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Abstract

We introduce a formalization of ternary simulation as abstract interpretation along with a widening operator to speed up
convergence. With the same goal, we present a subsumption algorithm that can determine termination earlier than the
usual approach using hash sets. Additionally, we introduce a narrowing operator that utilizes recent advances in backbone
extraction, allowing to increase the overapproximation precision in simulation at any time. The experiments evaluate the
presented techniques in the context of hardware model checking.

1 Introduction

Optimizing reachability analysis and model checking is
an important topic in formal verification of hardware
designs. Ternary simulation [1] is a powerful method
utilized in various preprocessing techniques as well as
tightly integrated in standard model checking approaches
like PDR [2]. For example, phase abstraction [1] leverages
ternary simulation for identifying a group of oscillating
signals used to simplify the original hardware designs.
By using a three-valued logic {1,0,X}, at initialization
the inputs are assigned unknown values (X) while latch
variables are assigned according to their reset definitions;
the successor states are then computed based on the three-
valued semantics. Differently from using conventional
symbolic execution, as a result an over-approximation of
reachable states is obtained at termination. This also
allowed us in recent work on model checking certificates
to provide an alternative notion of cube semantics [3].
Even though ternary simulation enables fast computation
in practice even on industrial designs [4], the key
challenge, is the exponential time for convergence in
the worst case, due to the PSPACE complete nature
of symbolic reachability analysis, also known as the
“state explosion” problem. Furthermore, while ternary
simulation has been implemented in numerous state-of-
the-art tools, there are still significant gaps between its
precise theory and practical applications.
On another matter, abstract interpretation [5] helps to
obtain sound and precise overapproximations of the state
space, and has been commonly used in the static analysis of
software systems [6]. It relies on a logical approximation
relation between concrete models and abstract predicates
to produce a sound fixpoint approximation.
Related to ternary simulation is Symbolic Trajectory
Evaluation (STE) [7], which can be characterized as a
combination of symbolic execution and ternary simulation,
but with the ternary value functions encoded as BDDs.
Previous work [8] has shown, from a theoretical point of
view, the Galois connection between a ternary model and
Boolean model as a form of abstract interpretation. We
focus on practical applications of abstract interpretation
and further utilize narrowing and widening operators to
refine lossy unknown values and ensure early termination.

In this paper, we make an attempt to bridge the gap
by formalizing ternary simulation as a form of abstract
interpretation, which is more succinct than the formalism
presented in [8], and at the same time closer to practical
implementations of simulation.
This enables us to leverage the framework of abstract
interpretation with decades of extensive research to
enhance bit-level hardware verification. We begin by
defining an abstract domain and transformation functions
for ternary simulation. Furthermore, we introduce
a widening operator in the strict sense of abstract
interpretation, guaranteeing early termination to avoid
exponential computation. We also present a weaker
widening operator, which might be more suitable for
practical applications and an algorithm for efficiently
determining convergence. More importantly, we further
enhance the technique by making use of backbone
extraction [9] in defining the narrowing operator. Lastly,
we also demonstrate the effectiveness of our method in the
experimental evaluation.

2 Circuit

In the rest of the paper, we assume standard semantics for
Boolean operators [10] and use the notations from abstract
interpretation theory [11].
Since ternary simulation relies on the structure of a
Boolean circuit, our definition is more detailed than a
simple transition relation and defines transition functions
in the form of an and-inverter graph (AIG).

Definition 1 (Circuit). A Boolean circuit C is represented
by the tuple (I,L,A,R,F,D) where I = {i1, . . . , i#I}, then
L = {l#I+1, . . . l#I+#L} and A = {l#I+#L+1, . . . , l#I+#L+#A}
are inputs, latches and (AND) gates respectively and are
ordered continuously. Let S = S∪{¬ℓ | ℓ∈ S} for any such
set S denote the set of literals over S and VAR the inverse
operation (determining variables from literals). With that,
the set of all literals is Λ = I ∪L∪A.
The (total) functions R : L→ {0,1} and F : L→ Λ define
the initial state of the circuit and the transition behavior
of the latches respectively. The (total) function D : A→
Λ×Λ gives the definition of each AND gate and has to be
stratified, i.e.: ∀ai ∈ A : D(ai) = (a j,ak)⇒ j < i∧ k < i.
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Definition 2 (Cubes and States). For a set of literals S we
further define the following sets:

• c ∈ P(S) is called a cube with P(S) the power set of S,

• P1(S) = {c ∈ P(S) | ℓ ∈ c ⇒ ¬ℓ /∈ c} is the set of
consistent cubes, and

• P2(S) = {s∈P1(S) | |s|= |S|} are the complete cubes.

Additionally, we define ν : P1(Λ)×Λ→ {0,1,X} to get
the value of a literal in a consistent cube and further use
τ : Λ×{0,1,X} → Λ∪{ε} to change the sign of a literal:

ν(c, ℓ) =


1, if ℓ ∈ c
0, if ¬ℓ ∈ c
X , otherwise

τ(ℓ,b) =


ℓ, if b = 1
¬ℓ, if b = 0

ε, otherwise

These are the only functions that explicitly deal with three-
valued semantics {0,1,X}. Otherwise our formalism uses
cubes instead of full assignments mapping to {0,1,X}. To
further simplify the exposition we use ε as the neutral
element of set-addition, i.e., any set containing ε is
equivalent to the same set without it.
The stratification condition in Def. 1 ensure that the
directed graph induced by D is a acyclic, i.e., a directed
acyclic graph (DAG), with inputs and latches as leaves.
This makes the transition function of a circuit well-defined:

Definition 3 (Transition). For a circuit C =(I,L,A,R,F,D)
we define the following functions:

• extI : P2(L)→ P(P2(I∪L)),
extI(s) = {s′ ∈ P2(I∪L) | s′⇒ s} that expands a state
over latches with all possible inputs.

• extA : P2(I ∪ L) → P2(Λ) is defined as fixpoint of
ϕ(s) = {τ(a,AND(ν(s, l),ν(s,r))) | (a,(l,r)) ∈ D}

It can be computed in a single pass over the gates
due to the stratification assumption. Since s is a
complete state and therefore ν(s, ·) maps to {0,1},
AND computes the standard Boolean function (“∧”).

• nxtL(s) = {τ(ℓ,ν(s,n)) | (ℓ,n) ∈ F} extracts the
successor state from next-state function of a latch.

• f L : P2(L)→ P(P2(L)), with
f L(s) = {nxtL(extA(s′)) | s′ ∈ extI(s)}, maps a state to
the set of its successors in C.

3 Ternary Simulation as Abstract
Interpretation

In this section we define the abstract transformation from
a concrete circuit to a ternary circuit. We will consider
two lattices (Σ,⊆), with Σ = P(P2(L)) for the concrete
semantics of the circuit and (Ω,⇒), with Ω = P(L) for
abstract semantics utilizing ternary simulation.
Note, that we prefer to use the set of cubes Ω instead of
three-valued states: {0,1,X}|L| ∪⊥. Here we use ⊥ to
denote “no-state” (inconsistent cube in P(L)), not to be
confused with the ternary state (X ,X , . . .) representing all
states equivalent to the empty cube in our abstract domain.

Theorem 4. (Σ,⊆) and (Ω,⇒) are complete lattices.

We further define two functions to translate between them:

Definition 5. The abstraction function α : Σ → Ω is
defined as α(σ) =

⋂
s∈σ

s.

Definition 6. The concretization function γ : Ω → Σ is
defined as γ(ω) = {s | s ∈ P2(L)∧ s⇒ ω}.

Theorem 7. The tuple (γ,Σ,Ω,α) is a Galois connection.

Proof. For sets of states σ ∈ Σ and cube ω ∈Ω, we have:
α(σ)⇒ ω by Def. 5

⇔ (
⋂

s∈σ

s)⇒ ω

⇔ ∀s ∈ σ : s⇒ ω with σ ⊆ P2(L)
⇔ σ ⊆ {s | s ∈ P2(L)∧ s⇒ ω} by Def. 6
⇔ σ ⊆ γ(ω) □

For the concrete transition function, we define the
transition of a set of states as the union of their successors.

Definition 8. The concrete transition function f : Σ→ Σ

is defined as f (σ) =
⋃

s∈σ

f L(s).

On the abstract side we finally formally define ternary
simulation as the abstract transition function that allows us
to transition in the abstract domain.

Definition 9. We define f # : Ω → Ω as the abstract
transition function with f #(ω) = nxtL(extXA(ω)), where
extXA : P1(I ∪ L) → P1(Λ) follows the definition of extA
except AND is replaced by ANDX defined by the table below:

l r ANDX(l,r)
0 - 0
- 0 0
1 1 1
1 X X
X 1 X

where ‘-’ denotes either 0 or 1.

We have to show that f # is indeed a valid abstraction of f .

Theorem 10. ( f ◦ γ)(ω)⊆ (γ ◦ f #)(ω)

For that we will first define the depth of a gate.

Definition 11 (Depth). The depth of a gate a∈ A is defined
as the length of the longest path from a to a leave in the
DAG induced by D. The depth of an input I or latch L is 0.

We state a connection between the transition functions.

Lemma 12. For ω ∈ P1(L), s ∈ γ(ω), a ∈ I ∪ L∪ A, if
ν(extXA(ω),a) ∈ {0,1} then ν(extA(s),a) = ν(extXA(ω),a).

Proof. The proof proceeds by induction over the depth n
of a. For n = 0, a is either an input or a latch literal, where
only the latch might be in ω in which case it will also be
in both extensions. Now for any gate a at depth n+ 1 let
(l,r) = D(a), both l and r have depth no greater than n.
Further, in case c = X the claim holds trivially. Otherwise,
neither l nor r are X, thus AND equals ANDX or exactly one
of them is X and the other one is 0. In the latter case, both
extensions in γ(ω) result in 0.



We continue to the proof of the Theorem 10.

Proof of Theorem 10. Suppose there is a σ ∈ ( f ◦ γ)(ω)
that differs from all states in (γ ◦ f #)(ω) in at least one
literal. Let ω be as stated in the theorem, σ = γ(ω)
and σ ′ a state in (γ ◦ f #)(ω) that differs from σ in the
fewest number of literals, one of them being ℓ. We
consider two cases: (1) ν( f #(ω), ℓ) = X: By definition of
γ the set γ( f #(ω)) also contains a state that is the same
as σ ′ but matches σ ∈ ℓ, contradicting our assumption.
(2) ν( f #(ω), ℓ) = c, with c ∈ {0,1}: Let a = F(ℓ), then
ν(extXA,a) = c. By Lemma 12 and Def 8 σ matches σ ′ on
ℓ again contradicting our assumption.

4 Widening

Even though ternary simulation can be implemented very
efficiently, it is exponential in the size of the circuit. In fact,
this exponential behavior is easily exposed by adding a 64-
bit counter that is independent of the rest of the design.
The widening operators, as introduced in [12], promise
to alleviate that problem by guaranteeing a faster
convergence. However the demands on the properties
of such a widening operator are quite strong. We will
introduce ∇ that fulfills both the covering and termination
property [13] and additionally the more conservative
operator ∇ that does not meet these strict criteria, but
exhibit superior performance in our application. A similar
operation has been introduced as X-saturation in [4]. We
do believe that ∇ is sufficient to guarantee termination
in linear time, if the operator is applied periodically.
However, the proof of this claim remains open.

Definition 13. ∇ : P(L)×P(L)→ P(L), a ∇ b = a ∩ b.

Theorem 14. ∇ is:

1. covering: ∀a,b ∈ P(L) : a⇒ a ∇ b, and b⇒ a ∇ b

2. terminating: For an ascending chain {ai}i≥0, the
chain b0 = a0,bi+1 = bi ∇ ai+1 stabilizes after a finite
number of terms.

Definition 15. ∇ : P(L)×P(L)→ P(L) with
a ∇ b = b\{ℓ} and where neither ℓ ∈ b,¬ℓ ∈ a nor VAR(ℓ)
have been removed by widening before.

5 Narrowing

Ternary simulation can produce a high number of spurious
traces, which is even more true if widening is used.
Narrowing operators [13] increase the precision of the
simulation at any point, thus removing a set of spurious
traces while still maintaining a valid over-approximation.
Our narrowing operator for ternary simulation ∆ relies on
the backbone of the transition between two cubes. The
backbone of a satisfiable formula, is the set of literals
that hold true in all assignments. It is only applicable to
two cubes a,b if ( f L)n(a)⇒ b, were n is the number of
function applications. For simplicity we will only define it
for a single step of the transition function.

Definition 16. ∆ : P(L)×P(L)→ P(L) with
a ∆ b = F−1(B(a∧D∧F(b))), and where

• F(b) = {τ(F(ℓ),ν(b, ℓ)) | ℓ ∈ VAR(b)} denotes the
“primed” version of a cube b,

• F−1(c) = {τ(ℓ,ν(c,n)) | (ℓ,n) ∈ F} the inverse and

• B(Φ) denotes the backbone of a Boolean formula Φ.

6 Termination via Subsumption

In both, collection semantics of abstract interpretation [11]
and ternary simulation [4], termination is defined as a
subsumption check, i.e., the simulation terminates if a cube
implies a previously encountered cube. At that point the
encountered cubes represent an overapproximation of all
reachable states. Such a check can be implemented using
BDDs, however as the authors of [4] state: “In practice,
the performance of such approach is prohibitive”. They
instead use a hash table and only terminate, when an exact
match to a previously encountered cube is found.
We utilize a different algorithm used for forward
subsumption detection in SAT solving [14, 10]. The
algorithm relies on a one-watch data structure, i.e., each
cube appears in the watch-list of one of its literals.

subsumed (cube c)
1 mark all literals in c
2 for literal ℓ in c do
3 for cube c’ in watch[ℓ] do
4 ℓ′← unmarked literal in c’
5 if ℓ′ = invalid then // No such literal

6 lassos.add(pred(c), c’)
7 if |c’|= |c| then // Exact match

8 return lassos
9 else watch[ℓ′].add(c’)

10 watch[ℓ].clear()
11 unmark all literals

Algorithm 1 Subsumption check. Identifies all previous
cubes that imply c, and thereby induce a lasso in the state
space. Requires one literal of each cube to be watched.

Whenever the algorithm reaches line 6, a sound over-
approximation is found. However, for some applications
it can be beneficial to consider more than one cube lasso.
For example in phase abstraction [1] the length of both the
stem and the loop of the lasso should be divisible by some
small number.

7 Evaluation

Our preliminary implementation does not cover the
entirety of Sect. 4 and 5. The simulation itself is fairly
efficient, calculating all the gates in a single linear pass,
using a few basic bit operations. However, we do not
reorder gates to allow for more efficient packing / random
access of state bits or parallelization using SIMD / threads.



#Latches base widening termination

bob12m04 43950 199 | 0.06 199 | 0.07 153 | 0.05
bob12m15 448 133 | 1.62 133 | 1.60 12 | 0.40
bobsmnut1 644 107 | 0.21 107 | 0.19 106 | 0.18
shift1add 27 20 | 1.20 20 | 1.25 1 | 0.01
6s376r 4708 145 | 766.34 116 | 16.30 116 | 4.20
6s47 815 to 8 | 35.63 6 | 0.30
6s100 97598 to 36 | 37.53 36 | 41.48
6s107 1568 to 746 | 16.93 746 | 1.18
6s149 12781 to 4 | 47.81 4 | 12.88
6s202b41 68881 to 8574 | 45.71 8574 | 28.35
6s204b16 28986 to 4034 | 19.33 4034 | 13.51
6s205b20 68842 to 8727 | 46.56 8727 | 28.08
6s355rb8740 15091 to 221 | 37.07 221 | 15.51
6s400rb7819 14665 to 221 | 36.96 221 | 11.00
6s342rb122 56838 to to 1894 | 354.60
cucnt128 128 to to 0 | 1.82
cucnt32 32 to to 0 | 0.01

Table 1 We evaluated three versions: base ternary
simulation with hashing and no widening, a configuration
using widening (∇) if the cube has not reduced in size
in a few thousand iterations, and one that employs both
widening and the early termination using the forward
subsumption algorithm. Presented is the runtime and the
number of transients that could be found for each circuit.
Our benchmarkset included all 20815 circuits from the
HWMCC (2007-2020)[15]. The table lists all instances
where either transients were lost to the optimization or
any of the configurations timed out (to).

Termination is implemented both with hashing and
forward-subsumption for comparison. We also provide an
implementation of the widening operator ∇. Ours differs
from the X-saturation described in [4] in that we do not
eliminate all non-fixed latches, but only pick a single one,
which has not been affected by widening before. As ∇

removes too many literals, it is not evaluated. We do not
yet have an implementation for narrowing.
All experiments were conducted on our cluster with Intel
Xeon E5-2620 v4 CPUs running at 2.10 GHz, with a time
limit of 2 hours. As an example application of ternary
simulation and to gauge its precision, we extract transients.
Transients are latches that assume a constant value after a
finite number of steps (constant in the loop of any cube
lasso). The results are shown in Table 1.
Considering the high number of benchmarks, both
widening and earlier termination had very little impact
on the number of identified transient. However, they did
help with a number of related benchmarks that originally
exceeded the two-hour time limit. Note that the final
configuration using both techniques solved all instances.
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