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Abstract—The backbone of a satisfiable formula is the set of
literals that hold true in every model. In this paper we introduce
Single Unit Resolution Backbone (SURB) which names both a
polynomial-time algorithm for backbone extraction and a class
of propositional formulas on which it is complete. We show that
this class is a superset of the polynomial-time solvable SLUR
formulas. The presented algorithm meets a lower bound on
time complexity under the strong exponential-time hypothesis.
As a second contribution, we present a version that operates
on the binary implication graph (BIG) and implement it as
a preprocessor in the recently introduced backbone extractor
CADIBACK. Experiments on a large number of SAT competition
benchmarks show that our implementation results in faster BIG
backbone extraction by an order of magnitude. Additionally,
incorporating it as a preprocessor enables CADIBACK to identify
up to four times as many backbone literals early on.

I. INTRODUCTION

Backbone extraction has been put forward as an effective
technique for a wide variety of applications including chip
verification, specifically fault localization [1], [2], [3], and
interactive configuration [4]. The concept of the backbone,
which refers to the set of literals that hold true in all models of
a satisfiable formula, was initially studied when investigating
the hardness of (random) propositional formulas [5], [6], [7].
Since then, a number of practical applications for backbone
extraction have been discovered. One notable example is the
improved performance in SAT solving itself [8], [9]. In fact,
the proposed algorithm in this paper has been implemented as
a cheaper version of failed literal elimination in SAT solvers
developed by one of the authors [10]. Other related areas like
maximum satisfiability [11], [12], [13], [14] have been found
to benefit from early knowledge of backbone literals.

In these applications, it is highly advantageous to promptly
access as many backbone literals as possible. This can be
due to two key reasons: either the backbone computation is
bound by a time limit or the identification of a backbone
literal triggers additional computations that can be executed
in parallel. As a result, our focus shifts to the time taken to
identify individual backbone literals rather than the completion
of the entire backbone extraction.

The state-of-the-art in backbone extraction has remained
unchanged for a long time, until recently CADIBACK [15] was
introduced, exhibiting significantly better performance. This
was achieved by using the modern SAT solver CADICAL
and tightly integrating features currently not found in any
other SAT solver. Our contribution presented in this paper is
orthogonal to that. Instead of using an exponential approach

based on incremental SAT solving, we use a polynomial time
algorithm to extract the backbone from a subset of the formula.

In SAT solving, Single Look-ahead Unit Resolution
(SLUR) [16], independently discovered as Backtrack-once
in [17], defines a class of formulas that are solvable in
polynomial time. Similar to that, we define a simple poly-
nomial algorithm called SURB and use it to define a subclass
of propositional formulas on which the backbone can be
extracted in polynomial time. We formally show that SURB is
a strict superset of SLUR. As another novel contribution, we
present a practical algorithm that exhibits considerably better
performance in our experimental evaluation than SURB. The
algorithm finds all backbone literals in the binary implication
graph. We implement it as a preprocessor, extending the
recently introduced backbone extractor CADIBACK [15]. Re-
sults show that our implementation outperforms the pervious
state-of-the-art by an order of magnitude. Furthermore, our
extension enables CADIBACK to identify a subset of all
backbone literals within a fraction of the time required to find
an initial model.

II. PRELIMINARIES

We consider satisfiable SAT formulas in conjunctive normal
form (CNF). A formula F is defined over a fixed set of vari-
ables V or their literals L = V∪¬V , where ¬V = {¬ℓ | ℓ ∈ V}
is the set of negative literals over V . It consists of a set
of clauses, which are sets of literals. A clause is unit if it
contains only one literal. We use |F| to denote the number
of literal occurrences in F , the number of distinct literals |L|
will commonly be referred to as n.

An assignment σ ⊂ L can also be interpreted as as the con-
junction of its literals and we use F|σ = F

⋀︁
ℓ∈σ ℓ to denote

a formula F under assignment σ. The unit-clause rule [18]
picks a unit clause {ℓ}, removes all clauses containing ℓ and
removes ¬ℓ from all clauses. We write F ⊢1 ℓ and say ℓ
is derived from F by unit propagation, if a unit clause {ℓ}
can be picked during repeated application of this rule. If both
F ⊢1 ℓ and F ⊢1 ¬ℓ we say a conflict is derived and for
convenience write F ⊢1  (note that  is not a literal).
The assignment resulting from unit propagation under σ until
fixpoint is σ′ = {k | F|σ ⊢1 k}. If σ′ contains conflicting
literal we use the same notation  ∈ σ′. If no conflict is
encountered, we can set σ = σ′, extend the assignment, and
repeat the computation until a full assignment is reached. The
entire process can be implemented in O(|F|) [19].
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The Binary Implication Graph (BIG) of F has a node for
each literal in L and two edges (¬u, v) and (¬v, u) for each
binary clause {u, v} [20]. By contraposition, if there is a path
from u to v, there is also a path from ¬v to ¬u [21]. Equivalent
Literal Substitution (ELS) identifies all cycles in the BIG and
replaces the corresponding literals with a single representative.
Failed Literal Elimination (FLE) [22] identifies literals ℓ with
F|ℓ ⊢1  (called failed) and adds ¬ℓ as a unit clause. This is
done repeatedly until a fixpoint is reached.

Algorithm 1 (SLUR) [16] may return unsatisfiability, a sat-
isfying assignment, or give up. If it succeeds for any variable
ordering (line 3), the formula is in the SLUR class [23].
Notable subsets of SLUR include 2-CNF which contain only
binary clauses, and Horn-3-CNF that contain length 3 clauses
with at most one positive literal.

SLUR (CNF F)

1 σ ← {k | F ⊢1 k}
2 if  ∈ σ then return UNSAT

3 for v ∈ V
4 σ+ ← {k | F|σ∧v ⊢1 k}
5 σ− ← {k | F|σ∧¬v ⊢1 k}
6 if  ∈ σ+ and  ∈ σ− then
7 return GIVE-UP

8 if  ∈ σ+ then σ ← σ−

9 else σ ← σ+

10 return SAT, σ

Algorithm 1: Single Look-ahead Unit Resolution. Success
depends on the formula and the variable order chosen in line 3.

III. SINGLE UNIT RESOLUTION BACKBONE

This section, introduces the algorithm SURB (Single Unit
Resolution Backbone) for finding backbone literals and defines
a subclass of formulas with the same name.

SURB (CNF F)

1 B ← ∅
2 for ℓ ∈ L
3 if F|B∧ℓ ⊢1  then
4 B ← {k | F|B∧¬ℓ ⊢1 k}
5 return B

Algorithm 2: Single Unit Resolution Backbone identifies a
subset of the backbone. The order of literals chosen in line 2
is non-deterministic and can influence which backbone literals
are identified.

The algorithm is sound, since the negation of failed literals
are backbone literals and only previously identified backbone
literals are added to the propagation. In the following we
introduce the SURB subclass based on Algorithm 2.

Definition 1. A formula F is in SURB if the algorithm
identifies the entire backbone for any order of literal selection.

The relation of SURB and other classes can be summarized
as the following, where FLBE is defined later in Def. 2.

2-CNF ⊊ SLUR ⊊ SURB ⊊ FLBE

Similar to SLUR, running Algorithm 2 does not indicate the
membership in the class. Deciding if a formula is in SLUR
is co-NP-complete [24]. We leave a similar proof for SURB
to future work. In practice, this means that without additional
knowledge about the formula, it is unknown if the backbone
extends beyond the literals identified by SURB. We now
formally prove the subset relations from above.

Theorem 1. SLUR ⊂ SURB

Proof. Assume a satisfiable formula F has a backbone literal
¬ℓ that is not identified by SURB, we show SLUR can fail
on F . Let ℓ be the first variable that is decided by SLUR.
By the assumption F|B∧ℓ ̸⊢1  for some set B and therefore
especially for B = ∅. SLUR chooses σ+ to proceed and will
eventually give up since ¬ℓ is a backbone literal.

The example shows not all formulas in SURB are in SLUR.

Example 1. Consider the formula F = (¬a ∨ b ∨ ¬c ∨ d) ∧
(¬a ∨ b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ b ∨ c ∨ d) ∧ (¬a ∨ b ∨ c ∨ ¬d).

SLUR fails for the variable order [a, b, c, d]. However, F
has neither failed nor backbone literals.

Definition 2. Failed Literal Backbone Equivalent (FLBE) is
the class of formulas on which the negation of every backbone
literal is a failed literal.

This class defines the upper bound on which SURB is
complete, if it had an oracle to determine the optimal ordering
of literals. Without the correct ordering, SURB would need to
be executed up to n times to identify the entire backbone of
a formula in FLBE. The following example illustrates this.

Example 2. Consider the formula
F = (¬a ∨ ¬b) ∧ (¬a ∨ b) ∧ (a ∨ ¬c ∨ ¬d) ∧ (a ∨ ¬c ∨ d).
If c is propagated before a, only ¬a will be found by SURB.

However, both a and c are failed literals and there are no
further backbone literals, thus F is in FLBE.

Now we proceed to discuss the time complexity of SURB. It
performs up to n propagations and therefore has a worst-case
complexity of O(n · |F|). Järvisalo and Korhonen [25] suggest
that any algorithm to find even a single backbone literal in a
Horn-3-CNF has worst-case complexity of O(n · |F|) under
the strong exponential time hypothesis [26]. Since SURB
subsumes the problem and is complete on a superset of Horn-
3-CNF, it is unlikely that we can achieve a better worst-case
complexity than what this simple algorithm offers.

The same asymptotic time complexity is also shared by
SLUR [16]. However, while SLUR continuously extends an
assignment and uses it for future propagations, SURB only
saves backbone literals. As in the end both algorithms propa-
gate each literal at least once, keeping more literals assigned
can lead to a faster overall runtime. We exploit this idea in
the design of Algorithm 3 in the next section.
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IV. BIG BACKBONES

As the algorithm presented in the previous section is gen-
erally not guaranteed to identify the entire backbone of a
formula, it can only serve as part of the backbone search.
Applying SURB to the entire formula would be too slow, even
with the highly optimized implementations of unit propagation
in modern SAT solvers. It is also not possible to efficiently
identify the subset of a formula that is in SLUR [24]. We
therefore focus on the binary clauses where propagation can
be implemented more efficiently and SURB is complete. The
following proposition justifies focusing on a subset.

Proposition 1. The backbone found on a subset of a satisfiable
formula F is a subset of the backbone of F .

In Algorithm 3, we present KB3, a version of SURB, which
is only valid for 2-CNFs and avoids re-propagation by keeping
an assignment between propagations.

KB3 (2-CNF F)

1 B ← ∅, Λ← L
2 while Λ ̸= ∅
3 σ ← B, ∆← ∅
4 for ℓ ∈ Λ // next candidate

5 if ¬ℓ ∈ σ then continue
6 ∆← ∆ ∪ {ℓ}
7 if ℓ ∈ σ then continue
8 σ′ ← {k | F|σ∧ℓ ⊢1 k}
9 if  ∈ σ′ then

10 B ← B ∪ {k | F|¬ℓ ⊢1 k}
11 ∆← ∆ ∪ B ∪ ¬B
12 σ ← σ ∪ B
13 else σ ← σ′

14 Λ← Λ \∆
15 return B

Algorithm 3: Keep assignment BIG Backbone (KB3) is only
defined on 2-CNFs, for which it is complete regardless of the
literal selection order (in line 4).

The example in Figure 1 illustrates why we can keep literals
assigned without encountering spurious conflicts. Specifically,
running the KB3 algorithm for this formula, when c is picked
as the first candidate (line 4), all candidates with a path to ¬c
are blocked until the assignment is reset in line 3.

Theorem 2. Algorithm 3 is sound and complete on 2-CNF.

Proof. Since 2-CNF is a subset of SURB we can rely on the
completeness of Algorithm 2 for any variable ordering. We can
therefore assume the set B to be empty for every candidate ℓ
in line 3. Every literal is either immediately eliminated in line
7 or eventually propagated in line 8. Note that propagation
under a bigger assignment is only more likely to derive a
conflict. Any eliminated literal has been assigned by a previous
propagation that did not lead to a conflict.

¬a ¬c

b

¬b

c a

¬d

d

Fig. 1: BIG of (a ∨ ¬b) ∧ (b ∨ ¬c) ∧ (b ∨ c) ∧ (c ∨ ¬d).

To show soundness, consider a conflict derived in line 8. Let
c and ¬c be any pair of conflicting literals and ℓ the current
candidate. We show neither c nor ¬c are in σ and therefore
F|ℓ ⊢1  which implies that ¬ℓ is a backbone literal. It is
impossible for c and ¬c to both be in σ since the conflict
would have prevented the assignment from being updated in
line 13. Without loss of generality assume c to be in σ and
the propagation of ℓ to imply ¬c. Since ℓ implies ¬c, there is
a path from ℓ to ¬c in the BIG and by contraposition there is
also a path from c to ¬ℓ. The set σ is the result of propagation
therefore every literal implied by c is included. But if ¬ℓ ∈ σ
the current candidate would have been skipped in line 5.

By this proof, ℓ is a failed literal in the original formula.
Therefore a resolution proof for ¬ℓ being in the backbone can
be found by resolving the clauses corresponding to the paths
from ℓ to c and ℓ to ¬c in the BIG.

The example below shows that Algorithm 3 does not extend
to Horn-3-CNF.

Example 3. Consider the formula (¬a∨¬b∨¬c)∧(¬a∨¬b∨c).
Both ¬a, b, c and a,¬b,¬c satisfy the formula, the backbone is
therefore empty. However, if the candidates are picked in the
order [a, b, . . .] literal ¬b is identified as part of the backbone.

V. RELATED TECHNIQUES

We now discuss some previous work on extracting back-
bones from BIGs [21], as well as other techniques used in
failed literal extraction and how they relate to KB3. We refer
to Figure 1 for an illustration of the following discussions. The
algorithm Van Gelder describes in [21] is essentially equivalent
to SURB with a depth-first search order, instead of the usual
breadth-first propagation. Whenever the BFS propagation of a
literal ¬a causes the assignment of conflicting literals c and
¬c, the BIG does not only contain a path from ¬a to c and
¬a to ¬c but by contraposition also a path from c to a. Thus,
with a DFS order the first conflicting literal b, is always in
the backbone. Furthermore, b is the highest such literal in the
search tree, so propagating it will identify all other backbones
that can be found for this conflict. To emulate this desirable
property with BFS, we can explicitly store the search tree and
identify the first UIP[27] after a conflict is encountered.
Stamping [28], [29] prevents a literal to be considered as

a candidate, if it has been propagated since the last backbone
literal was identified. However, such a literal must still be re-
propagated if it is encountered during another propagation,
as the previous example demonstrates for the candidate order
[d,¬a, . . .]. KB3 subsumes this technique, since any candidate
that is not propagated due to stamping would still be assigned
and added to ∆ in line 6, at the first time it is encountered.
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Moreover, while stamping is reset when a conflict is encoun-
tered, KB3 still maintains part of the assignment.
Roots [21], [30], [31] only propagates a candidate if

it has no predecessor in the BIG. Removing the negation
of an identified backbone literal can add new roots. This
optimization is part of Van Gelder’s algorithm and also used
in failed literal elimination. To maintain completeness, it is
necessary to run ELS until fixpoint. Note that if only the BIG is
considered, one round of ELS is sufficient. Since a root cannot
be implied by another candidate, this technique also subsumes
Stamping. Note that combining this technique with KB3
increases the size of the unkept assignment when a conflict is
encountered and can therefore also have negative effects.

We present two scalable examples of 2-CNF formulas.
Figure 2a is lifted from [21]. They used the example to show
that their algorithm expands O(n3) edges and is therefore not
more efficient than computing the two-closure. In contrast,
our algorithm expands each edge exactly once and is thus
in O(n2). We can therefore achieve a speedup of n times
and reach the lower bound complexity of performing a single
propagation. However, as the example in Figure 2b shows, the
worst case complexity has not changed. Each of theO(n) roots
in group R expands the O(n2) edges in P and the at-most-one
constraint prevents any of the propagations from being reused.

¬A

¬C

D

B

¬B

¬D

C

A

(a) The positive literals
are split into four equal
groups. The double-arrow
denotes that each literal of
one group implies all liter-
als of the other [21].

R

P
¬R

¬P

(b) The literals in R are connected to ¬R
with an at-most-one constraint, meaning
that each literal has an edge to the nega-
tion of every other literal. They all con-
nect to the highest literal in P . Literals
in P have an edge to every lower literal.

Fig. 2: Depicted are the BIGs of two scalable SAT formulas.
On (a) KB3 achieves a linear speed up over the previous state
of the art. However, (b) shows that KB3 does not improve
upon the worst case performance.

VI. IMPLEMENTATION AND EVALUATION

We implement the new algorithm KB3 [32] and the base
version SURB with various optimizations as preprocessors for
CADIBACK [15]. For each configuration we tested both DFS
and BFS for propagation. The binary clauses are extracted after
some basic preprocessing has been performed by CADICAL
and stored as an adjacency array. All backbone literals in the
BIG are then extracted and added as unit clauses before the
first call to a SAT solver. To increase trust, we checked that
all configurations identify the same backbone on close to a

SURB KB3

BFS DFS BFS DFS

Base 21136.11 21287.25 647.53 728.46
ELS 20523.81 20756.81 640.43 733.47
ELS+Roots 18164.47 18756.10 643.57 721.09

stamp 19205.73 19636.01
ELS+Stamping 18947.99 19392.12

ELS+Roots+UIP 822.49

Fig. 3: The time in seconds to run backbone extraction
on the BIG until completion accumulated over all satisfiable
benchmarks from the last 19 SAT competitions (2004-2022).
The time to run ELS on the entire benchmark set is 50.59
seconds and included for the algorithms which use it.

billion randomly generated 2-CNF. We use a cluster with 20
nodes each running two AMD EPYC 7313 at 3.7Ghz under
Ubuntu 22.04 LTS. Memory is limited to 15GB per instance.

For benchmarking, we collected formulas from SAT com-
petitions 2004-2022, and removed duplicates to obtain a
large and representative set. We ran Kissat 3.0.0 [33] for
5,000 seconds to identify satisfiable benchmarks. This left
us with 1798 benchmarks (available at https://cca.informatik.
uni-freiburg.de/sc04to22sat.zip (6 GB) and [34]).

Table 3 presents the comparison of the different configura-
tions. Even though the source code from [21] is not available,
the configuration of SURB with DFS and ELS+Roots in
our implementation is equivalent to what they describe in
their paper and we use it as a representation of the previous
state of the art. The results show that the new algorithm
clearly outperforms the configuration of [21], being more
than 29 times faster. Three benchmarks are particularly hard
for SURB. Only the BFS configurations without stamping
solve them within the time limit of 5000 seconds, whereas
KB3 takes less than a second to solve them. Furthermore,
the additional optimizations work well for the base version,
however, as discussed in the previous section, KB3 does not
seem to benefit from them as much.

As argued before, KB3 subsumes stamping and the combi-
nation is therefore not presented. Similarly, the UIP technique
is not necessary when a depth first order is used for propaga-
tion and has not been implemented for SURB.

In the second part of the evaluation we investigate how
the best configuration of KB3 (BFS and ELS) performs as a
preprocessor for the complete backbone extractor CADIBACK.
We log the time of identifying a backbone literal for the 533
benchmarks from the past three SAT competitions (2020-2022)
and present their accumulation over time in Figure 4. Even
though we limit the run time to 1000 seconds, still more
than 10 Million backbone literals are identified. The version
with KB3 holds the biggest absolute advantage at around 210
seconds, where it identified 5.5 Million backbone literals, 4.5
times as many as the base version has found at that point.
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Fig. 4: Presented is the number of backbone literals identified
over time. We compare default CADIBACK to a version with
added preprocessing performed by KB3.

VII. CONCLUSION

We proposed a new algorithm for backbone extraction from
the binary implication graph of a formula. The new algorithm
exhibits a significant performance advantage over the previous
state-of-the-art approach. Furthermore, we have integrated
our algorithm into the backbone extractor CADIBACK as a
preprocessor, yielding remarkable improvements, particularly
in the early identification of backbone literals.
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