
CaDiCaL vivinst, IsaSAT, Gimsatul, Kissat, and
TabularaSAT Entering the SAT Competition 2023

Armin Biere
University Freiburg

biere@cs.uni-freiburg.de

Mathias Fleury
University Freiburg

fleury@cs.uni-freiburg.de

Florian Pollitt
University Freiburg

pollittf@cs.uni-freiburg.de

This note describes our solvers entering the SAT Com-
petition 2023. To the CaDiCaL hack track we submitted
CaDiCaL vivinst, which combines vivification and variable
instantiation. To the main track we submitted the verified
solver IsaSAT, a new improved version of Kissat, and the
new highly configurable SAT solver TabularaSAT. Our parallel
multi-threaded solver Gimsatul went through several optimiza-
tions too and was submitted to the parallel track.

I. CADICAL VIVINST

This CaDiCaL hack extends version 1.5.3 with a specific
form of variable instantiation as part of vivification [1]. It
targets removal of literals with few occurrences, which in turn
is hoped to allow more variable elimination.

During vivification clauses clauses are considered to be viv-
ified one-by-one. Each such vivification candidate is negated
and all its literal are assumed to be false, which is interleaved
with standard Boolean constraint propagation (BCP), while
ignoring the candidate. Conflict analysis is then used to
determine if the clause can be shortened.

Instantiation is another technique implemented in CaDiCaL.
It is based on variable instantiation [2] and differs only slightly
from vivification, as it also assumes the negation of the literals
of the candidate, except for one literal which is assigned to
true. If standard BCP derives a conflict, then we can shorten
the clause by removing the literal assumed to be true.

To combine both techniques, the last literal in each vivi-
fication candidate is assumed in both phases: first as being
false for vivification, then as being true for instantiation. In
both cases a conflict after propagation might allow to shrink
the clause. As our implementation of vivification sorts literals
in the candidate by decreasing number of occurrences (to
reduce the necessity for backtracking), this form of variable
instantiation tries to remove literals that appear less often.

II. ISASAT

Our verified SAT solver IsaSAT version sc2023 has been
submitted to the main track. It is verified using a refine-
ment approach: We start from PCDCL, a combination of
CDCL and various rules to enable inprocessing. Then we
refine this non-deterministic calculus down to executable
code, which is exported and then compiled by the LLVM

compiler. Similar to last year, we submitted only the exe-
cutable code and not the whole Isabelle development. The lat-
ter is available at https://bitbucket.org/isafol/isafol/src/sc2023/
Weidenbach Book/ as part of the IsaFoL development.

Compared to last year, we have only implemented and veri-
fied forward subsumption by extending PCDCL with strength-
ening through (self-)subsumption-resolution (SR). Then we
refine to check SR for certain candidates – the candidates
appear in occurrence lists, but this is only important at the
last step of our refinement.

In order to improve performance on satisfiable instances,
IsaSAT now uses two different decision heuristics: VMTF in
focused mode and ACIDS [3] in stable mode. The latter uses
internally pairing heaps: the idea is to average the score with
the current conflict count when bumping a literal. To simplify
the formalizing, we have not verified rescaling and instead
capped our conflict count at uint64 max (afterwards, it is not
incremented anymore, meaning that eventually our ACIDS
decision heuristic becomes static). We actually intended to go
to EVSIDS like most other solvers from the SAT Competition,
but the verification effort for the pairing heaps was high
enough that we went for the simpler ACIDS for this year’s
competition (EVSIDS can also use pairing heaps).

We further found and fixed one performance issue, which
was due to the (unverified) parser passing clauses to our (ver-
ified) solver in an array. Previously we forgot to properly free
this array after initializing the solver internal data structures.
Fixing this issue is not expected to improve solving speed but
might lead to fewer memory-outs.

III. GIMSATUL

Our parallel solver Gimsatul was implemented for the last
SAT Competition 2022 in a rush within two months and thus
was missing several features that might help to improve multi-
threaded solving and more importantly also was much slower
in single threaded mode than Kissat. Some of these issues have
been addressed since then in Version 1.1.1.

To improve memory locality, we replaced opaque watcher
pointers by offsets to thread-local watchers pushed on a stack.
This indexing restricts the number of watchers to 231 − 1
instead of using pointers in watch lists, but makes room for
blocking literals to speed up propagation. We further allocate
space in the watcher structure for directly storing literals of

http://orcid.org/0000-0001-7170-9242
mailto:biere@cs.uni-freiburg.de
http://orcid.org/0000-0002-1705-3083
mailto:fleury@cs.uni-freiburg.de
mailto:pollittf@cs.uni-freiburg.de
https://bitbucket.org/isafol/isafol/src/sc2023/Weidenbach_Book/
https://bitbucket.org/isafol/isafol/src/sc2023/Weidenbach_Book/


clauses of size 3 and 4, thus avoiding additional memory
dereferences for such short but non-binary clauses.

The thread-local pools for sharing clauses are now indexed
by the glue of shared clauses which makes sharing more fine
grained. Mode switching, rephasing, global simplification, as
well as local probing and restarts now all follow the same
schedule as in Kissat (and include scaling based on formula
size). The variable decision priority queue is also initialized
in the same way as in Kissat. Vivification is split into a tier1
phase and tier2 phase and has been optimized as well as clause
data-base reduction based on tier information.

We added chronological backtracking, which reduces the
number of forced backtracks during importing clauses (par-
ticularly units). Importing clauses during vivification was
improved in a similar way. Finally we eagerly jump binary
reasons during propagation to speed-up conflict analysis for
instances with man binary clauses.

IV. KISSAT

For the new version 3.1.0 (sc2023) of Kissat submitted to
the main track of the SAT Competition 2023 we added back
vivification of irredundant clauses compared to last year and
also simplified the vivification code. We fixed two heuristic
bugs, by avoiding to increase the number of conflicts during
vivification, as it is used for scheduling various procedures, as
well as initializing used flags of learned clauses correctly.

In last year’s light version we already removed hyper binary
resolution, which freed up one bit for variable indices. Without
hyper binary resolution most clauses are actually irredundant
and therefore it further did not make sense to also keep the
redundant bit in binary virtual clauses, which we dropped then
too. This raises the total number of supported variables to
230 − 1 (so more than one billion variables).

We also incorporated the ESA idea proposed in the compe-
tition last year [4] and schedule bounded variable elimination
attempts based on variables scores (EVSIDS and VMTF
stamps [3]) and refined it further by taking the difference and
not as previously the sum when falling back to the number of
positive and negative occurrences of a variable. We also went
over SAT sweeping again which improved it slightly.

Experience gained in implementing and optimizing parsing
and printing LRAT proofs in lrat-trim helped to improve
DIMACS parsing and DRAT printing time for Kissat too.

Finally we eagerly jump binary reason clauses during propa-
gation to reduce the time spent in conflict analysis substantially
and total solving time slightly for instances with many binary
clauses even though it risks missing unique implication points
in the binary implication graph.

V. TABULARASAT

As others, we have been exploring different ways to im-
plement SAT solving in a configurable way, in order to
perform experiments which are supposed to shed light on
understanding to what extend specific techniques contribute
to overall solver performance as well as to ease the process
of tuning and extending SAT solvers.

In this regard CaDiCaL (following Lingeling) uses (many)
run-time options to achieve configurability even though there
are some minor compile-time options (used in the competition)
to for instance remove all redundant statistics gathering code.
The problem with that run-time approach is that the solver
has to include at compile-time all the variability needed to
support the various options which poses the substantial risk
that features not used in a specific configuration of interest
inadvertently incur a non-negligible run-time penalty.

To avoid this risk we also explored the other extreme and
only used compile-time options in our didactic SAT solver
Satch. This allows dependencies of features to be detected
by the compiler (making heavy use of the C preprocessor).
However this compile-time approach turned out to produce
complex code and was too cumbersome to be maintained
in general, e.g., when different configurations should share
a certain part of the code, such as allowing to use VMTF
as alternative for EVSIDS, either with mode switching, or in
focused or stable mode only configurations.

As a compromise, to overcome the problems with both
approaches, we developed TabularaSAT, which was submitted
to the main track of the competition in version number 1.0.0
(sc2023). The basic idea is that we allow only a small number
of different compile-time views on the main source, such as
“default” and particularly “vanilla”. While “default” is the
version submitted to the competition and has all the code of
redundant and disabled features removed at compile-time, the
“generic” view compiles them in and allows to enable them
at run-time (which incurs a performance penalty).

The “vanilla” view tries to mimic MiniSAT, but with the
additional “baggage” of the generic (and default) view needed
to support full variability in TabularaSAT removed.

Besides these efforts to support improved configurability
TabularaSAT reimplements most features of Kissat in a cleaner
and easier to understand way (in C++), but without compro-
mising on performance. It does not make use of an embedded
SAT solver though (such as Kitten in Kissat) and thus SAT
sweeping and semantic gate extraction are missing. On the
other hand the implementation of the clause arena and its use
is faster while still being cleaner than in Kissat. Performance
of TabularaSAT and Kissat are comparable.

REFERENCES

[1] C. Li, F. Xiao, M. Luo, F. Manyà, Z. Lü, and Y. Li, “Clause vivification
by unit propagation in CDCL SAT solvers,” Artif. Intell., vol. 279, 2020.

[2] G. Andersson, P. Bjesse, B. Cook, and Z. Hanna, “A proof engine
approach to solving combinational design automation problems,” in
Proceedings of the 39th Design Automation Conference, DAC 2002,
New Orleans, LA, USA, June 10-14, 2002. ACM, 2002, pp. 725–730.
[Online]. Available: https://doi.org/10.1145/513918.514101

[3] A. Biere and A. Fröhlich, “Evaluating CDCL variable scoring schemes,”
in SAT, ser. Lecture Notes in Computer Science, vol. 9340. Springer,
2015, pp. 405–422.

[4] S. Li, J. Coll, C.-M. Li, M. Luo, D. Habet, and F. Manjà, “Solvers Cadical
ESA and Kissat MAB ESA in 2022 SAT competition,” in Proc. of SAT
Competition 2022 – Solver and Benchmark Descriptions, ser. Department
of Computer Science Series of Publications B, T. Balyo, M. Heule,
M. Iser, M. Järvisalo, and M. Suda, Eds., vol. B-2022-1. University
of Helsinki, 2022.

https://doi.org/10.1145/513918.514101

	CaDiCaL_vivinst
	IsaSAT
	Gimsatul
	Kissat
	TabularaSAT
	References

