on Satisfiability, Boolean Modeling and
Computation 11(1), 221–259 (2019)

28. Wetzler, N., Heule, M., Jr., W.A.H.: Drat-trim: Efficient checking and trimming
using expressive clausal proofs. In: SAT. Lecture Notes in Computer Science,
vol. 8561, pp. 422–429. Springer (2014)

29. Yu, E., Biere, A., Heljanko, K.: Progress in certifying hardware model checking
results. In: Silva, A., Leino, K.R.M. (eds.) Computer Aided Verification - 33rd
International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 12760, pp. 363–386. Springer
(2021). https://doi.org/10.1007/978-3-030-81688-9 17

https://doi.org/10.1109/TCAD.2002.804386
https://doi.org/10.1109/TCAD.2002.804386
https://doi.org/10.1109/TCAD.2002.804386
https://doi.org/10.1007/978-3-319-03077-7_3
https://doi.org/10.1145/1146909.1147048
https://doi.org/10.1145/1146909.1147048
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-030-81688-9_17

30. Yu, E., Froleyks, N., Biere, A., Heljanko, K.: Stratified certification for k-Induction.
In: Griggio, A., Rungta, N. (eds.) 22nd Formal Methods in Computer-Aided De-
sign, FMCAD 2022, Trento, Italy, October 17-21, 2022. pp. 59–64. IEEE (2022).
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2 11

31. Yu, E., Froleyks, N., Biere, A., Heljanko, K.: Towards compositional hardware
model checking certification. In: Nadel, A., Rozier, K.Y. (eds.) Formal Methods in
Computer-Aided Design, FMCAD 2023, Ames, IA, USA, October 24-27, 2023. pp.
1–11. IEEE (2023). https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0 12

https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_11
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_12

	Introducing Certificates to the Hardware Model Checking Competition

