
GIMSATUL, ISASAT, KISSAT
Entering the SAT Competition 2022

Armin Biere Mathias Fleury
University of Freiburg, Germany

Abstract—This system description explains the features of our
new multi-threaded SAT solver GIMSATUL submitted to the
parallel track of the SAT Competition 2022, as well as updates
to our sequential SAT solvers ISASAT, and KISSAT, submitted
to the corresponding sequential tracks of the competition.

IMPROVED SWEEPING IN KISSAT

Already in version “KISSAT SC2021 SWEEP” submitted to
the SAT Competition 2021 we supported SAT based sweep-
ing [1] which relies on the internal embedded SAT solver
KITTEN to find backbones and equivalent literals extracted
from the environment clauses of a candidate variable in which
it occurs and some of its neighbouring clauses. The algorithm
was improved by eagerly substituting literals determined to be
equivalent already during sweeping and more careful schedul-
ing and rescheduling of candidate variables, particularly within
the same sweeping phase.

Furthermore we sped up the common case of satisfiable
queries to the embedded SAT solver KITTEN, by adding to
KITTEN the following model flipping API function:

bool kitten flip literal (kitten *, unsigned lit);
It is inspired by non-recursive model rotation [2] used in MUS
extraction. Our new model-flipping tries to flip the value of
the specified literal in the last model returned by KITTEN
and succeeds if the resulting new assignment still satisfies
the formula. On success the model is updated. Otherwise if
flipping falsifies the formula the last model is not touched.

In our application we further require that the model does
not change for other literals. Thus the implementation of
model flipping is straightforward and simply consists of just
traversing the clauses watched by the literal to be flipped and
checking whether there are “one-satisfied” clauses with only
that literal satisfying the watched clause (assuming it was
assigned to true in the last model).

We make use of this new API function by trying to flip
during sweeping all literals of either the remaining backbone
candidates if there are any left or the literals in candidate
equivalent literal classes. If all flipped literal attempts failed
we have to fall back to a more expensive actual SAT solver
call to KITTEN. If flipping succeeds, which happens actually
surprisingly often, we refine the backbone candidate list or the
candidate equivalent literal class as usual.

In [1] we described how we use randomization of saved
phases before KITTEN queries to reduce the number of neces-

Supported by Austrian Science Fund (FWF) project W1255-N23 and the
Inst. of Formal Methods and Verification, Johannes Kepler University Linz.

sary refinements in the common case that sweeping is mostly
unsuccessful for a candidate variable. It turns out that for
some benchmarks the old version “KISSAT SC2021 SWEEP”
spent a substantial percentage of time during sweeping in just
generating random bits for this purposes. By using all 64 bits
produced by our random number generator each time instead
of just one (while dropping 63 bits) and updating saved phases
in a bit-parallel fashion we could remove that bottle-beck.

KISSAT SC2022 BULKY

Improved sweeping above is used in all our three versions of
KISSAT submitted to the SAT competition 2022. The version
“KISSAT SC2022 BULKY” submitted in 2022 inherits most
features of version “KISSAT SC2021 SWEEP” [1] submitted
in 2021 but includes the following changes:

• added ACIDS [3] branching variable heuristics (disabled)
• added CHB [4] variable branching heuristic (but disabled

by default) inspired by the success of ’kissat mab’ [5]
• faster randomization of phases in the Kitten sub-solver
• literal flipping for faster refinement during sweeping
• disabled priority queue for variable elimination (elimina-

tion attempts follow the given fixed variable order)
• disabled by default reusing the trail during restarts
• disabled by default hyper ternary resolution
• initial local search through propagation (similar to

”warmup” runs of Donald Knuth [6] and how local search
is initialized in ”ReasonLS” solvers by Shaowei Cai [7])

• actual watch replacement of true literals during unit
propagation instead of just updating the blocking literal
(as suggested by Norbert Manthey [8])

• fixed clause length and variable occurrences limits during
variable elimination instead of dynamically increasing

KISSAT SC2022 LIGHT AND KISSAT SC2022 HYPER

In order to focus on the most important features of KISSAT,
we removed those that did not substantially improve perfor-
mance on the last three competitions benchmarks. As a result
of these experiments we removed the following features:

• autarky reasoning
• eager forward and backward subsumption during variable

elimination (global forward subsumption only)
• caching and reusing of minima during local search
• failed literal probing
• transitive reduction of the binary implication graph
• eager subsumption of recently learned clauses
• XOR gate extraction during variable elimination



• delaying of inprocessing functions based on formula size
• vivification of irredundant clauses
• keeping untried elimination, backbone and vivification

candidates for next inprocessing round (removed options)
• initial focused mode phase limited only by conflicts now

(not as before also by ticks)
The light version also removes hyper binary resolution,

enabling the use of more variables (229−1 instead of 228−1).

GIMSATUL SC2022
Our new SAT solver GIMSATUL is a parallel multi-threaded

SAT solver written from scratch in C in six weeks. Its core
engine follows the architecture of “KISSAT SC2022 LIGHT”,
even though it is missing non-chronological backtracking, on-
the-fly subsumption, advanced shrinking, binary implication
graph backbones, advanced definition extraction and sweeping.

The main new feature is to aggressively exchange learned
clauses by sharing and reference counting instead of copying,
reviving an old line of research. The solver is built on top
of pthreads, but also uses C11 atomic operations as well as
several lock-less fast-paths. For original clauses this already
gives substantial memory savings which extends to learned
clauses too and allows to generate compact DRUP proofs.

The simplification procedure implements bounded variable
elimination, subsumption and equivalent literal substitution
and is run up-front as preprocessing in single threaded mode
and further in regular intervals after synchronizing all threads
and handing over control and clauses to one single simplifi-
cation thread. During search each solver thread also performs
inprocessing in form of vivification and failed literal probing.

References to learned clauses of low glucose level (LBD)
are immediately put in thread local pools to be exported.
All exporting and importing thread combinations have exactly
one pool and each pool has several slots ordered by glucose
level. Threads import clauses from the slots of their pool of a
randomly chosen thread, prioritized by glucose level. Except
for units, which are always eagerly and completely imported,
at most one clause is imported before making a decision.

For more details on “GIMSATUL SC2022” and particularly
extensive experimental results on scalability and other aspects
of our new solver we refer to our presentation at the workshop
on Pragmatics of SAT (POS’22) [9].

ISASAT
This is the first submission of the fully verified SAT solver

ISASAT to the SAT Competition (and to the best of our
knowledge, the first submission of a fully verified SAT solver).
Since the submission to the EDA Challenge 2021 [10], we im-
plemented only few new features, namely pure literal detection
and resolution and deduplication of binary clauses. The first
features is our first non-equivalence preserving transformation.

The main work went into updating the Isabelle version
we are using and the version of the LLVM-based library of
synthesis [11]. With the update to Isabelle2021-1, synthesis
started to take hours for even the simplest function, so we

had to replace the formalization of the solver state by a proper
structure and reorganize our entire development around that.

Unrelated to our verification, we added proof logging to our
solver. Remark that there is absolutely no proof of correctness
of the generated proofs: The correctness theorem does not
mention the proofs (and it happened during development that
we forgot to print some of them leading to incorrect proofs–but
the result was always correct).

The submitted sources of the SAT solver contain only files
generated by Isabelle in the intermediate representation used
by clang. For the complete sources (including correctness the-
orem and comments), refer to the sc2022 tag in the IsaFOL
repository https://bitbucket.org/isafol/isafol/src/sc2022/.

LICENSE

All our solvers are licensed under an MIT license, with
GIMSATUL available at https://github.com/arminbiere/gimsatul
KISSAT at https://github.com/arminbiere/kissat and further
ISASAT at https://m-fleury.github.io/isasat/isasat-release/.

REFERENCES

[1] A. Biere, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat, Paracooba
entering the SAT Competition 2021,” in Proc. of SAT Competition 2021
– Solver and Benchmark Descriptions, ser. Dept. of Computer Science
Report Series B, T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo,
and M. Suda, Eds., vol. B-2021-1. Univ. of Helsinki, 2021, pp. 10–13.

[2] J. P. M. Silva and I. Lynce, “On improving MUS extraction algorithms,”
in Theory and Applications of Satisfiability Testing - 14th International
Conference, SAT 2011, ser. LNCS, K. A. Sakallah and L. Simon, Eds.,
vol. 6695. Springer, 2011, pp. 159–173.

[3] A. Biere and A. Fröhlich, “Evaluating CDCL variable scoring schemes,”
in Theory and Applications of Satisfiability Testing - SAT 2015 - 18th
International Conference, SAT 2015, ser. LNCS, M. Heule and S. A.
Weaver, Eds., vol. 9340. Springer, 2015, pp. 405–422.

[4] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Exponential
recency weighted average branching heuristic for SAT solvers,” in
Proc. 13th AAAI Conf. on Artificial Intelligence, AAAI 2016, D. Schu-
urmans and M. P. Wellman, Eds. AAAI Press, 2016, pp. 3434–3440.

[5] M. S. Cherif, D. Habet, and C. Terrioux, “Combining VSIDS and CHB
using restarts in SAT,” in 27th International Conference on Principles
and Practice of Constraint Programming, CP 2021, ser. LIPIcs, L. D.
Michel, Ed., vol. 210. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021, pp. 20:1–20:19.

[6] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 6:
Satisfiability, 1st ed. Addison-Wesley Professional, 2015.

[7] S. Cai, C. Luo, X. Zhang, and J. Zhang, “Improving local search
for structured SAT formulas via unit propagation based construct and
cut initialization (short paper),” in 27th International Conference on
Principles and Practice of Constraint Programming, CP 2021, ser.
LIPIcs, L. D. Michel, Ed., vol. 210. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021, pp. 5:1–5:10.

[8] N. Manthey, “CaDiCaL modification – Watch Sat,” in Proc. of SAT Com-
petition 2021 – Solver and Benchmark Descriptions, ser. Department of
Computer Science Report Series B, T. Balyo, N. Froleyks, M. Heule,
M. Iser, M. Järvisalo, and M. Suda, Eds., vol. B-2021-1. University of
Helsinki, 2021, pp. 28–29.

[9] M. Fleury and A. Biere, “Scalable proof-producing multi-threaded SAT
solving with Gimsatul through sharing instead of copying clauses,” in
Pragmatics of SAT 2022, D. L. Berre and M. Järvisalo, Eds., 2022.

[10] M. Fleury, “CaDiCaL, Kissat, Paracooba entering the EDA Challenge
2021,” 2021, submitted to the EDA Challenge 2021.

[11] P. Lammich, “Generating verified LLVM from Isabelle/HOL,” in 10th
International Conference on Interactive Theorem Proving, ITP 2019, ser.
LIPIcs, J. Harrison, J. O’Leary, and A. Tolmach, Eds., vol. 141. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pp. 22:1–22:19.

https://bitbucket.org/isafol/isafol/src/sc2022/
https://github.com/arminbiere/gimsatul
https://github.com/arminbiere/kissat
https://m-fleury.github.io/isasat/isasat-release/

