
Noname manuscript No.
(will be inserted by the editor)

Mining Definitions in Kissat with Kittens

Mathias Fleury · Armin Biere

the date of receipt and acceptance should be inserted later

Abstract Bounded variable elimination is one of the most important preprocessing
techniques in SAT solving. It benefits from discovering functional dependencies in
the form of definitions encoded in the CNF. While the common approach pioneered
in SatELite relies on syntactic pattern matching, our new approach uses cores
produced by an embedded SAT solver, Kitten. In contrast to a similar semantic
technique implemented in Lingeling based on BDD algorithms to generate irre-
dundant CNFs, our new approach is able to generate DRAT proofs. We further
discuss design choices for our embedded SAT solver Kitten. Experiments with
Kissat show the effectiveness of this approach.

1 Dedication

We dedicate this rather technical SAT paper to the memory of Ed Clarke. He was
one of the first to see the tremendous potential of SAT solving not only in model
checking, but more general in verification and beyond. His vision to use SAT
for model checking, the encouragement and guidance he gave to two Post-Docs
working on this topic (the 2nd author and Yunshan Zhu), which then lead to our
multiple awards winning joint work on Bounded Model Checking [5–9,16], clearly
plays a pivotal role in the history of the SAT revolution we are witnessing today.

Bounded Model Checking turned out not only to become the first practical ap-
plication of SAT but also, even though highly debated initially, lead to a paradigm
shift in using formal verification, trading completeness for scalability. This contro-
versy can also be seen as the starting point of other highly-influential work in the
model checking community, particularly Ken McMilan’s work on interpolation [30]
and then the development of the IC3 algorithm by Aaron Bradley [14], which both
also rely on SAT solving but try to keep completeness without sacrifying scalability
too much.

Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria
Chair of Computer Architecture, Albert-Ludwigs-University, Freiburg, Germany
E-mail: fleury@informatik.uni-freiburg.de and E-mail: biere@informatik.uni-freiburg.de

2 Fleury and Biere

This success of SAT in model checking motivated new research on SAT solving,
including the seminal work at Princeton yielding the Chaff [32] SAT solver, which
is standing on the shoulders of another seminal work around the Grasp solver from
Michigan [36], and also turbo-charged the use of decision procedures originating
in the automated theorem proving community in the form of SMT. This SAT
revolution is a corner stone of the more broader adoption of automated reasoning
in many applications, from classical hardware to software verification as well as
scheduling cloud jobs. We believe without Ed this would not have happened.

2 Introduction

Preprocessing and particularly inprocessing [26] is a key feature of modern SAT
solvers, the latter being part of every winner of the SAT competition since 2013.
Arguably the most important pre- and inprocessing technique is bounded variable
elimination (BVE). Even though in its unbounded form, elimination is a decision
procedure for SAT, in the context of preprocessing bounded variable it is not run
until completion. The idea of BVE is to iteratively eliminate one variable from
the problem by resolving every occurrence away without adding redundant clauses.
Furthermore, the difference between the number of added and removed clauses is
bounded in practical implementation (Section 3).

Definability is a concept that reduces the number of clauses to add. It consists
in recognizing a definition of x such that x ↔ f(a1, . . . , an) from the input formula
in conjunctive normal form (CNF). The simplest example are gates like x ↔ a1∧a2
that can be efficiently detected. Detecting gates reduces the number of resolvents
because not all clauses have to be resolved together. A simple approach is to
syntactically recognize gates as encoded in the CNF input. This approach is for
example used in CaDiCaL [10] and CryptoMiniSat [39].

This syntactic approach (Section 4) is limited though and fails to recognize
“irregular” gates not characterized by a simple gate type (such as And gates). It
also fails to detect gates after elimination of one of the input variables. Recently
semantic approaches based on Padoa’s theorem [34] have been developed with
applications in model counting [28] and a similar technique exists for (D)QBF
reasoning [35,37]. In both approaches a SAT solver is used as oracle to find gate
clauses. In this paper we follow this line of research and extend our SAT solver
Kissat [12] to detect gates semantically. It uses a simple SAT solver called Kitten,
called as an oracle to find gate clauses (Section 5). Our definition of gate detection
is equivalent to previous approaches, even though our method never explicitly
reconstructs the function (Section 6).

Our technique discovers gates but it does not need to know which are the inputs
(Section 7). One interesting property about gates is that we do not need to resolve
gate clauses among themselves. However, this only holds if the full clause is found
and not a subset of the clause. If those clauses are forgotten, an unsatisfiable
problem can become satisfiable (Section 8). Syntactic detection of gates is faster
and detects most useful gates. So Kissat first finds gates syntactically and then
calls Kitten to find other gates semantically (Section 9).

It turns out that the performance of the sub-solver Kitten has a non-negligible
impact on the overall performance, as it is frequently called to find definitions
with different environment clauses in which a candidate variable to be eliminated

Mining Definitions in Kissat with Kittens 3

occurs. Basically Kitten is a very simple CDCL solver with watched literals but
for instance without blocking literals. A key feature of Kitten for semantic gate
detection is that it can be “cleared” efficiently avoiding reallocation of internal
data structures (Section 10). It further can be instructed to keep antecedents of
learned clauses in memory and thus can compute clausal cores in memory.

Experiments on benchmarks from the SAT Competition 2020 show that our
new elimination method has only a minor impact on performance and runtime,
but it does eliminate substantially more variables, even after syntactic extraction
is employed first. Thus definition extraction is effective (Section 11).

We finish with related work (Section 12). The idea of not generating redundant
unnecessary clauses relates to blocked clause elimination (BCE), a simplification
technique that can remove clauses. Iser [24] also used a SAT solver in the context
of gate identification, but he does not use it to identify a gate, but only to check
“right uniqueness” of already identified set of clauses.

This paper is an substantially extended version of our very brief presentation
in the system description [12] of Kissat from the SAT Competition 2021 and
an extension of our (unpublished) Pragmatics of SAT Workshop 2021 (POS’21)

presentation [11]. Compared to the system description, we have significantly
extended all explanations and give more details about Kitten. Last but not least
we report detailed experiments.

3 Bounded Variable Elimination

In principle, eliminating variables from a formula reduces the search space in solv-
ing the formula exponentially with the number of removed variables. However,
this argument is only sound as long the formula does not increase in size geomet-
rically with the number of eliminated variables. Otherwise we would have found a
procedure to polynomially solve SAT.

Thus the basic idea of bounded variable elimination is to only eliminate variables
in a formula, for which the resulting formula is not bigger than the original formula,
i.e., where the size increase due to variable elimination is bounded. This procedure
can be implemented efficiently and in practice is considered the most effective
preprocessing technique, particularly for industrial instances.

The basic approach works as follows. Let x be a variable considered to be
eliminated from the CNF F . We split F syntactically into three parts

F = Fx ∧ Fx̄︸ ︷︷ ︸
E(F,x)

∧∆(F, x),

where Fℓ is the CNF of clauses of F which contain literal ℓ, with ℓ ∈ {x, x̄} and
∆(F, x) contains the remaining clauses without x nor x̄. We call E(F, x) = (Fx∧Fx̄)
the environment of x. As usual tautologies do not have to be considered, where a
clause is called tautological or trivial if it contains a variable x and its negation x̄.

Let x be a variable and Hx and Hx̄ CNFs where clauses in Hℓ all contain ℓ, we
define the1 set of resolvents of Hx and Hx̄ over x as follows:

Hx ⊗Hx̄ = {(C ∨D) | (C ∨ x) ∈ Hx, (D ∨ x̄) ∈ Hx̄, and (C ∨D) not a tautology}.

1 If two clauses can be resolved over two different variables, the resulting resolvents are
tautological. Thus the resolution operator “⊗” does not really need to be parameterized by x.

4 Fleury and Biere

As usual we interpret a CNF also as a set of clauses. The goal of variable elimination
is to resolve all clauses of Fx̄ with all clauses of Fx and replace E(F, x) with the
obtained resolvents, that is replacing the formula F by (Fx ⊗ Fx̄) ∧∆(F, x).

The process described so far is just a reformulation of “clause distribution”
from the original DP procedure [17]. What turns it into the most important
preprocessing techniques of today’s SAT solvers is the idea of eliminating a variable
if the difference between the number of added (resolvent) clauses and removed
clauses (containing the eliminated variable x) is bounded [2, 3, 18, 40]. There are
various possibilities to set this bound, and even increase it dynamically [33], which
are orthogonal to the discussion of this paper.

Enforcing that the size of the formula does not grow too much during variable
elimination restricts the number of variables that can be eliminated and thus the
effectiveness of variable elimination. It is therefore beneficial to determine whether
certain resolvents are redundant, i.e., implied by the resulting formula, and do not
need to be added. This will allow additional variables to be eliminated, for which
the size limit is hit without considering redundant resolvents.

Finally, as the elimination of a variable produces a formula which is satisfiability
equivalent but not logically equivalent to the original formula (unless the formula
is unsatisfiable), we need a way to reconstruct models of the original formula
given a model of the simplified formula. This can be achieved by saving the
eliminated clauses on a “reconstruction stack” and the interested reader might
want to consult [13, 21,26] for further details.

4 Gate Extraction

Already when introducing the SatELite preprocessor [18], it was proposed to
extract subsets of “gate clauses” from Fx and Fx̄ that encode “circuit gates” with
output x, also called definitions of x. Resolving these gate clauses against each
other results in tautological (trivial) resolvents, and, in particular, this situation
allows the solver to ignore resolvents between non-gate clauses (since those are
implied). Assume that F can be decomposed as follows

F ≡
Fx︷ ︸︸ ︷

Gx ∧Hx ∧
Fx̄︷ ︸︸ ︷

Gx̄ ∧Hx̄ ∧∆(F, x)

where G ≡ Gx ∧Gx̄ are the gate clauses, i.e., the Tseitin encoding of a circuit gate
with output x, Hx and Hx̄ the remaining non-gate clauses of F containing x and
x̄ respectively, and ∆(F, x) the remaining clauses without x nor x̄. The original
technique from SatELite [18] would then use

F ≡ (Fx ⊗ Fx̄) ∧∆(F, x) ≡ (Gx ⊗Hx̄) ∧ (Gx̄ ⊗Hx) ∧∆(F, x)

and only consider the smaller set of resolvents on the right, as both Gx ⊗ Gx̄ as
well Hx⊗Hx̄ can be omitted from Fx⊗Fx̄, even though the former are tautological
resolvents and thus ignored anyhow. To give a concrete example consider the
following formula containing three gate clauses, encoding an And gate x = a ∧ b,
and four non-gate clauses.

F = (ā ∨ b̄ ∨ x)︸ ︷︷ ︸
Gx

∧(a ∨ x̄)∧(b ∨ x̄)︸ ︷︷ ︸
Gx̄

∧

Hx︷ ︸︸ ︷
(c ∨ x)∧(d ∨ x)∧

Hx̄︷ ︸︸ ︷
(e ∨ x̄)∧(f ∨ x̄)∧(c̄ ∨ d̄ ∨ ē ∨ f̄)︸ ︷︷ ︸

∆(F,x)

Mining Definitions in Kissat with Kittens 5

Resolving all clauses with x or x̄ results in the following CNF.

F ′′ ≡

(ā ∨ b̄ ∨ a) ∧ (ā ∨ b̄ ∨ b) ∧ tautological Gx ⊗Gx̄ resolvents

(ā ∨ b̄ ∨ e) ∧ (ā ∨ b̄ ∨ f) ∧ kept Gx ⊗Hx̄ resolvents

(a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d) ∧ kept Gx̄ ⊗Hx resolvents

(c ∨ e) ∧ (c ∨ f) ∧ (d ∨ e) ∧ (d ∨ f) ∧ redundant Hx ⊗Hx̄ resolvents

(c̄ ∨ d̄ ∨ ē ∨ f̄) kept ∆(F, x)

Eliminating x in the original CNF F of 8 clauses results in CNF F ′′ with
13 clauses in total, but includes 2 tautological clauses, thus actually only has 11
non-tautological clauses. Without further ignoring the 4 redundant resolvents in
Hx ⊗ Hx̄ bounded variable elimination (even up to allowing for introducing two
more clauses) would still not eliminate x. If the And gate is detected and non-gate
clauses are not resolved against non-gate clauses, we end up with 7 clauses and x

is eliminated.
Finding such gate clauses was originally based on syntactic pattern matching,

by in essence trying to invert the Tseitin encoding. This is best explained for
And gates. Given an elimination candidate x and ℓ ∈ {x, x̄}. We go over all “base
clauses” C = (ℓ ∨ ℓ1 ∨ · · · ∨ ℓn) and check whether F also contains all (ℓ̄ ∨ ℓ̄i) for
i = 1 . . . n. If this is the case, we found the n-ary And gate ℓ = (ℓ̄1 ∧ · · · ∧ ℓ̄n) with
gate clauses Gℓ = {C} and Gℓ̄ = {(ℓ̄∨ ℓ̄i) | i = 1 . . . n}. If ℓ = x then x is the output
of an And gate. If ℓ = x̄, then x is the output of an Or gate x = (ℓ1∨· · ·∨ ℓn). For
the special case n = 1 this amounts to extracting bi-implications (equivalences).
According to our benchmarks (Section 11), extracting And gates this way already
gives the largest benefit but similar syntactical extraction techniques exist for Xor

or IfThenElse gates.
Detecting gates syntactically, however, is not very robust and our SAT solver

Lingeling [4] implements a very different technique inspired by BDD algorithms.
It converts the environment clauses into a BDD (actually a function table), elim-
inates variables there, and translates the result back to a CNF using Minato’s
algorithm [19, 31], which produces a redundancy-free CNF. More details are pro-
vided in the preprocessing chapter of the 2nd edition of the Handbook of SAT [13].

Figure 1 shows a CDF of the number of solved instances of the last Lingeling

release with and without this technique. On these problems from the SAT Com-
petition 2020, deactivating this technique (smallve0) gives better performance.
Remember that Lingeling is not developed anymore and was not trained on
competition problems since 2016. Figure 2 gives the amount of time spent during
variable elimination. As Lingeling’s semantic variable elimination algorithm is
arguably too costly, we take this as an additional motivation to look into different
algorithms for semantic gate detection. The second issue with the implementation
is that it cannot produce a DRAT proof of the transformation.

5 Definition Mining With a SAT Solver

Instead of only syntactically extracting definitions, our new version of Kissat tries
to extract gate clauses semantically by checking satisfiability of the conjunction

6 Fleury and Biere

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●● ●●●
●●●
● ●●●

●●●
●●●

●●●
●●●●●

●●●●
●●●●

●● ●●●
● ●● ● ●●●

●●● ●● ●●●●
●●●●●●

●●●● ● ● ●●● ●● ● ●● ● ●●

● smallve0
default

Fig. 1 Lingeling with and without variable elimination

	0.01

	0.1

	1

	10

	100

	0 	50 	100 	150 	200 	250 	300 	350 	400

am
ou

nt
	o
f	t
im

e	
sp
en
t	i
n	
el
im

in
at
io
n	
(in
	p
er
ce
nt
)

number	of	instances

"baseline"
"smallve0"

Fig. 2 Percentage of the total amount of time spent in variable elimination in Lingeling

of the co-factors (Fx|x̄) and (Fx̄|x) of F , i.e., the formula that is obtained by
removing the occurrences of x in Fx and of x̄ in Fx̄ and then conjoining the result.
Alternatively one can obtain the candidate formula to be checked for unsatisfiability
by removing all occurrences of the literals x and x̄ from the environment E(F, x).

Mining Definitions in Kissat with Kittens 7

If this formula is unsatisfiable, we compute a clausal core which in turn can be
mapped back to original gate clauses Gx and Gx̄ in the environment (by adding
back x resp. x̄ to the clauses generated in the first step).

Note that we ignore ∆(F, x) here and focus on environment clauses only. In
principle, however, we can replace ∆(F, x) in F by (x ∨ ∆(F, x)) ∧ (x̄ ∨ ∆(F, x))
to obtain a CNF (after distributing the variables over ∆(F, x)) where all clauses
either contain x or x̄. Thus the following discussion extends to the seemingly more
general case where also ∆(F, x) is used as “don’t care” for gate extraction.

Let Gℓ for ℓ ∈ {x, x̄} be the identified clauses of Fℓ mapped back from the clausal
core computed by the SAT solver and Hℓ the remaining clauses, i.e., Fℓ = Gℓ ∧Hℓ.
Then it turns out that Fx⊗Fx̄ can be reduced to (Gx⊗Gx̄)∧(Gx⊗Hx̄)∧(Gx̄⊗Hx).
In particular (Hx ⊗Hx̄) can be omitted.2 The net effect is that fewer resolvents
are generated and thus more variables can be eliminated.

To see that non-gate versus non-gate resolvents can be omitted assume that
A ∧B is unsatisfiable and thus Ā ∨ B̄ is valid. Therefore for any C or D we have

(A ∨ C) ∧ (B ∨D) ≡ (A ∨ C) ∧ (B ∨D) ∧ (Ā ∨ B̄).

With two resolution steps we can then show that the right-hand side implies (C∨D)
and thus can be added to the left-hand side.

(A ∨ C) ∧ (B ∨D) ≡ (A ∨ C) ∧ (B ∨D) ∧ (C ∨D)

Setting (A,B,C,D) = (Gx|x̄, Gx̄|x, Hx̄|x, Hx|x̄) shows the rest, more specifically,
that C ∨D = Hx̄ ∨Hx|x̄ can be ignored, independent of A ∨B = Gx|x̄, Gx̄|x:

Fx ⊗ Fx̄ ≡ (Gx ⊗Gx̄) ∧ (Gx ⊗Hx̄) ∧ (Gx̄ ⊗Hx) ∧ (Hx ⊗Hx̄)

≡ (Gx|x̄ ∨Gx̄|x) ∧ (Gx|x̄ ∨Hx̄|x) ∧ (Gx̄|x ∨Hx|x̄) ∧ (Hx|x̄ ∨Hx̄|x)
= (A ∨B) ∧ (A ∨ C) ∧ (B ∨D) ∧ (C ∨D)

≡ (A ∨B) ∧ (A ∨ C) ∧ (B ∨D)

= (Gx ⊗Gx̄) ∧ (Gx ⊗Hx̄) ∧ (Gx̄ ⊗Hx)

For the previous example the conjunction of the co-factors of the 7 environment
clauses E(F, x) results in the following unsatisfiable formula

(ā ∨ b̄) ∧ (a) ∧ (b) ∧ (c) ∧ (d) ∧ (e) ∧ (f).

The first three clauses form a clausal core and after adding back x and x̄ enable
extracting the same gate clauses as before, which in turn enables bounded variable
elimination. If only one co-factor contains clauses, e.g., Hx̄, then we can learn the
unit literal x. This rarely happens in our experiments though. This technique is
a generalization of failed literal probing [29] where multiple decisions are allowed
instead of deciding and propagating just one literal.

2 Resolvents among gate clauses are not necessarily tautological though (see Section 8).

8 Fleury and Biere

6 Relating Functional Dependency and Cores

In previous work [28,34,37] the following condition for “definability” was used and
we are going to show that in essence it boils down to the same idea. A variable x

has a functional dependency in F on an (ordered) sub-set of variables D of F with
x ̸∈ D, i.e., the set D of other variables on which the value of x is functionally
dependent, iff the following formula is valid

(D = D′) ∧ F ∧ F ′ → x = x′ (1)

with F ′ a copy of F where each variable y is replaced by a new variable y′. The
intuitive meaning is that there is only one solution for x given the same inputs
(D = D′), whatever the value of the other variables.

The short-hands D = D′ and x = x′ denote formulas which enforce that
the corresponding original variable and its primed copy assume the same value
(through for instance a conjunction of bi-implications). Therefore, there is a
functional dependency of x on D iff the following formula is unsatisfiable.

(D = D′) ∧ F ∧ F ′ ∧ (x̄ = x′)

The key remark is that x̄ = x′ and x = x′ are equivalent because the formula
is symmetric in x and x′. In our concrete application, we are not interested in
determining the exact set of variables D, because we do not have restrictions
on dependencies (unlike in QBF [37] or #SAT [28]). Hence we can pick D, i.e.,
the variables on which x is supposed to depend, to consist of an arbitrary set
of variables occurring in F except x. In practice we will restrict D to the set of
variables in the environment of E(F, x) different from x and this way obtain a
sufficient but not necessary condition for definability of x over F .

Under this assumption, we prove that our core based condition is the same as
definability. First determine CNFs P , N and R such that

F ≡ (x ∨ P) ∧ (x̄ ∨N) ∧R

where neither x nor x̄ occurs in R. Then simplify (D = D′) ∧ F ′ ∧ (x̄ = x′) to

(F ∧ F ′)[D′ 7→ D][x′ 7→ x̄] = F ∧ (F ′[D′ 7→ D][x′ 7→ x̄])

= F ∧
((
(x′ ∨ P ′) ∧ (x′ ∨N ′) ∧R′) [D′ 7→ D][x′ 7→ x̄]

)
= F ∧

((
(x′ ∨ P) ∧ (x′ ∨N) ∧R

)
[x′ 7→ x̄]

)
= F ∧ ((x̄ ∨ P) ∧ (x ∨N) ∧R)

using equivalent literal substitution (see for instance [13]). This yields the following
satisfiability equivalent formula to our core condition in Eqn. (1)

F ∧ (F [x 7→ x̄]),

where on the right x is replaced by its negation x̄ and accordingly x̄ with x. As F

is a CNF this formula contains each clause with x twice, once as in F and once
with x (and x̄) negated. These two copies of each clause can thus be resolved on x

and each resolvent subsumes both antecedents (through self-subsuming resolution).
Clauses in F ′ which do not contain x′ nor x̄′ become identical after substitution
to their counterpart in F .

Mining Definitions in Kissat with Kittens 9

Therefore the resulting formula after substitution is logically equivalent to the
formula obtained from F by removing all the environment clauses E(F, x) (clauses
with x or x̄) and replacing them with (Fx|x̄) ∧ (Fx̄|x).

To summarize, in order to determine that x is dependent on the variables D in
E(F, x) it is sufficient to check unsatisfiability of

(Fx|x̄) ∧ (Fx̄|x) ∧∆(F, x)

Example 1 (Example of the Proof) Consider the following formula and apply the
proof described above: F = (ā ∨ b̄ ∨ x)︸ ︷︷ ︸

Gx

∧ (a ∨ x̄) ∧ (b ∨ x̄)︸ ︷︷ ︸
Gx̄

as defined above. The

formula

(D = D′) (a = a′ ∧ b = b′ ∧ c = c′)

∧ F ((ā ∨ b̄ ∨ x) ∧ (a ∨ x̄) ∧ (b ∨ x̄) ∧ (c ∨ x))

∧ F ′ ((ā′ ∨ b̄′ ∨ x′) ∧ (a′ ∨ x̄′) ∧ (b′ ∨ x̄′) ∧ (c′ ∨ x′))

→ x = x′

is satisfiable iff its negation is unsatisfiable

(D = D′) (a = a′ ∧ b = b′ ∧ c = c′)

∧ F ((ā ∨ b̄ ∨ x) ∧ (a ∨ x̄) ∧ (b ∨ x̄) ∧ (c ∨ x))

∧ F ′ ((ā′ ∨ b̄′ ∨ x′) ∧ (a′ ∨ x̄′) ∧ (b′ ∨ x̄′) ∧ (c′ ∨ x′))

∧ x = x′

as the formula is symmetrical in x and x′, is unsatisfiable iff the following is too

(D = D′) (a = a′ ∧ b = b′ ∧ c = c′)

∧ F ((ā ∨ b̄ ∨ x) ∧ (a ∨ x̄) ∧ (b ∨ x̄) ∧ (c ∨ x))

∧ F ′ ((ā′ ∨ b̄′ ∨ x′) ∧ (a′ ∨ x̄′) ∧ (b′ ∨ x̄′) ∧ (c′ ∨ x′))

∧ x̄ = x′

We replace equivalent variables:

F ((ā ∨ b̄ ∨ x) ∧ (a ∨ x̄) ∧ (b ∨ x̄) ∧ (c ∨ x))

∧ F ′[x′ 7→ x̄] ((ā ∨ b̄ ∨ x̄) ∧ (a ∨ x) ∧ (b ∨ x) ∧ (c ∨ x̄))

Now we resolve each clause of F with its F ′ counterpart, yielding a clause subsuming
its antecedents

((ā ∨ b̄) ∧ (a) ∧ (b) ∧ (c))

and we can use Kitten to determine that these clauses are unsatisfiable and to
produce the following clausal core

(ā ∨ b̄) ∧ (a) ∧ (b)

10 Fleury and Biere

In our approach we focus on the environment E(F, x) ⊆ F and only extract
definitions implied by E(F, x), which reduces the effort spent in Kitten, but in
principle we might want to take additional clauses of F or all of ∆(F, x) into account
to find all definitions (see Example 2 below). We further do not need a conjecture
about D a-priori, actually do not even need to determine D for our application at
all. It is sufficient to extract gate clauses from the proof of unsatisfiability. Their
variables make up D (excluding x).

Example 2 (Missing Environment) Our extraction without additional clauses can
miss definitions. Consider for example, the circuit corresponding to x= a ∧ a= b,
where we add b (resp. b̄) to each clause containing x (resp. x̄) and are looking for
the definition of x. The CNF is F = (x̄ ∨ a ∨ b) ∧ (x ∨ ā ∨ b̄) ∧ (ā ∨ b) ∧ (a ∨ b̄).
Obviously from F , we know that x = a or x = b are both definitions of x.

Fx|x ∧ Fx̄|x̄ = (a ∨ b) ∧ (ā ∨ b̄)

∆(F, x) = (ā ∨ b) ∧ (a ∨ b̄)

Without the additional two clauses in ∆(F, x), the problem is satisfiable, but
becomes unsatisfiable with them. Therefore, our approach without all clauses
would miss definability. Remark that in this case, we would actually be able to
find the definition of x by first deriving the definition a and eliminating it.

7 Actually Determining the Definition

In order to apply gate information to variable elimination we do not need to extract
the actual gate f(D) of x nor need to know the set of input variables D of the
gate f . For other applications it might still be interesting to characterize the
possibilities of picking f though. Let L = G|x be the positive co-factor of the gate
clauses G and U = G|x̄ the negation of its negative co-factor, where, to simplify
the argument, we use Gx|x = Gx̄|x̄ = ⊤, and thus

G|x ≡ (Gx ∧Gx̄)|x ≡ Gx|x ∧Gx̄|x ≡ Gx̄|x ≡ L

and
G|x̄ ≡ (Gx ∧Gx̄)|x̄ ≡ Gx|x̄ ∧Gx|x̄ ≡ Gx|x̄ ≡ U.

This notation allows us to derive the following “Shannon decomposition” of G:

G ≡ (x̄ ∨ G|x) ∧ (x ∨ G|x̄) ≡ (x̄ ∨ Gx̄|x) ∧ (x ∨ Gx|x̄) ≡ (x̄ ∨ L) ∧ (x ∨ U)

First note that L implies U (written L |= U) as L ∧ U is the same as Gx̄|x ∧Gx|x̄
and thus unsatisfiable. Now pick an arbitrary f with L ≤ f ≤ U between the lower
bound L and the upper bound U , i.e., L |= f and f |= U . We are going to show
that G |= x = f .

The lower bound gives x̄∨L |= x̄∨f and as G |= x̄∨L we get G |= x̄∨f by modus
ponens. Similarly we have x ∨ U |= x ∨ f̄ by contraposition of the upper bound
assumption, i.e., U |= f̄ , and derive G |= x ∨ f̄ , which concludes the proof. If f is
given explicitly we can pick D as the set of variables occurring in f . If f is given
semantically, for instance as function table or BDD, then y ∈ D iff f |y ̸≡ f |ȳ, which
can be determined by checking equivalence between co-factors. Similar arguments
can be used for characterizing gate extraction from BDDs [20,41].

Mining Definitions in Kissat with Kittens 11

8 Resolving Gate Against Gate Clauses

As we have explained above the idea of gate extraction is that we only need to
resolve clauses with the definition of the gate. However, we still need to resolve
the gate clauses amongst themselves in two cases. First if extracted semantically
(Section 8.1). Second if instead of finding a clause, we actually find a shorter (sub-
suming) clause (Section 8.2). Both cases are easy to detect in an implementation.

8.1 Semantical Gate Extraction

Semantic definition extraction does not necessarily produce gate clauses which are
tautological, i.e., Gx ⊗ Gx̄ could be non-empty. If these resolvents among gate
clauses are not added to the clause set, variable elimination is not satisfiability
preserving. Consider the following (unsatisfiable) formula:

F = (x ∨ b)︸ ︷︷ ︸
Gx

∧ (x̄ ∨ a) ∧ (x̄ ∨ ā ∨ b̄)︸ ︷︷ ︸
Gx̄

∧ (x ∨ ā)︸ ︷︷ ︸
Hx

∧

∆(F,x)︷ ︸︸ ︷
(ā ∨ c) ∧ (a ∨ b̄) ∧ (b ∨ c̄)

As shown, Kitten found the (actually minimum unsatisfiable) clausal core (b) ∧
(a) ∧ (ā ∨ b̄) in the conjunction of the co-factors of the environment of x, even
though there is a shorter core (a) ∧ (ā), which after adding back x̄ and x encodes
a bi-implication. The reader should be aware that the extracted gate clauses do
not encode a Nand gate (second clause has x̄ and not x).

This example was produced through fuzzing [15], by comparing a version of
Kissat which correctly resolves gate clauses and one which does not. In this
example the fuzzer produced an option setting where extraction of equivalences
(bi-implications) was disabled before semantic definition extraction was tried, and
then Kitten simply focused on the larger core.

Gx ⊗Gx̄ = a ∨ b

Gx ⊗Hx̄ = ⊤

Gx̄ ⊗Hx = (a ∨ ā)∧ (ā ∨ b̄)

Hx ⊗Hx̄ = ⊤

Thus the correct result after elimination is

F ′′ = (a ∨ b)︸ ︷︷ ︸
Gx⊗Gx̄

∧ (ā ∨ b̄)︸ ︷︷ ︸
Gx̄⊗Hx

∧

∆(F,x)︷ ︸︸ ︷
(ā ∨ c) ∧ (a ∨ b̄) ∧ (b ∨ c̄) .

The last four clauses are satisfiable (setting a = b = c = ⊥) but the whole F ′′ as F

is unsatisfiable. Therefore the first clause obtained from resolving gate with gate
clauses has to be added.

12 Fleury and Biere

8.2 Syntactical Gate Resolving

We have used fuzzing again to show that the requirement to add gate against gate
resolvents is not unique to semantic gate extraction, but also applies to syntactic
gate extraction if for instance one allows the solver to use shorter subsuming
clauses instead of the exact Tseitin clauses (a common case in Xor extraction [38]).
Consider the following encoding of “x = (if a then b else c)”, encoded as:

Gx = (x ∨ ā ∨ b̄) ∧ (x ∨ a ∨ c̄)
Gx̄ = (x̄ ∨ c) ∧ (x̄ ∨ ā ∨ b)
F ′ = (b ∨ ā ∨ c) ∧ (a ∨ c) ∧ (a ∨ c̄) ∧ (ā ∨ c̄)

By resolving on x, we obtain:

Gx ⊗Gx̄ = (ā ∨ b̄ ∨ c) ∧ (a ∨ b̄ ∨ c̄)

Gx ⊗Hx̄ = ⊤

Gx̄ ⊗Hx = ⊤

Hx ⊗Hx̄ = ⊤

If we do not include the resolvents, then b actually becomes pure and the entire
formula is satisfiable with a = ⊥ and b = c = ⊤. However the formula is actually
unsatisfiable. The resolvent of Gx ⊗Gx̄ contains the clause ā ∨ b̄ ∨ c. By resolving
with the first clause b ∨ ā ∨ c of F ′, we obtain the clause ā ∨ c meaning that the
clauses are unsatisfiable, because we now have all binary clauses over a and c.

9 Scheduling Variable in the main SAT solver Kissat

Identifying gate clauses syntactically is more efficient than identifying UNSAT cores
with a SAT solver, even when using a smaller one like Kitten. Hence, Kissat first
uses syntactic pattern matching for a Tseitin encoding of an And, Equivalence,
Xor, or IfThenElse gate with the given variable as output, and only if this fails,
the inner SAT solver is called. In turn, if this fails due to hitting some limits, the
standard elimination criterion is used. This is illustrated in Algorithm 1.

Until 2020, the order of scheduling variables as candidates to be eliminated
was done using a priority queue implemented as binary heap, where variables with
smaller number of occurrences are tried to be eliminated first. Since the 2021
version, we have (by default) disabled the heap and replaced it with iterating
over all active literals; i.e., the variables that have neither been removed nor have
already been eliminated. This actually improves performance of Kissat (Figure 3).
Of course it avoids updating the heap when removing clauses and probably has
other positive effects we still need to investigate in future work.

10 Core-producing lean embedded SAT solver Kitten

In order to check satisfiability and compute clausal cores of these co-factors of
the environment of a variable we have implemented a simple embedded sub-solver
Kitten with in-memory proof tracing and fast allocation and deallocation. If

Mining Definitions in Kissat with Kittens 13

Function FindGateClauses(F , x)

Input: The clauses F and the variable x
Output :The pair (G,H) of gate and non-gate clauses of F to be resolved

let E = E(F, x) = clauses of F with x or x̄
if F contains Tseitin encoding of a gate with output x then

let G be the clauses of the Tseitin encoding of the gate
return (G,E\G)

if call to Kitten on (Fx)|x̄ ∧ (Fx̄)|x returns UNSAT then
determine G from clausal core (adding back x and x̄)
return (G,E\G)

return (E, ∅)

Function BoundedVariableElimination(F , x, k)

Input: The clauses F , the variable x, bound k on additional resolvents
Output : Simplify clauses of F in place if resolvents sufficiently bounded

let (G,H) = FindGateClauses(F , x)
let Gℓ = clauses of G with ℓ (ℓ ∈ {x, x̄})
let Hℓ = clauses of H with ℓ (ℓ ∈ {x, x̄})
let R = (Gx ⊗Gx̄) ∧ (Gx ⊗Hx̄) ∧ (Gx̄ ⊗Hx)
let E = clauses of F with x or x̄
if |R| − |E| ≤ k then

replace F by R ∧ F ′ where F ′ are the clauses in F without x nor x̄

Algorithm 1: Variable elimination in Kissat.

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●●

●●●●
●●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●
●●●●●●●●

●●●●
●●●●●●● ●●●●

●●●●
●●●●●●●●●

●●●●
●●●●●●●●

●●●●
●● ●●● ●● ●●● ●●● ●●●●

●●●●●●●●●●
● ●●●●●● ●●● ● ●●● ●● ● ● ● ●

● baseline
eliminateheap

Fig. 3 Performance of Kissat with and without heap to schedule variable elimination

the conjunction of the co-factors of the environment are unsatisfiable we reduce
through the API in Kitten its formula to the clausal core, shuffle clauses and run
Kitten a second time which usually results in a smaller core and thus fewer gate
clauses (increasing chances that the variable is eliminated).

If only one co-factor contains core clauses, then we can derive a unit clause. In
this case the learned clauses in Kitten are traversed to produce a DRAT proof
trace sequence for this unit. This is one benefit of using a proof tracing sub-solver

14 Fleury and Biere

in contrast to the BDD inspired approach in Lingeling [4] discussed at the end
of Section 4, which cannot produce DRAT proofs.

Kitten is a very simple SAT solver. Instead of using complicated data struc-
tures that take a long time to initialize, Kitten uses watched literals (without
blocking literals) and the variable-move-to-front heuristic for decisions. It does not
feature garbage collection (no “reduce”) nor simplification of added unit clauses.
The latter makes it easier to keep track of unsat cores.

To speed up solving and reduce memory usage, Kitten renumbers literals
of the given clauses to consecutive literals. Allocations are very fast reusing the
internal memory allocator of Kissat instead of allocating new memory. However,
even though allocation is fast, it is better to reuse the space allocated Kitten

within one elimination round. In order to reuse Kitten for the next variable we
only clear the necessary content of memory, by for instance clearing stacks for
watch lists and the clause arena, instead of deleting and reallocating the solver.

11 Experiments

We have evaluated Kissat on the benchmark instances from the SAT Competition
2020 on 8-core Intel Xeon E5-2620 v4 CPUs running at 2.10GHz (turbo-mode
disabled). We used a memory limit of 7GB (unlike the SAT Competition 2020).

In our first experiment, we have run Kissat with and without gates for variable
elimination. The results are presented in Figure 4 and the difference is rather
negligible. While the default version performs slightly better, the difference is too
small to be significant. However performance is also not worse. The graph also
includes the configuration realloc-kitten-eachtime where instead of clearing and
reusing the same Kitten instance during elimination rounds, Kissat reallocates
a new Kitten solver for each variable. Thus avoiding this reallocation turns out
to be important at the beginning, even if the impact seems to wear off over time.

We also plotted the amount of time used in the entire elimination procedure
(not only the time spent in Kitten). Figure 5 shows that the time spent in Kitten

is similar for most problems but in extreme cases is much larger even though the
effect is not critical most of the time. However, if we activate preprocessing as
described in the next paragraph, we observed extreme cases (like newpol34-4)
where the elimination took more than 90% of the time. However, these problems
are not solved by any Kissat configuration anyhow.

We have further compared efficiency of different techniques by looking at how
many variables they have eliminated compared to the total number of eliminated
variables (Figure 6). We can see that And-gate elimination is by far the most im-
portant, but semantically extracting definitions is second. Extracting IfThenElse

gates is not essential. Still, for all extraction techniques, there are a few problems
where nearly all eliminated variables are of the given type. We assume that this
is due to the structure and the encoding of those problems. Figure 7 shows the
same numbers in relation to the total number of variables of the input problem
and not compared to the number of eliminated variables, with the same conclusion:
And-gate elimination is more important than any other technique.

To evaluate our new elimination technique in more detail, we implemented a
preprocessing phase in Kissat, by running explicit preprocessing rounds initially.
Each round is composed of probing, vivification, and variable elimination. For

Mining Definitions in Kissat with Kittens 15

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●

●●●●
●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●●●●

●●●●
●●●●
●●●●●

●●●●
●●●●
●●●●●

●●● ●●●●
●●●●●●●●

●● ●●●● ●●● ●●● ● ●●●●
● ●●●●

● ●● ●●●●●
●● ●● ●●●● ●● ●●●●●●

●●●●
● ● ● ●● ● ●● ●●●●●●●

●

● baseline
no−gates−no−definitions
no−ands−no−definitions
no−definitions
no−gates
no−ands
realloc−kitten−eachtime

Fig. 4 Kissat with various options of gates and definitions in variable elimination

 1

 10

 100

 200 250 300 350 400

am
ou

nt
 o

f t
im

e
sp

en
t i

n
el

im
in

at
io

n
(in

 p
er

ce
nt

)

number of instances

"baseline"
"eliminateheap"

"no-ands"
"no-ands-no-definitions"

"no-definitions"
"no-gates"

"no-gates-no-definitions"
"realloc-kitten-eachtime"

Fig. 5 Percentage of time spent in variable elimination and gate extraction relative to the
overall individual running time per benchmark for all 400 SAT Competition 2020 main track
instances with time limit 5000 seconds, including benchmarks for which the various versions
timed-out. The 100% upper bound on the y-axis reached for some instances means that all
time was spent in variable elimination.

our experiments, we use three rounds of preprocessing (or fewer if a fix-point is
reached earlier). Then we do not run Kissat until completion and stop at the first
decision. In the default implementation, there is no preprocessing and the same
techniques are only called as inprocessing after a few hundred conflicts.

We first compare Kissat with definitions and gates (the “base line”) to the
version without definitions. To do so, we show the percentage of removed variables

16 Fleury and Biere

	0

	20

	40

	60

	80

	100

	0 	50 	100 	150 	200 	250 	300 	350 	400

pe
rc
en
ta
ge
	o
f	e
lim

in
at
ed
	va

ria
bl
es

number	of	instances

"ands_eliminated"
"definitions_eliminated"

"xors_eliminated"
"equivalences_eliminated"
"if_then_else_eliminated"

Fig. 6 Percentage of variables eliminated relative to the overall number of eliminated variables
of individual benchmarks for all 400 SAT Competition 2020 main track instances, with time
limit 5000 seconds, including benchmarks, for which the various versions timed-out. The upper
bound 100% on the y-axis reached by some instances means that for all eliminated variables
we found (syntactic or semantic) gates and used these during elimination.

in a scatter plot (Figure 8). More variables are eliminated in the version with
definitions. In two extreme cases, more than 90% of the variables are eliminated.

An interesting case is deactivating syntactic extraction of gates3 while keeping
definition mining through Kitten (Figure 9). The resulting figure is similar to
Figure 8, indicating that Kitten-based definition mining finds those gates too.
Note that Kitten does not necessarily find the minimal (smallest) unsat core, nor
is it guaranteed to find a minimum core (an MUS). Thus it could in some cases
only find large gates even though small gates exists and thus not eliminate as many
variables as possible.

The difference in the number of eliminated variables is much higher if we
also deactivate and-gate detection (Figure 10). With few exceptions the base
line removes more variables. Also note that variable elimination is not confluent:
eliminating variables in a different order might lead to different results and the
number of eliminated variables differs.

Finally, we deactivated syntactic (no-gates) as well as semantic (no-definitions)
gate extraction and compare it to the base line (Figure 11). Much fewer variables
are eliminated, as most eliminations need to introduce more clauses.

3 Using Kissat’s --no-gate option also deactivates semantic definition extraction. Thus we
spelled out all gate types as option in our experiments.

Mining Definitions in Kissat with Kittens 17

	0

	10

	20

	30

	40

	50

	60

	70

	0 	50 	100 	150 	200 	250 	300 	350 	400

pe
rc
en
ta
ge
	o
f	t
ot
al
	va

ria
bl
es

number	of	instances

"ands_eliminated"
"definitions_eliminated"

"xors_eliminated"
"equivalences_eliminated"
"if_then_else_eliminated"

Fig. 7 Percentage of variables eliminated relative to the overall total number of variables
of individual benchmarks for all 400 SAT Competition 2020 main track instances, with time
limit 5000 seconds, including benchmarks, for which the various versions timed-out. The
maximum 61% on the y-axis reached by some instances means that 61% of all variables in the
input problem have been eliminated by detecting the given gate (syntactic or semantic) during
elimination.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

el
im

in
at

ed
 v

ar
ia

bl
es

 b
y

no
-d

efi
ni

tio
ns

 (%
)

eliminated variables by baseline (%)

Fig. 8 Deactivating Kitten reduces the number of eliminated variables

18 Fleury and Biere

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

el
im

in
at

ed
 v

ar
ia

bl
es

 b
y

no
-g

at
es

 (%
)

eliminated variables by baseline (%)

Fig. 9 Kissat’s definition extraction can find gates

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100el
im

in
at

ed
 v

ar
ia

bl
es

 b
y

no
-d

efi
ni

tio
ns

-n
o-

an
ds

 (%
)

eliminated variables by baseline (%)

Fig. 10 Deactivating And-gate detection leads to fewer eliminated variables

12 Related Work

Our approach is mainly motivated by the use of definitions in recent work on
model counting [28] and QBF solving [37], where the authors also use core-based
techniques, but extract gates explicitly. We showed the connection to this work
and claim our restricted formulation is much more concise, because we do not have
to extract exactly the variables the definitions depends on.

The approach presented in this article is also the first to use a “little” SAT
solver inside a “big” SAT solver to extract definitions, while this related work
discussed above uses an ordinary (big) SAT solver to find definitions but for harder
problems with a much higher complexity. In circuit synthesis a related approach
uses interpolation to find Boolean functions in relations [27].

Mining Definitions in Kissat with Kittens 19

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100el
im

in
at

ed
 v

ar
ia

bl
es

 b
y

no
-g

at
es

-n
o-

de
fin

iti
on

s
(%

)

eliminated variables by baseline (%)

Fig. 11 No gate nor definition extraction compared to Kissat’s base line

Another line of work is related to blocked clause elimination [23,25], a simplifi-
cation technique used by SAT solvers to remove clauses. A clause is blocked if and
only if all resolvents with one literal of the clause are tautologies.

Blocked clauses can be removed from the formula, shifting some work from
solving (fewer clauses) to model reconstruction (the model after removal might not
be a model anymore). However, detecting gates makes it possible to produce fewer
clauses even if the solver subsequently uses BCE. Let’s look at the earlier example
from Section 4:

F ′′ ≡

(ā ∨ b̄ ∨ a) ∧ (ā ∨ b̄ ∨ b) ∧ tautological Gx ⊗Gx̄ resolvents

(ā ∨ b̄ ∨ e) ∧ (ā ∨ b̄ ∨ f) ∧ kept Gx ⊗Hx̄ resolvents

(a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d) ∧ kept Gx̄ ⊗Hx resolvents

(c ∨ e) ∧ (c ∨ f) ∧ (d ∨ e) ∧ (d ∨ f) ∧ redundant Hx ⊗Hx̄ resolvents

(c̄ ∨ d̄ ∨ ē ∨ f̄) kept ∆(F, x)

BCE cannot remove the redundant clause a ∨ c because it is neither blocked with
respect to a (due to clause ā∨b̄∨e) nor to c (due to clause c̄∨d̄∨ē∨f̄). By producing
fewer clauses during elimination, our method actually makes BCE stronger.

Iser [24] used the “blockedness criterion” to identify gates in addition to a SAT
solver (or another approach). He first uses BCE to check that left-uniqueness of
the equations, before using the SAT solver to check right-uniqueness. He does not
use the SAT solver to identify the clauses, but only to check whether the already
identified clauses are right-unique. Iser reports on experiments but does not report
on performance changes, only on the amount of time spent in his various strategies.

This work by Iser is also motivated by performing blocked clause decomposi-
tion [22], which has the goal to split a CNF in two parts, where the first part is a
set of clauses which can be completely eliminated by blocked clause elimination,
and the other part contains the remaining clauses. The first “blocked clause set”

20 Fleury and Biere

is of course satisfiable and models can be generated in linear time. This allows to
treat that part almost as a circuit [1]. However, blocked clause decomposition is
often costly and the second remaining part of clauses often remains big.

13 Conclusion

We compute cores with a simple little SAT solver Kitten embedded in a large
SAT solver Kissat to semantically find definitions after syntactic gate detection
fails in order to eliminate more variables. The cost of calling Kitten is limited
by focusing on the environment clauses of elimination candidates and its cheap
enough to be used whenever syntactic gate detection fails, while it still allows to
produce proofs in the DRAT format when needed.

On the considered benchmark set the performance of Kissat is unfortunately
not really improved by semantic definition extraction even though the technique
is efficient and effective in finding many additional semantic definitions as well as
eliminating more variables. The same applies to syntactic gate detection, which
in principle is shown to be subsumed by our new semantic approach.

As future work we want to consider further usage of such an embedded SAT
solver and started already to apply it to SAT sweeping [12]. We also want to
apply our approach and Kitten to extract definitions for preprocessing in model
counting and QBF.

Acknowledgment. This work is supported by Austrian Science Fund (FWF), NFN
S11408-N23 (RiSE) and the LIT AI Lab funded by the State of Upper Austria. We
thank Friedrich Slivovsky for fruitful discussions on Section 6 and Joseph Reeves,
Markus Iser, and the anonymous reviewers for comments.

References

1. Balyo, T., Fröhlich, A., Heule, M., Biere, A.: Everything you always wanted to know
about blocked sets (but were afraid to ask). In: Sinz, C., Egly, U. (eds.) Theory and
Applications of Satisfiability Testing - SAT 2014 - 17th International Conference, Held
as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.
Proceedings. Lecture Notes in Computer Science, vol. 8561, pp. 317–332. Springer (2014).
https://doi.org/10.1007/978-3-319-09284-3 24

2. Biere, A.: About the SAT solvers Limmat, Compsat, Funex and the QBF solver Quantor
(2003), presentation for the SAT’03 SAT Solver Competition

3. Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) Theory and Appli-
cations of Satisfiability Testing, 7th International Conference, SAT 2004, Vancouver, BC,
Canada, May 10-13, 2004, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 3542, pp. 59–70. Springer (2004). https://doi.org/10.1007/11527695 5

4. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. Tech.
Rep. 10/1, Johannes Kepler University Linz, FMV Reports Series, Institute for Formal
Models and Verification, Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria
(2010). https://doi.org/10.350/fmvtr.2010-1

5. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using
SAT procedures instead of BDDs. In: Irwin, M.J. (ed.) Proceedings of the 36th Conference
on Design Automation, New Orleans, LA, USA, June 21-25, 1999. pp. 317–320. ACM
Press (1999). https://doi.org/10.1145/309847.309942

6. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking.
Adv. Comput. 58, 117–148 (2003). https://doi.org/10.1016/S0065-2458(03)58003-2

Mining Definitions in Kissat with Kittens 21

7. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking.
Adv. Comput. 58, 117–148 (2003). https://doi.org/10.1016/S0065-2458(03)58003-2

8. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, R. (ed.) Tools and Algorithms for Construction and Analysis of Systems, 5th
International Conference, TACAS ’99, Held as Part of the European Joint Conferences on
the Theory and Practice of Software, ETAPS’99, Amsterdam, The Netherlands, March
22-28, 1999, Proceedings. Lecture Notes in Computer Science, vol. 1579, pp. 193–207.
Springer (1999). https://doi.org/10.1007/3-540-49059-0 14

9. Biere, A., Clarke, E.M., Raimi, R., Zhu, Y.: Verifiying safety properties of a Power PC
microprocessor using symbolic model checking without BDDs. In: Halbwachs, N., Peled,
D.A. (eds.) Computer Aided Verification, 11th International Conference, CAV ’99, Trento,
Italy, July 6-10, 1999, Proceedings. Lecture Notes in Computer Science, vol. 1633, pp.
60–71. Springer (1999). https://doi.org/10.1007/3-540-48683-6 8

10. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling
and Treengeling entering the SAT Competition 2020. In: Heule, M., Järvisalo, M., Suda,
M., Iser, M., Balyo, T. (eds.) Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions (2020), to appear

11. Biere, A., Fleury, M.: Mining definitions in kissat with kittens. In: Workshop on the
Pragmatics of SAT 2021 (2021), http://www.pragmaticsofsat.org/2021/

12. Biere, A., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba entering the SAT
Competition 2021. In: Heule, M., Järvisalo, M., Suda, M. (eds.) SAT Competition 2021
(2021), submitted

13. Biere, A., Järvisalo, M., Kiesl, B.: Preprocessing in SAT solving. In: Biere, A., Heule,
M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial
Intelligence and Applications, vol. 336, pp. 391 – 435. IOS Press, 2nd edition edn. (2021)

14. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D.A.
(eds.) Verification, Model Checking, and Abstract Interpretation - 12th International Con-
ference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings. Lecture Notes
in Computer Science, vol. 6538, pp. 70–87. Springer (2011). https://doi.org/10.1007/978-
3-642-18275-4 7

15. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT and
QBF solvers. In: Strichman, O., Szeider, S. (eds.) Theory and Applications of Satisfiability
Testing - SAT 2010, 13th International Conference, SAT 2010, Edinburgh, UK, July 11-14,
2010. Proceedings. Lecture Notes in Computer Science, vol. 6175, pp. 44–57. Springer
(2010). https://doi.org/10.1007/978-3-642-14186-7 6

16. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking
using satisfiability solving. Formal Methods Syst. Des. 19(1), 7–34 (2001).
https://doi.org/10.1023/A:1011276507260

17. Davis, M., Putnam, H.: A computing procedure for quantification the-
ory. J. ACM 7(3), 201–215 (1960). https://doi.org/10.1145/321033.321034,
http://doi.acm.org/10.1145/321033.321034

18. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In: Bacchus, F., Walsh, T. (eds.) Theory and Applications of Satisfiability Testing, 8th
International Conference, SAT 2005, St. Andrews, UK, June 19-23, 2005, Proceedings.
Lecture Notes in Computer Science, vol. 3569, pp. 61–75. Springer (2005)

19. Eén, N., Mishchenko, A., Sörensson, N.: Applying logic synthesis for speeding up SAT.
In: Marques-Silva, J., Sakallah, K.A. (eds.) Theory and Applications of Satisfiability
Testing - SAT 2007, 10th International Conference, Lisbon, Portugal, May 28-31, 2007,
Proceedings. Lecture Notes in Computer Science, vol. 4501, pp. 272–286. Springer (2007).
https://doi.org/10.1007/978-3-540-72788-0 26

20. van Eijk, C.A.J., Jess, J.A.G.: Exploiting functional dependencies in finite state
machine verification. In: 1996 European Design and Test Conference, ED&TC
1996, Paris, France, March 11-14, 1996. pp. 9–14. IEEE Computer Society (1996).
https://doi.org/10.1109/EDTC.1996.494119

21. Fazekas, K., Biere, A., Scholl, C.: Incremental inprocessing in SAT solving. In: Jan-
ota, M., Lynce, I. (eds.) Theory and Applications of Satisfiability Testing - SAT 2019
- 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Pro-
ceedings. Lecture Notes in Computer Science, vol. 11628, pp. 136–154. Springer (2019).
https://doi.org/10.1007/978-3-030-24258-9 9

22. Heule, M., Biere, A.: Blocked clause decomposition. In: McMillan, K.L., Middeldorp, A.,
Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning - 19th

22 Fleury and Biere

International Conference, LPAR-19, Stellenbosch, South Africa, December 14-19, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 8312, pp. 423–438. Springer (2013).
https://doi.org/10.1007/978-3-642-45221-5 29

23. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for SAT
and QSAT. J. Artif. Intell. Res. 53, 127–168 (2015). https://doi.org/10.1613/jair.4694

24. Iser, M.: Recognition and Exploitation of Gate Structure in SAT Solv-
ing. Ph.D. thesis, Karlsruhe Institute of Technology, Germany (2020),
https://nbn-resolving.org/urn:nbn:de:101:1-2020042904595660732648

25. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majum-
dar, R. (eds.) Tools and Algorithms for the Construction and Analysis of Systems, 16th
International Conference, TACAS 2010, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.
Proceedings. Lecture Notes in Computer Science, vol. 6015, pp. 129–144. Springer (2010).
https://doi.org/10.1007/978-3-642-12002-2 10

26. Järvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D.,
Sattler, U. (eds.) Automated Reasoning - 6th International Joint Conference, IJCAR
2012, Manchester, UK, June 26-29, 2012. Proceedings. Lecture Notes in Computer Science,
vol. 7364, pp. 355–370. Springer (2012). https://doi.org/10.1007/978-3-642-31365-3 28

27. Jiang, J.R., Lin, H., Hung, W.: Interpolating functions from large Boolean relations.
In: Roychowdhury, J.S. (ed.) 2009 International Conference on Computer-Aided De-
sign, ICCAD 2009, San Jose, CA, USA, November 2-5, 2009. pp. 779–784. ACM (2009).
https://doi.org/10.1145/1687399.1687544

28. Lagniez, J., Lonca, E., Marquis, P.: Definability for model counting. Artif. Intell. 281,
103229 (2020). https://doi.org/10.1016/j.artint.2019.103229

29. Lynce, I., Silva, J.P.M.: Probing-based preprocessing techniques for propositional satisfia-
bility. In: 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI
2003), 3-5 November 2003, Sacramento, California, USA. p. 105. IEEE Computer Society
(2003). https://doi.org/10.1109/TAI.2003.1250177

30. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, Jr., W.A.,
Somenzi, F. (eds.) Computer Aided Verification, 15th International Conference, CAV 2003,
Boulder, CO, USA, July 8-12, 2003, Proceedings. Lecture Notes in Computer Science,
vol. 2725, pp. 1–13. Springer (2003). https://doi.org/10.1007/978-3-540-45069-6 1

31. Minato, S.: Fast generation of irredundant sum-of-products forms from binary decision
diagrams. In: Proceedings of the Synthesis and Simulation Meeting and International
Interchange (SASIMI’92). pp. 64–73 (1992)

32. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: Proceedings of the 38th Design Automation Confer-
ence, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001. pp. 530–535. ACM (2001).
https://doi.org/10.1145/378239.379017

33. Nabeshima, H., Iwanuma, K., Inoue, K.: GlueMiniSat 2.2.10 & 2.2.10-5 (2015), SAT-Race
2015

34. Padoa, A.: Essai d’une théorie algébrique des nombres entiers, précédé d’une introduction
logique à une theorie déductive quelconque. In: Bibliothèque du Congrès international de
philosophie. vol. 3, pp. 309–365 (1901)

35. Reichl, F., Slivovsky, F., Szeider, S.: Certified DQBF solving by definition extraction. In:
Li, C., Manyà, F. (eds.) Theory and Applications of Satisfiability Testing - SAT 2021 - 24th
International Conference, Barcelona, Spain, July 5-9, 2021, Proceedings. Lecture Notes in
Computer Science, vol. 12831, pp. 499–517. Springer (2021). https://doi.org/10.1007/978-
3-030-80223-3 34

36. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: Rutenbar, R.A., Otten, R.H.J.M. (eds.) Proceedings of the 1996 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 1996, San Jose, CA,
USA, November 10-14, 1996. pp. 220–227. IEEE Computer Society / ACM (1996).
https://doi.org/10.1109/ICCAD.1996.569607

37. Slivovsky, F.: Interpolation-based semantic gate extraction and its applications to QBF
preprocessing. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Verification - 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 12224, pp. 508–528. Springer (2020)

38. Soos, M., Meel, K.S.: BIRD: engineering an efficient CNF-XOR SAT solver and its
applications to approximate model counting. In: The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial

Mining Definitions in Kissat with Kittens 23

Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1,
2019. pp. 1592–1599. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33011592

39. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems.
In: Kullmann, O. (ed.) Theory and Applications of Satisfiability Testing - SAT 2009,
12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Pro-
ceedings. Lecture Notes in Computer Science, vol. 5584, pp. 244–257. Springer (2009).
https://doi.org/10.1007/978-3-642-02777-2 24

40. Subbarayan, S., Pradhan, D.K.: NiVER: Non increasing variable elimination resolution
for preprocessing SAT instances. In: SAT 2004 - The Seventh International Conference on
Theory and Applications of Satisfiability Testing, 10-13 May 2004, Vancouver, BC, Canada,
Online Proceedings (2004), http://www.satisfiability.org/SAT04/programme/118.pdf

41. Yang, B., Simmons, R.G., Bryant, R.E., O’Hallaron, D.R.: Optimizing symbolic model
checking for constraint-rich models. In: Halbwachs, N., Peled, D.A. (eds.) Computer
Aided Verification, 11th International Conference, CAV ’99, Trento, Italy, July 6-10, 1999,
Proceedings. Lecture Notes in Computer Science, vol. 1633, pp. 328–340. Springer (1999).
https://doi.org/10.1007/3-540-48683-6 29

