
Clausal Congruence Closure1

Armin Biere #2

University Freiburg, Germany3

Katalin Fazekas #4

TU Wien, Vienna, Austria5

Mathias Fleury #6

University Freiburg, Germany7

Nils Froleyks #8

Johannes Kepler University, Linz, Austria9

Abstract10

Many practical applications of satisfiability solving employ multiple steps to encode an original11

problem formulation into conjunctive normal form. Often circuits are used as intermediate12

representation before encoding those circuits into clausal form. These circuits however might13

contain redundant isomorphic sub-circuits. If blindly translated into clausal form, this redundancy is14

retained and increases solving time unless specific preprocessing algorithms are used. Furthermore,15

such redundant sub-formula structure might only emerge during solving and needs to be addressed by16

inprocessing. This paper presents a new approach which extracts gate information from the formula17

and applies congruence closure to match and eliminate redundant gates. Besides new algorithms for18

gate extraction, we also describe previous unpublished attempts to tackle this problem. Experiments19

focus on the important problem of combinational equivalence checking for hardware designs and20

show that our new approach yields a substantial gain in CNF solver performance.21

2012 ACM Subject Classification Theory of Computation → Automated Reasoning22

Keywords and phrases Satisfiability Solving, Congruence Closure, Structural Hashing, SAT Sweeping,23

Conjunctive Normal Form, Combinational Equivalence Checking, Hardware Equivalence Checking24

Digital Object Identifier 10.4230/LIPIcs.SAT.2024.N25

Supplementary Material Software (Source Code): https://doi.org/10.5281/zenodo.1165242326

Dataset (Experimental Data: Log files, Plots, Tables): https://doi.org/10.5281/zenodo.1165813327

Dataset (SAT Competition 2022 Benchmarks): https://doi.org/10.5281/zenodo.1142801028

Dataset (SAT Competition 2023 Benchmarks): https://doi.org/10.5281/zenodo.1142699229

Dataset (CNF encoded HWMCC’12 Miters): https://doi.org/10.5281/zenodo.1082312830

Dataset (CNF encoded IWLS’22 Miters): https://doi.org/10.5281/zenodo.1082309931

Funding This work was supported by the state of Baden-Württemberg through bwHPC, the German32

Research Foundation (DFG) through grant INST 35/1597-1 FUGG, the Austrian Science Fund33

(FWF) under project No. T-1306, and by a gift from Intel Corporation.34

1 Introduction35

One of our motivations is to improve SAT solving for combinational equivalence checking of36

hardware circuits [30,54,63]. For decades combinational equivalence checking was considered37

the most successful application of formal verification in industry, actually before the SAT38

revolution started. Earlier approaches in the last century relied on binary decision diagram39

(BDD) technology, i.e., BDD sweeping [53], which however has been combined (if not replaced)40

with SAT sweeping [54] in this century. There are various commercial providers of equivalence41

checkers, including major electronic design automation (EDA) vendors such as Synopsys,42

Cadence, and Siemens, with widespread use in chip design.43

© Armin Biere and Katalin Fazekas and Mathias Fleury and Nils Froleyks;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024).
Editors: Supratik Chakraborty and Jie-Hong Roland Jiang; Article No. N; pp. N:1–N:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:biere@cs.uni-freiburg.de
https://orcid.org/0000-0001-7170-9242
mailto:katalin.fazekas@tuwien.ac.at
https://orcid.org/0000-0002-0497-3059
mailto:fleury@cs.uni-freiburg.de
https://orcid.org/0000-0002-1705-3083
mailto:nils.froleyks@jku.at
https://orcid.org/0000-0003-3925-3438
https://doi.org/10.4230/LIPIcs.SAT.2024.N
https://doi.org/10.5281/zenodo.11652423
https://doi.org/10.5281/zenodo.11658133
https://doi.org/10.5281/zenodo.11428010
https://doi.org/10.5281/zenodo.11426992
https://doi.org/10.5281/zenodo.10823128
https://doi.org/10.5281/zenodo.10823099
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


N:2 Clausal Congruence Closure

Even though details about the inner workings of these EDA commercial equivalence44

checkers are not publicly available, simply encoding large equivalence checking problems into45

a monolithic SAT formula in conjunctive normal form (CNF) and then using a stand-alone46

solver to solve them does not scale. Therefore, we submitted monolithic equivalence checking47

benchmarks to the SAT Competition already in 2013 [24]. These benchmarks are regularly48

used in SAT competitions (for instance two of them in 2022) and some are still challenging.49

It is fair to assume that commercial equivalence checkers use a hybrid approach, where the50

circuit structure guides incremental SAT queries to establish correspondence between internal51

sub-circuits, as a recursive process following the topological order of the circuit. These hybrid52

approaches to combinational equivalence checking have their own challenges [1, 70–72] and,53

in our view, are not a solved problem.54

Furthermore, improving plain CNF-level SAT solving on such instances will be beneficial55

for hybrid approaches as well. Techniques useful for equivalence checking can have a positive56

impact on other applications of SAT too.57

The question remains why state-of-the-art SAT solvers working on CNF need that58

guidance and are not able to efficiently find proofs for large equivalence checking problems,59

actually also called miters [30], even though, at the end, also those hybrid approaches just60

rely on the resolution proof system. While short proofs exist in theory, even for the simplest61

equivalence checking task of comparing two identical circuits, current state-of-the-art solvers62

based on the conflict-driven clause learning (CDCL) paradigm [26] fail to find short resolution63

proofs, as we have shown in previous work [45].64

Equivalence checking of arithmetic circuits [12, 52] has similar applications and issues.65

In principle, algebraic techniques [34, 51, 61] can solve them, but they remain extremely66

challenging if given in CNF. Therefore, we consider arithmetic circuit verification out-of-scope67

for this study. We further focus on combinational equivalence checking leaving sequential68

equivalence checking, which relates to hardware model checking, to future work. Our goal is69

to improve CNF SAT solving for combinational (non-arithmetic) equivalence checking.70

We consider isomorphic miters, the problem that encodes equivalence checking of two71

identical copies of a circuit, but also will take a look at the comparison of non-isomorphic72

circuits. The latter are actually the main target in industrial applications of equivalence73

checking, where a synthesized and optimized circuit and the original unsimplified circuit are74

compared. These optimized miters are much harder to solve.75

The real cause for this failure of CDCL to solve isomorphic miters encoded into CNF is76

unclear, but proven empirically, as our experiments confirm. We can offer two explanation77

attempts though. First Yakau Novikau suggested at the Dagstuhl seminar on “The Theory78

and Practice of SAT Solving” in 2015 that, due to the recursive nature of equivalence79

checking, to learn an internal equivalence (two binary clauses) the SAT solver must fully80

restart in-between learning the two clauses. As a consequence, which again only empirically81

has been confirmed, solving miters in CNF greatly benefits from rapid restarts, i.e., restarting82

after each conflict. The second observation is that SAT solvers on miters even for isomorphic83

circuits learn rather long clauses, followed by shorter and shorter clauses until they learn84

some binary clauses. But then the whole process repeats, while a guided approach can focus85

on learning the necessary binary clauses directly.86

While when working on circuits directly the gates are explicitly present, new gates can87

appear during solving. Our experiments on the SAT Competition 2022 shows that many SAT88

problems have gates, partially due to Tseitin encoding and redundant isomorphic structures.89

Therefore, it makes sense to have our technique on the CNF side directly: our implementation90

in Kissat identifies more than 180 million congruent variables.91



A. Biere, K. Fazekas, M. Fleury and N. Froleyks N:3

p =
1

1

p =
2

m1 ⊕ m2

m1 =
3

c ? a1 : x1

m2 =
4

c ? a2 : x2

x1 =
5

u ⊕ v

x2 =
6

u ⊕ v

a1 =
7

r ∧ s

a2 =
8

r ∧ s

G7 G5

G3
1 0

a1 x1

rs uv

a1 x1

G8 G6

G4
1 0

a2 x2

c

G2

m1 m2

p = 1
(p)1

(p m1m2)2 (p m1m2)3 (p m1m2)4 (p m1m2)5

(m1c a1)6 (m1c x1)7 (m1c a1)8 (m1c x1)9

(m2c a2)10 (m2c x2)11 (m2c a2)12 (m2c x2)13

(x1u v)14 (x1u v)15 (x1u v)16 (x1u v)17

(x2u v)18 (x2u v)19 (x2u v)20 (x2u v)21

(a1r)22 (a1s)23 (a1r s)24

(a2r)25 (a2s)26 (a2r s)27

(a) gates G1, . . . , G8 (b) miter circuit (c) CNF with clauses C1, . . . , C27

Figure 1 Example of an equivalence checking problem for two identical (isomorphic) circuits
consisting each of one AND, XOR, and ITE (multiplexer/if-then-else) gate. The miter circuit in the
middle (b) compares the output of the two circuits and assumes they are different by feeding them
into another XOR gate which in turn is assumed to produce the output value 1. The equational
semantics (a) is shown on the left which after Tseitin encoding [67] gives the CNF (c), e.g., the last
AND gate G8 in the second circuit is encoded by the last three clauses C25, C26 and C27.

2 Preliminaries92

We assume that the reader is familiar with propositional satisfiability (SAT) and otherwise93

refer to [25]. In order to save space we abbreviate formulas in conjunctive normal form (CNF)94

by omitting operators if they are clear from the context. For instance we use (ar)(as)(ar s)95

to denote the CNF (a ∨ r) ∧ (a ∨ s) ∧ (a ∨ r ∨ s). We identify a double negated literal with96

itself and denote with |l| the variable v of a positive literal l = v or negative literal l = v̄.97

In Fig. 1, we present an example of a combinational equivalence checking problem (miter).98

This is an isomorphic miter as the two circuits compared are identical. In the experiments99

we also consider the case where one of the circuits is an optimized version of the other, since100

these optimized miters are the main target in industrial applications of equivalence checking.101

Hybrid approaches to equivalence checking (starting from [54] and most recently [72])102

keep the two circuits alongside the CNF encoding in the SAT solver. During parsing such103

an isomorphic miter from a file, they will already detect all equivalences and simplify both104

circuits to one representation by applying “structural hashing”.105

This technique is also called “hash consing” in implementations of functional programming106

languages or “common sub-expression elimination” in compiler optimization. It is also107

implemented in libraries for the manipulation of binary decision diagrams (BDDs) [33] or108

and-inverter graphs (AIGs) [54] in the form of a “unique-table”.109

The basic idea of our approach is to simulate structural hashing by deriving from the110

CNF through resolution binary clauses of the equivalence of literals representing outputs of111

equivalent gates: For the two AND gates G7 and G8 in Fig. 1 we first derive a1 = a2, i.e.,112

the binary clauses (a1 ∨ a2) and (a1 ∨ a2). Then we derive x1 = x2 for the two XOR gates113

G5 and G6. This allows us two replace the inputs a2 and x2 of the second ITE gate G4 by114

a1 and x1 which in turn yields m1 = m2. Substituting m2 with m1 in the right hand side115

(RHS) of gate G2 simplifies to 0, which contradicts the assumption that the outputs of the116

two compared circuits are different (p = 1).117

SAT 2024



N:4 Clausal Congruence Closure

We show first how such a simulation is feasible starting from a CNF encoding and second118

how our new congruence closure approach solves isomorphic miters instantly. In the second119

scenario, when checking optimized miters, it is further expected that during solving often120

identical sub-circuits emerge. Our approach then allows to simplify the problem through121

inprocessing, which reduces over-all solving time, as confirmed in our experiments.122

Related to clausal congruence closure is SAT sweeping. It has only been described in123

our solver description [21, 22] and uses the “small” SAT solver Kitten within Kissat to124

prove the equivalence of two literals. It can simulate congruence closure (if the variables are125

scheduled in the right order), but it is more expensive as it relies on Kitten as SAT oracle.126

However, it is also stronger, because it is not limited to matching gates syntactically.127

Our new implementation in Kissat with efficient algorithms for gate extraction runs128

congruence closure until completion during both pre- and inprocessing, even for the largest129

CNFs in the SAT competition. We enable it by default without limit, in contrast to our earlier130

attempts to solve isomorphic miters including “lazy hyper binary resolution” [9], “tree-based131

look ahead” [45], “simple probing” (see next Sect. 3), “blocked-clause decomposition” [44],132

and “internal SAT sweeping” [21,22], which all need to be limited or preempted.133

3 Simple Probing134

Simple probing is available in Lingeling since 2012 [10] motivated by the observation [45] that135

though hyper binary resolution (HBR) [3, 4, 42] combined with equivalent literal substitution136

(ELS) [2, 36,56,68] in theory can solve identical miters, in practice it fails to do so.137

The problem with existing HBR implementations [3, 4, 42, 45] is that they are “global”138

and rely on complete failed literal probing, followed or interleaved with a global form of139

ELS. This means that all literals are probed and all binary clauses are taken into account140

in finding and substituting equivalent literals. For isomorphic miters, the fix-point of this141

process is only reached after many rounds of HBR and ELS. The main idea behind “simple142

probing” is to apply HBR and ELS steps only locally to avoid some unnecessary work.143

Continuing with the example in Fig. 1, we resolve the 6 clauses C22, . . . C27 of the two144

AND gates G7 and G8 through two hyper-binary resolution steps:145

(a1r s)24 (a2r)25 (a2s)26

(a1a2)28
HBR1

(a2r s)27 (a1r)22 (a1s)23

(a2a1)29
HBR2

These two hyper binary resolution steps yield the equivalence a1 = a2, represented by the146

two resolvents, and correspond to the following two linear chains of resolution (RES) steps:147

(a1r s)24 (a2r)25

(a1a2s) RES (a2s)26

(a1a2)28
RES

(a2r s)27 (a1r)22

(a2a1s) RES (a1s)23

(a2a1)29
RES

Note that such linear resolution chains correspond to reverse-unit propagation (Rup) [41] in148

clausal proofs [46,47]. Next we have to substitute (w.l.o.g.) a2 by a1 in the formula:149

(m2c a2)10 (a1a2)28

(m2c a1)30
RES

(m2c a2)12 (a2a1)29

(m2c a1)31
RES

This again boils down to resolution, which also explains why simple probing can produce150

Rup proofs [41] easily. Also C25, C26, and C27 of the AND gate G8 of the circuit on the151

right should be substituted, but the result would be identical to the already existing clauses152

C22, C23 and C24 of the equivalent gate G7 of the circuit on the left, and should be avoided.153

Instead, they should just be deleted, the main feature in Drup which extends the Rup proof154

system by including “deletion” information [69] to speed-up proof checking.155



A. Biere, K. Fazekas, M. Fleury and N. Froleyks N:5

Algorithm 2 Pseudo code of “simple probing” from Lingeling through local hyper binary
resolution (HBR) and eager equivalent literal substitution (ELS): We interpret the given CNF F as
a set of clauses, which in turn are sets of literals, with no duplicates. With |r| ≠ |l| in Line 10 we
assume that the variables of r and l are different. Line 13 performs the actual ELS by replacing all
occurrences of l with the representative literal r (resp. l by r). In the actual implementation, we
consider additional cases, e.g., we check for hyper binary resolved units when γ(r) = |C| in Line 10.

simple-probing (CNF F ) // by reference, i.e., F updated in place
1 literals L = all literals in F

2 candidates Λ = L

3 while Λ ̸= ∅
4 pick and remove l ∈ Λ
5 for all “base” clauses C ∈ F with |C| > 2 and l ∈ C

6 for all literals k ∈ C

7 counts γ : L → N initialized to γ ≡ 0
8 for all binary clauses (o ∨ k) ∈ F

9 γ(o)++ // increment count of other literal o by one
10 for all r with γ(r) + 1 = |C| and |r| ̸= |l| and (r ∨ l) ̸∈ F

11 add (r ∨ l) to F // HBR
12 if (r ∨ l) ∈ F // checking for dual clause - ELS
13 substitute l = r in all clauses D ∈ F with l or l in D

14 reschedule literals in resulting clauses by adding them to Λ
15 continue with outer while loop at Line 3

This forms the core of simple probing. In the implementation we use a counting argument:156

we find “immediate” hyper binary resolvents by counting how often a literal occurs in binary157

clauses which can be resolved with a given non-binary base clause. For the base clause C24,158

we only consider the two binary clauses C25 and C26 as resolution candidates because we159

can ignore the blocked clauses C22 and C23 (as they both contain a1). The literal a2 occurs160

twice in them, and, since the base clause has one literal more than the occurrence count,161

this yields C28 through HBR1. Similarly, we get C29 using C27 as base clause.162

Whenever we find a new hyper-resolvent this way, without adding duplicates, we check163

whether its dual clause with both literals negated already exists. For instance, assume that164

in our example applying HBR1 first. Then, when clause C29 is derived through HBR2, as its165

dual (C28) already exists, the equivalence a2 = a1 is derived. To substitute one literal with166

the other, we traverse all clauses containing the literal to substitute, apply the substitution,167

and delete the original clause. While checking for dual clauses only requires finding all binary168

clauses in which a literal occurs, the substitution step requires full occurrence lists.169

The complete preprocessing algorithm in Alg. 2 needs to determine which and when170

clauses are (re)considered as base clauses. As clauses are eagerly removed and added in171

this approach, we do not want to use base clauses as scheduling objects in a working queue.172

Instead, we opted for our implementation in Lingeling to have literals occurring in base173

clause candidates as scheduling objects. Initially, all literals are candidate literals for simple174

probing. For each candidate, we go through all its non-binary clauses (requiring occurrence175

lists) and then apply the two-step procedure described above. After finding and substituting176

equivalence, we reschedule literals occurring in the resulting clauses.177

Simple probing will solve isomorphic miters of circuits with only AND gates. Actually,178

after substituting the equivalence of outputs of the compared circuits, the comparison in179

SAT 2024



N:6 Clausal Congruence Closure

clauses of the miter XOR gates will yield a unit clause. We would need to propagate those180

units to derive unsatisfiability (unless each compared circuit has only one output).181

However, even though simple probing implicitly treats OR as AND gates, it does not182

handle other more complex gates, particularly neither XOR nor ITE gates. Actually,183

HBR+ELS alone cannot solve such miters with XORs and ITEs, including our example, as184

already observed by Heule at al. [45]. They proposed to interleave probing based HBR+ELS185

with saturating ternary resolution (TRN) [28] to simulate structural hashing for XOR and186

ITE gates, i.e., add all resolvents of at most length three between ternary gates.187

Such ternary resolution is rather costly, particularly if run until completition. Thus it188

needs to be localized in combination with simple probing and also does not work for larger189

XOR gates with more than two inputs. Nevertheless, CaDiCaL [23] and Lingeling [11]190

both implement (non-localized) TRN but not eagerly and in a limited way.191

4 Gate Extraction192

Previous attempts (including simple probing) to solve CNF-encoded isomorphic miters193

through HBR (with ELS and TRN) essentially failed. They are orders of magnitude slower194

than circuit-based techniques, as already pointed out in the conclusion of [45] and again195

confirmed in our experiments. The key to obtaining a scalable algorithm is to extract “gates”196

from the CNF instead, also called “macros” and “(functional) definitions” in related work.197

This takes us halfway to the reconstruction of the original circuit, except that we do not care198

about the topological order, nor do we try to find global (primary) inputs or outputs.199

Gate extraction goes back to [40, 58, 60] and we refer to the preprocessing chapter of the200

SAT handbook [26, Sect. 9.6.2] for details. These works were either limited in scope or had201

as goal to recover an actual circuit, including inputs and outputs as well as topologically202

ordering extracted gates. This is actually a difficult problem in general, as for instance203

XOR constraints (and inverters) are not directed, i.e., the Tseitin encoding of an XOR gate204

of arity n is symmetric in all variables and allows to actually extract n + 1 gates. Even205

for Tseitin-encoded AIGs, which are circuits with only AND gates (and inverters), there206

are problems. First, constant inputs might turn binary AND gates into unary AND gates207

(buffer/equivalences/inverters), which have to be ordered. Second, the same clause can be208

used for extracting multiple gates, which requires selecting a gate.209

Recent work stays on the CNF level and uses blocked clause decomposition (BCD)210

instead [5,44,49,50]. Note, however, that this approach does not support either in-processing211

or the production of proofs. A basic XOR-constraint extraction algorithm is described in [64]212

with the goal to enable algebraic reasoning. Gate detection has also been used extensively213

during SAT preprocessing to filter out resolvents in bounded variable elimination [37, 39]. In214

that context, it is local to the candidate variable for elimination and thus other algorithms215

apply. Similar gate-extraction approaches exist in richer logics (#SAT and QBF) too [55,62].216

We only syntactically extract “gates”, trying to reverse the CNF encoding, e.g., from the217

clauses C22, C23, and C24 in the CNF of Fig. 1 we extract the “gate” (equation) a1 = r ∧ s.218

Semantic extraction (such as [39, 62]) is much more powerful, but also much more expensive.219

5 AND-Gate Extraction220

Our basic-and-gate-extraction algorithm is shown in Alg. 3. For each non-binary base clause,221

it first marks the negation of all its literals. Then, for each literal in the clause, we traverse222

all binary clauses in which it occurs negatively. If the number of other marked literals in223



A. Biere, K. Fazekas, M. Fleury and N. Froleyks N:7

Algorithm 3 Basic algorithm for extracting AND gates. As in Alg. 2 correctness hinges on the
assumption that F is without trivial clauses and all its clauses, as well as F , are interpreted as sets
without duplicates. Thus, in the implementation, one must remove duplicated binary clauses first.
Only binary clauses need to be watched, assuming base clauses can be traversed in some other way.

basic-and-gate-extraction (CNF F )
1 resulting AND gates A = ∅
2 literals L = all literals in F

3 for all clauses C ∈ F with |C| > 2
4 marks µ : L → B initialized to µ ≡ ⊥ // implemented as bit-map
5 for all literals r with r ∈ C

6 µ(r) = ⊤
7 for all literals l ∈ C

8 n = 0
9 for all binary clauses (l ∨ r) ∈ F

10 if µ(r) then n++
11 if n = |C| − 1
12 let (l ∨ r1 ∨ . . . ∨ rn) = C // structured binding
13 add AND gate (l = r1 ∧ · · · ∧ rn) to A

14 return A

those binary clauses is one less than the size of the base clause, we have found an AND224

gate. However, for large formulas with millions of variables, millions of binary, and candidate225

clauses,1 this algorithm is too slow to run until completion in order to solve miters.226

In a failed improvement attempt, we added all binary clauses to a hash table, such that227

we can directly search for (l ∨ r) when considering l as the left-hand side literal for all other228

r with r ∈ C instead of marking (Lines 5–10). However, it turns out that for large formulas,229

filling the hash-table took the same amount of time as the marking variant in Alg. 3.230

Our first successful improvement counts the number of occurrences of literals in binary231

clauses and drops candidate clauses C where no literal has enough negative occurrences in232

binary clauses. Actually, iterations of the loop in Lines 7–13 can always be skipped in Alg. 3233

for literals l where l occurs less than |C|−1 times in binary clauses. Our second improvement234

uses the observation that, while considering the left-hand-side (LHS) candidate l in Line 7235

of that loop and traversing binary clauses (l ∨ r) in Line 9, all remaining LHS candidates236

l′ ∈ C not yet tried still need to occur negated as one of these r.237

For example, let C = (l1 ∨ l2 ∨ l3) in Line 3. Assume l1 occurs only once in binary clauses,238

and thus is skipped. Further, let (l2 ∨ r1) and (l2 ∨ r2) be the only binary clauses with l2239

when iterating over l = l2 in Line 7. If neither l3 = r1 nor l3 = r2 then l3 is no LHS candidate240

as (l2 ∨ l3) is missing. To implement this optimization, we use two mark bits for the negation241

of literals in C. The first mark plays the same role as µ in Alg. 3 while the second is used242

to mark the negation of remaining LHS candidates. When counting occurrences of marked243

literals in Lines 9–10 we update the second mark bit and later only consider LHS literals244

which have the second bit still set.245

1 See e.g., SAT_MS_sat_nurikabe_p16.pddl_166 from the main track of the SAT Competition 2022
with 19 million variables, 199 million binary clauses and 14 million candidate base clauses.

SAT 2024



N:8 Clausal Congruence Closure

Algorithm 4 This is a basic algorithm for XOR-gate extraction. It uses the bit-extraction function
β to determine if the bit at a given bit position is set and π to compute its parity.

basic-xor-gate-extraction (CNF F )
1 resulting XOR gates X = ∅
2 let β : N × N → {0, 1} with β(i, s) = (s/2i) mod 2 // extract ith bit from s

3 let π : N → {0, 1} with π(s) = |{i | β(i, s) = 1}| mod 2 // parity of all “bits” in s

4 for all clauses C = (l0 ∨ . . . ∨ lm−1) ∈ F with |C| > 2
5 for s = 2 to 2m − 1 with π(s) = 0 // flip an even number of sign bits
6 D = {li | β(i, s) = 0} ∪ { l̄i | β(i, s) = 1} // negate li if ith bit set
7 if D ̸∈ F continue with outer loop at Line 4 // clause missing
8 for i = 0 to m − 1 // add m XOR gates of arity m − 1
9 let (li ∨ k1 ∨ . . . ∨ km−1) = C and l = l̄i

10 add XOR gate (l = k1 ⊕ · · · ⊕ km−1) to X

11 return X

6 XOR-Gate Extraction246

As with AND-gate extraction, there is little published work on XOR extraction. It is briefly247

mentioned in [10] to support Gaussian elimination and a preliminary form of congruence248

closure in Lingeling for the SAT Challenge 2012. Both CaDiCaL since 2019 [13] and249

Kissat since 2020 [20] use XOR-gate extraction to make bounded variable elimination more250

effective, as originally proposed in [37] for AND gates. Our basic algorithm in Alg. 4 follows251

these implementations and corresponds to a similar algorithm presented in [64].252

In Lines 5–7, we check that all clauses D are present in the CNF which differ from the253

base clause C by negating exactly an even number of literals. If this is the case, we have254

found the XOR constraint 1 = l0 ⊕ · · · ⊕ lm−1, falsified by the same assignment which falsifies255

C (assigning all literals of C to false). This constraint can now be rewritten into those m256

XOR gates added on Line 10, by removing li from the right-hand-side (RHS) of the constraint257

and replacing its LHS with the negation l of li (“1” on the LHS above acts as negation).258

The reason for adding all m gates is that we cannot (and do not want to) order symmetric259

gates, where input and output can be exchanged. Consequently, the functional dependency260

graph between inputs and outputs of our extracted gates becomes cyclic as soon as a single261

XOR constraint is extracted and covers all the gates. Being able to handle such cyclic262

dependencies is an important feature of congruence closure in our approach, which is not263

possible when gate extraction is used to reconstruct the structure of circuits [40,60].264

Note that for each XOR constraint found for a base clause C with m literals, the CNF265

actually needs to contain 2m−1 − 1 matching D clauses, but we only extract m gates from it.266

So even for m = 3, we extract only three gates covering four clauses. Nevertheless, the basic267

algorithm performs redundant work, since Line 4 does not detect when C was already used268

as a matching D clause in a successful extraction before.269

We can avoid this redundant work by considering in Line 4 only one of the clauses that270

encodes an XOR gate. Assume we have a strict order over variables, for instance, by using271

the integer encoding of variables in the DIMACS format. Then, C can be skipped in Line 4272

unless either all literals of it are positive or only the largest one is negative. This amounts to273

the condition l0 = |l0| < l1 = |l1| < · · · < lm−2 = |lm−2| < |lm−1| on C in Line 4.274

Note that the number of clauses needed to encode an XOR gate of arity n is 2n, i.e.,275

grows exponentially. As clauses in the encoding have size m = n + 1, we can therefore further276



A. Biere, K. Fazekas, M. Fleury and N. Froleyks N:9

Algorithm 5 This is a basic algorithm for ITE-gate extraction. To find ITE gates with a given
LHS literal l, as in variable elimination, the outer loop at Line 2 would only go over clauses with l.

basic-ite-gate-extraction (CNF F )
1 resulting ITE gates I = ∅
2 for all ternary clauses C = (l1 ∨ l2 ∨ l3) ∈ F

3 for i = 1 . . . 3
4 let (c̄ ∨ l̄ ∨ t) = C with c = l̄i

5 if (c̄ ∨ l ∨ t̄) ̸∈ F continue with next i at Line 3
6 for all ternary clauses (c ∨ l̄ ∨ e) ∈ F

7 if (c ∨ l ∨ ē) ∈ F

8 add ITE gate (l = c ? t : e) to I

9 return I

limit the size of the base clauses in Line 4 in Alg. 4. In practice, we did not see any need to277

search for XOR gates of arity larger than the run-time parameter NXOR = 4.278

Furthermore, as with AND gates, the XOR-extraction algorithm can be improved by279

counting occurrences of literals in clauses that can be part of the encoding of an XOR gate.280

Base clauses of size m = |C| considered for extracting an XOR gate of arity n = m − 1 can281

be skipped if C contains a literal that has less than 2n−1 occurrences.282

Finally, we realized that after counting the number of occurrences of literals in all clauses,283

some clauses end up having literals with too few occurrences in the reduced set of considered284

clauses and thus should not be considered anymore. Therefore, recounting might find285

additional clauses to skip. This process can be repeated until fix-point, but most of the286

reduction is achieved after two rounds of counting (the run-time parameter we are using).287

For checking D /∈ F in Line 7, we connect all remaining clauses that can potentially288

be part of an XOR gate encoding through full occurrence lists. Searching for D can then289

be restricted to traverse the occurrence list of the literal in D with the minimum number290

of occurrences, as in backward-subsumption checks [37]. Using hashing instead (still a291

compile-time parameter) has similar negative results as for AND-gate extraction.292

7 ITE-Gate Extraction293

The most common type of encoded gates are AND gates, followed by XOR gates. Except294

for a few applications where they are frequent, such as describing BDDs, ITE gates occur295

much less often. However, occasionally it can be crucial to handle ITE gates efficiently.296

For example, for one of the hard synthesized miters that we considered in our experiments297

(test02 from [72]) it gave a 1000 × improvement in solving time: 1.79 seconds when extracting298

vs. 2023.41 seconds when not extracting ITE gates (cf. Tab. 13, and Fig. 8 and 9).299

As with AND and XOR gates we have been using a simple algorithm for ITE-gate300

extraction in the context of variable elimination for many years, i.e., where the variable of301

the LHS literal is fixed. A potential variant to extract all ITE gates in a given formula is302

shown in Alg. 5. To encode an ITE gate (l = c ? t : e) exactly the following four ternary303

clauses are needed (c̄ ∨ l̄ ∨ t), (c̄ ∨ l ∨ t̄), (c ∨ l̄ ∨ e), and (c ∨ l ∨ ē) ignoring two potential304

additional redundant clauses (l̄ ∨ t ∨ e) and (l ∨ t̄ ∨ ē), which might be used to improve305

arc-consistency of the encoding. Observe that the first two clauses encode the conditional306

equivalence c → l = t and the third and fourth the conditional equivalence c̄ → l = e.307

SAT 2024



N:10 Clausal Congruence Closure

Algorithm 6 Fast ITE-gate extraction based on matching conditional equivalences.

find-conditional-equivalences (CNF F , literal c)
1 resulting conditional equivalences E = ∅
2 for all ternary clauses C = (c̄ ∨ l̄ ∨ t) ∈ F

3 if (c̄ ∨ l ∨ t̄) ∈ F

4 add l = t to E

5 return E

merge-conditional-equivalences (literal c, equivalences E+, equivalences E−)
6 resulting ITE gates I = 0
7 for all equivalences l = t in E+

8 for all equivalences l = e in E−

9 add ITE gate (l = c ? t : e) to I

10 return I

fast-ite-gate-extraction (CNF F )
11 resulting ITE gates I = 0
12 for all variables v in F

13 E+ = find-conditional-equivalences (F , v)
14 E− = find-conditional-equivalences (F , v̄)
15 add merge-conditional-equivalences (v, E+, E−) to I

16 return I

The inner loop at Line 6 gives quadratic complexity in the number of literal occurrences,308

and with the check at Line 7 it looks even cubic. However, the actual goal of this algorithm309

is to find for a candidate condition c both a positive (c → l = t) and a matching negative310

conditional equality (c̄ → l = e), and thus to extract an ITE gate. This observation leads to311

the optimized algorithm in Alg. 6. It iterates over all variables, instead of clauses, and looks312

for positive and negative conditional equivalences E+ and E− for each of them. Equivalences313

of both sets with the same LHS are then merged to form ITE gates.314

Further implementation details are as follows. Lines 2–3 of find-conditional-equivalences315

are implemented by extracting pairs of all the other literals in ternary clauses with c̄, sorting316

the literals in the pair (smaller literal first), and then sorting all these conditional pairs317

lexicographically (positive literal smaller than negative). Those sorted pairs are split into318

“ranges” of positive and negative occurrences of the same variable as first literal in a pair.319

Then we try for each pair of the smaller range to find the dual pair (with both literals320

negated) in the other range by binary search. Thus the complexity of find-conditional-321

equivalences is bounded by O(n · log n) where n is the number of ternary clauses with c̄.322

The nested loop in merge-conditional-equivalences can be implemented by first sorting323

the two conditional equivalence sets and following a merge-sort-style strategy, passing over324

both of them in increasing order of literals. It is still quadratic in the number of generated325

ITE gates, which is the worst-case complexity of the problem anyhow.326

Finally, we can filter out (and do not watch) clauses which have literals that do not occur327

often enough: two literals (the condition and the LHS literal) have to occur twice positively328

and twice negatively, while the third literal must occur at least once in each polarity.329



A. Biere, K. Fazekas, M. Fleury and N. Froleyks N:11

8 Congruence Closure330

In SMT solvers [7] the congruence closure algorithm has found several applications, for331

example in ground theory solvers [57], or during quantifier instantiation [6]. It uses the332

congruence axiom to propagate and derive further equalities from a given set of equalities over333

first-order ground terms. For instance, given the equalities x = y, u = f(x) and v = f(y),334

the congruence axiom allows us to deduce u = v too. This idea can be extended to functions335

and predicates of arbitrary arity. In contrast to structural hashing, it does not require any336

topological order of the variables, and thus can also be applied to cyclic functional definitions.337

Extracted or rewritten gates need to be normalized to increase chances of matching other338

gates. For AND gates, the only form of normalization that can be achieved is to sort the339

RHS literals, assuming once again a fixed order on variables, e.g., induced by the variable340

order in the DIMACS file. The same idea can be applied to XOR gates, but besides sorting341

we can further force all the RHS literals of an XOR gate to be positive: if the number of342

negated RHS literals is even, their negations cancel, and we can simply drop them; if the343

number is odd, we also drop the negations and negate the LHS literal instead.344

For an ITE gate (l=c ? t : e), a normalization strategy known from the BDD literature [29]345

applies. First, we ensure that the condition literal c is positive by using the equation346

c̄ ? t : e ≡ c ? e : t, if necessary. Then, we also make sure that the then literal t is positive,347

using c ? t̄ : e ≡ c ? t : ē and negating the LHS literal l if necessary.348

After normalizing a gate, we check whether there is already an existing gate with the349

same operator (AND, ITE, XOR) and the same RHS literals. This check is implemented350

with a hash table using the operator and RHS literals as a key. If a gate is found with the351

same operator and RHS, we have derived an equivalence between the two LHS literals of the352

gates. This equivalence is recorded in a union-find data-structure [66], where every literal353

points to its (smaller) representative or itself.354

Whenever a literal is assigned a new representative literal, we put that literal into a355

queue. Once all gates have been extracted, the propagation of these queued equivalences can356

be started in the main congruence closure loop (lines 13–18 in Alg. 7). In each iteration, a357

literal l of the queue is processed by iterating through all the gates that have l in their RHS.358

Each such gate is rewritten by replacing l (resp. l) in them with its representative.359

If a rewriting step results in a trivial gate, it is marked as garbage and skipped in later360

checks. For example, assume that literal b is dequeued in Line 13, and it is equivalent to its361

representative a. Then, the rewriting of the AND gate (l = a ∧ b) based on this equivalence362

results in the equivalence l = a. This we record and then mark the gate as garbage, without363

removing it from the RHS occurrence list of a.364

Recording or merging an equivalence l1 = l2 consists of determining the representatives365

r1 of l1 and r2 of l2 (could be the literal itself). Assuming w.l.o.g. that |r1| < |r2|, we use366

r1 as the new representative for both literals and push l2 (the literal that is assigned a new367

representative) on the equivalence queue. As a last step, for proof logging, we augment the368

CNF with two binary clauses to capture that l2 ↔ r1 (this step is not shown in Alg. 7). Once369

the loop terminates, this augmented CNF is passed to a global equivalent literal substitution370

(ELS) procedure, which substitutes all equivalent literals in one pass over the formula.371

Besides those (actually rather complex) ways of rewriting gates, another complication372

exists. It has to be taken into account when rewriting actually leads to a unit: for instance, if373

b in the discussed example with (l = a ∧ b) has ā as representative instead of a, we can derive374

the unit clause l̄. In this situation, we not only propagate this new assignment through the375

original CNF clauses, using the existing BCP mechanism of the SAT solver, but also need376

SAT 2024



N:12 Clausal Congruence Closure

Algorithm 7 An abstract version of our congruence closure algorithm. In the actual
implementation we use a hash table to search gates in G by their RHS (in Lines 11 and 17)
and interleave the loop in Lines 11–12 with gate extraction in Line 7. We further need to have fast
access in Line 14 to all gates with the dequeued literal in their RHS, for which we use occurrence
lists. We also do not show how derived unit clauses on this level of abstraction are handled which in
our implementation are first propagated over the CNF and then used to simplify gates.

merge-literals (CNF F , queue Q, representatives ρ, literals l1, l2) // F , Q, ρ by reference
1 r1 = ρ(l1), r2 = ρ(l2)
2 if r1 = r̄2 then F = ⊥ and return // inconsistent equivalence thus F unsatisfiable
3 select r ∈ {r1, r2} with |r| = min(|r1|, |r2|) // pick representative with smaller variable
4 update ρ(l1) = ρ(l2) = r and ρ(l̄1) = ρ(l̄2) = r̄

5 if r ̸= r1 then enqueue l1 to Q

6 if r ̸= r2 then enqueue l2 to Q

clausal-congruence-closure (CNF F ) // by reference, i.e., F updated in place
7 G = extract-gates (F)
8 literals L = all literals in F

9 representatives ρ : L → L initialized to ρ(l) = l

10 Q = empty literal queue
11 for all (l1 = rhs1), (l2 = rhs2) ∈ G with rhs1 = rhs2

12 merge-literals (F , Q, ρ, l1, l2)
13 while F ̸= ⊥ and Q not empty dequeue l from Q

14 for all gates (k = rhs) ∈ G where l or l̄ occurs in rhs
15 use ρ to rewrite (k = rhs) to (k′ = rhs′)
16 remove gate (k = rhs) from G

17 if G contains (k′′ = rhs′′) with rhs′ = rhs′′ then merge-literals (F , Q, ρ, k′, k′′)
18 else add gate (k′ = rhs′) to G

19 remove clauses C from F with C ̸= ρ(C) ∧ ρ(C) ∈ F

20 replace F with ρ(F )

to simplify all gates in which l or l̄ occurs. Thus our loop actually consists of propagating377

with higher priority all literals root-level assigned to a constant through gates in which they378

occur on the RHS, simplifying them accordingly, and then with lower priority propagating379

equivalent literals and rewriting their gates as discussed above.380

During this procedure (cf. Alg. 7), it might happen that an inconsistency is detected.381

For instance, if in the last example where l = ⊥ is derived, the LHS l is already assigned to382

⊤. Then the loop aborts and claims unsatisfiability of the formula immediately. This will in383

particular be the outcome when congruence closure is applied to isomorphic miters.384

As already pointed out in Sect. 3, matching two isomorphic gates and substituting385

one LHS literal by its representative in all clauses where it occurs, necessarily results in386

duplicating the clauses of the representative gate. This occurs, for instance, in isomorphic387

miters where half of the variables vanish, but the number of clauses does not change.388

Therefore, we originally tried to eagerly delete clauses used to extract a gate as soon as389

it became garbage or was removed. This risks turning unsatisfiable formulas satisfiable, as390

clauses can be used multiple times to extract gates. Instead, we implemented a dedicated391

global forward subsumption algorithm (hinted at in Line 19), which targets removing identical392

clauses modulo equivalent literals as recorded in the union-find data structure.393



A. Biere, K. Fazekas, M. Fleury and N. Froleyks N:13

p =
1

1

p =
2

m1 ⊕ m2

m1 =
3

c3 ? i1 : i3

m2 =
4

c3 ? i2 : i4

i1 =
5

c1 ? t1 : e1

i2 =
6

c2 ? t2 : e2

i3 =
7

c1 ? t1 : e1

i4 =
8

c2 ? t2 : e2

G5

1

0

G7

1

0

G3

1

0

t1

e1

c1

t2

e2

c2

i1

i3

c3

G6

1

0

G8

1

0

G4

1

0

i2

i4

G2

m1

m2

p = 1

(p)1

(p m1m2)2 (p m1m2)3 (p m1m2)4 (p m1m2)5

(c3 m1 i1)6 (c3 m1 i1)7 (c3 m1 i3)8 (c3 m1 i3)9

(c3 m2 i2)10 (c3 m2 i2)11 (c3 m2 i4)12 (c3 m2 i4)13

(c1 i1 t1)14 (c1 i1 t1)15 (c1 i1 e1)16 (c1 i1 e1)17

(c1 i2 t1)18 (c1 i2 t1)19 (c1 i2 e1)20 (c1 i2 e1)21

(c2 i3 t2)22 (c2 i3 t2)23 (c2 i3 e2)24 (c2 i3 e2)25

(c2 i4 t2)26 (c2 i4 t2)27 (c2 i4 e2)28 (c2 i4 e2)29

(a) gates G1, . . . , G8 (b) miter circuit (c) CNF with clauses C1, . . . , C29

Figure 8 An example of an optimized miter. It is comprised of an unsimplified circuit on the
bottom part and its optimized variant above it. The optimized circuit simply omits the unnecessary
inverters. This example also illustrates why test02 from [72] is considerably more challenging
without ITE-gate extraction. For example, to recognize easily that the output of G5 (resp. G7)
is the negation of the output of gate G6 (resp. G8), the CNF encoding must maintain parts of
the structure of the circuits. Extracting and normalizing ITE gates allows the congruence closure
approach to realize the equivalence between the two circuits efficiently (cf. Fig. 9).

9 Proofs394

The algorithms for extraction and congruence closure as well as for rewriting and simplifying395

gates are rather involved. Therefore, we rely on generating and checking clausal proofs for396

correctness (i) with our internal proof checker during development and testing, as well as397

(ii) by producing Drup proofs and external checking in production [48,65,69].398

In principle, we just have to derive the two binary clauses for each detected equivalence.399

While equivalences from matched AND gates are easy to handle as they can be simulated400

by HBR and thus yield Rup steps as discussed in Sect. 3, equivalences from matched XOR401

and ITE gates require more intermediate Drup steps as proposed in [59] for XORs or how402

ternary resolution is used in [45] for ITE gates and binary XORs.403

Note that eager ELS during congruence closure does not need to be modelled in Drup404

proofs, i.e., substituting an equivalent literal by its representative (either in clauses or in405

the RHS of a gate) as this is captured by propagation semantics in Rup. Proofs with406

hints/antecedents, such as Lrat proofs [35], would require much more effort. The internal407

proof checker receives the same information as the Drup proof, but in addition we check408

that the clauses of the Tseitin encoding of all extracted or rewritten gates are Rup.409

10 Benchmarks410

Our first HWMCC’12 benchmark set contains CNF encoded miters where HBR has difficulties411

and which had already been submitted to the SAT Competition 2013 [24]. These are miters412

for 341 AIGER [8] models used in the Hardware Model Checking Competition 2012. The413

original models are sequential and to obtain combinational miters, we simply treat latches as414

inputs and their next-state functions as outputs. We further used Abc [31] as synthesis tool415

to optimize the models (using the ‘&dc2’ command). These are passed through AigMiter416

(from the AIGER [8] tools) to construct optimized miters, tagged opt. Isomorphic miters,417

SAT 2024



N:14 Clausal Congruence Closure

2

c

4

t

6

e

8 10

12

14 16

18

2022

24

output

(a) A miter of two ITE gates in AIGER [8] format.

(x4 x1), (x4 x2), (x4 x1 x2),

(x5 x1), (x5 x3), (x5 x1 x3),

(x6 x4), (x6 x5), (x6 x4 x5),

(x7 x1), (x7 x2), (x7 x1 x2),

(x8 x1), (x8 x3), (x8 x1 x3),

(x9 x7), (x9 x8), (x9 x7 x8),

(x10 x6), (x10 x9), (x10 x6 x9),

(x11 x6), (x11 x9), (x11 x6 x9),

(x12 x10 x11), (x12).

(b) The ands CNF encoding of the AIG.

(x4 x1 x3), (x4 x1 x2),
(x4 x1 x3), (x4 x1 x2),

(x5 x1 x3), (x5 x1 x2),
(x5 x1 x3), (x5 x1 x2),

(x6 x5 x4), (x6 x5 x4), (x6).

(c) The xits CNF encoding of the AIG.

Figure 9 An illustration of the difference between xits and ands CNF encodings of a given AIG.
The miter applies an XOR (described by the three AND nodes A20, A22, and A24) to compare
c ? t : e (AND nodes A8, A10, and A12) to c ? t̄ : ē (AND nodes A14, A16, and A18). The ands
encoding (Fig. 9b) translates all 9 AND nodes of the AIG independently of each other, resulting in
26 clauses over 12 Boolean variables. The xits encoding (Fig. 9c), on the other hand, recognizes the
ITE and XOR gates in the AIG and encodes the corresponding nodes together into a CNF with 11
clauses over 6 variables. While the ands encoding destroys the original ITE and XOR structures
of the formula, the xits encoding maintains them. That allows our approach to recognize, extract
and normalize the ITE gates efficiently and thereby the congruence closure algorithm can quickly
conclude that the two ITE expressions are equivalent. This explains the efficiency of our algorithm
on the test02 miter from the IWLS’22 benchmark set (cf. Sect. 7 and Fig. 12).



A. Biere, K. Fazekas, M. Fleury and N. Froleyks N:15

tagged iso, are generated in the same way, except that optimization through Abc is skipped.418

These miter circuits are then translated to CNF with a new version of AigToCnf419

(available in the AIGER GitHub repository and in the source code artifact [15]) which has420

been extended to detect XOR and ITE gates in AIGER circuits. During Tseitin encoding, we421

check whether an AND gate has two negated AND gates as children and actually implements422

an XOR or ITE gate. In this case we use a direct CNF encoding of four clauses, as for the423

XOR and ITE gates in Fig. 1, instead of 9 clauses for three AND gates, skipping the two424

child AND gates of the top AND gate. This reduces not only the number of clauses and425

variables but also has positive effects on running time as our experiments will show (except426

for the simple identical miters where there is little difference).427

Therefore we have extended the original HWMCC’12 benchmark set by using this new428

version of AigToCnf with XOR and ITE matching too, which results in four variants of429

the 341 AIGER models: ands-iso, ands-opt, xits-iso, and xits-opt. We give in Fig. 8+9 an430

example of an optimized miter. These benchmarks are available at [17].431

Our second IWLS’22 set comes from the IWLS’22 paper [72] by He-Teng Zhang, Jie-Hong432

R. Jiang, Alan Mishchenko, and Luca Amarù. It is an update on their DAC’21 paper [70],433

focusing on a hybrid approach to SAT-sweeping, i.e., using a SAT solver incrementally, taking434

circuit structure into account. Experiments in [72] used a subset of the benchmarks from [70].435

These includes the five miters n01, n04, n06, and test01 and test02 in AIGER [8] format,436

provided by Alan Mishchenko. These benchmarks were considered hard for SAT sweeping,437

particularly for monolithic CNF-level SAT solving. Thus we consider this set of benchmarks438

as a litmus test for our usecase. As for HWMCC’12, our IWLS’22 CNF benchmarks come in439

two flavors: xits with special treatment of XOR and ITE gates during Tseitin encoding and440

ands without. These benchmarks are available at [16].441

It turned out, confirmed by Alan Mishchenko, that the outputs of test01 and test02 were442

flipped in the generation process. This does not invalidate the SAT sweeping experiments443

in [70, 72] at all. However, it needs to be taken care of when encoding them into CNF444

with AigToCnf, by simply first negating the outputs with AigFlip. Furthermore, the445

other three AIGs, n01, n04, and n06, are not negated but have multiple outputs. Thus,446

we joined them by disjunction with AigOr. These tools are part of the AIGER library447

https://github.com/arminbiere/aiger and included in the source code artifact [15].448

Continuing the discussion of Section 9, we not only empirically checked via fuzzing [32]449

that our implementation of congruence closure is sound but also that it is complete, i.e., it450

really solves isomorphic miters with AND, XOR, and ITE gates. To that end, we generated451

combinational AIGER models with our AigFuzz fuzzer, used AigMiter to produce an452

isomorphic miter, and then encoded it to CNF with our new version of AigToCnf, which453

detects XOR and ITE gates. The resulting CNF is given to Kissat using options that make454

sure that only congruence closure is run (to completion as always) without using any other455

preprocessing and not even entering the CDCL loop. Thus the CNF remains unsolved unless456

congruence closure alone can solve it.457

11 Experiments458

We follow the set-up of the main track of the SAT Competition, where each solver configuration459

is run on one benchmark instance in single-threaded mode. As compute platform we used460

the bwForCluster Helix with AMD Milan EPYC 7513 CPUs and for all experiments enforced461

a memory limit of 15 GB and a time limit of 5000 seconds with Runlim.462

SAT 2024

https://github.com/arminbiere/aiger


N:16 Clausal Congruence Closure

Different configurations of Kissat on HWMCC’12 miters [24]

0 1000 2000 3000 4000 5000

30
0

31
0

32
0

33
0

34
0

100% = 341 instances50 sec 500 sec

341  kissat−ands−iso−default
341  kissat−xits−iso−default
340  kissat−xits−iso−no−congruenceites−no−congruencexors
339  kissat−xits−iso−no−congruenceites
338  kissat−xits−iso−no−congruence
337  kissat−ands−iso−no−congruence
336  kissat−xits−opt−default
336  kissat−xits−opt−no−congruenceites−no−congruencexors
336  kissat−xits−opt−no−congruenceites
335  kissat−ands−opt−default
335  kissat−ands−opt−no−congruence
334  kissat−xits−opt−no−congruence
332  kissat−ands−iso−no−congruence−no−sweep
331  kissat−xits−iso−no−congruence−no−sweep
330  kissat−xits−opt−no−congruence−no−sweep
329  kissat−ands−opt−no−congruence−no−sweep

Figure 10 Comparison of variants of Kissat with more and more relevant features disabled. The
default configuration employs all of the methods described here. First, only the extraction of ITE
gates is disabled (no-congruenceites), then also the extraction of XOR gates (no-congruenceites-no-
congruencexors), then congruence closure is completely disabled (no-congruence), and finally even
internal SAT sweeping [21,22] is disabled (no-congruence-no-sweep). Note that for the ands encoding,
no ITE nor XOR gate can be extracted anyhow and therefore disabling their extraction gives the
same result as enabling them. Thus the plot shows only 6 ands variants but 10 xits variants. On this
and all the following plots, the results are shown in the same way as in the annual SAT competition,
e.g., a point with coordinates (1407, 333) means that 333 problems were solved in 1407 seconds.

We compare our implementation of congruence closure, enabled by default in our new463

version of Kissat with the latest version 1.0.0 of Lingeling implementing simple probing,464

blocked clause decomposition (using the tools sblitter, followed by mequick, and finally465

using the same SAT solver Lingeling 1.0.0) [44], the winner Sbva-CaDiCaL [43] of the466

SAT Competition 2023, the latest version 1.9.5 of CaDiCaL [23] and MiniSat 2.2.0 [38]. We467

further compare against Abc [31, 72] on miter circuits. It represents the state-of-the-art [72]468

in hybrid SAT sweeping, but “per se” is not a solver, even though it uses SAT solvers.469

Our results are presented as a cumulative distribution function (CDF), as in the SAT470

Competition since 2021, giving the number of solved problems (y-axis) within the amount of471

time (x-axis), i.e., the higher and the more to the left, the better. We include a horizontal472

line for all instances (100%). The x-axis shows time up-to the time-limit of 5000 seconds.473

While adding congruence closure to Kissat we introduced a dedicated preprocessing474

round, during which, after unit propagation, the first complete round of congruence closure475

is applied. Later, during solving, whenever probing based inprocessing is scheduled—which476

includes vivification, equivalent literal substitution, and other procedures—we always schedule477

again congruence closure elimination, but only on irredundant and binary clauses. It is also478

run until completion. This allows us to find additional congruent literals, as gate structure479

emerges after learning units, shrinking clauses, vivification, and variable elimination.480



A. Biere, K. Fazekas, M. Fleury and N. Froleyks N:17

Best variants of SAT solvers and Abc on HWMCC’12 miters [24]

0 1000 2000 3000 4000 5000

22
0

24
0

26
0

28
0

30
0

32
0

34
0 100% = 341 instances50 sec 500 sec

341  abc−240306−iso−fraig
341  kissat−ands−iso−default
340  lingeling−1.0.0−ands−iso−prbsimplertc
336  kissat−xits−opt−default
335  abc−240306−opt−fraig
331  blocked−clause−decomposition−ands−opt
331  blocked−clause−decomposition−ands−iso
329  lingeling−1.0.0−ands−opt−prbsimplertc
323  cadical−1.9.5−xits−iso
321  sbva−cadical−ands−iso
320  cadical−1.9.5−xits−opt
319  sbva−cadical−xits−opt
297  minisat−2.2.0−xits−iso
294  minisat−2.2.0−ands−opt

Figure 11 Number of solved HWMCC’12 miter instances at each point of time. To improve
clarity and save space, we show only the best encoding variant (ands or xits) for each SAT solver. For
instance our experiments revealed that for Kissat on optimized miters (opts) the xits encoding, i.e.,
kissat-xits-opt-default was superior to kissat-and-opt-default with the ands encoding while for MiniSat
it was the opposite (and therefore we only show minisat-2.2.0-ands-opt and not minisat-2.2.0-xits-opt).

Our primary results on HWMCC’12 miters in Fig. 10 show that isomorphic miters (iso)481

can be solved by our new congruence closure approach kissat-⋆-default instantly, both if we482

encode only AND gates directly (ands) or match them to XOR and ITE gates and then use483

a more elaborate Tseitin encoding (xits). Internal SAT sweeping [21, 22] implemented in484

Kissat is in principle also able to find equivalences of gates. It is, however, scheduled after485

our faster congruence closure algorithm. For xits encoding, congruence closure takes 0.79 s on486

average (0 s–44.21 s) and the average percentage of total solving time is 5.4% (0.02%–26.03%).487

Isomorphic miters are solved by our new algorithm instantly (the vertical lines in Fig. 10).488

Comparison with other solvers is shown in Fig. 11. Optimized miters (opt) are in general489

harder to solve, but clausal congruence closure, as enabled by default in kissat-xits-opt-default,490

even surpasses abc-240306-opt-frag, which represents the state-of-the-art in hybrid SAT491

sweeping [72], as implemented in Abc (command ‘&fraig -y’). Running simple probing492

in Lingeling until completion (lingeling-1.0.0-ands-iso-prbsimplertc) is the only CNF-level493

approach that can compete on isomorphic miters (iso), but is not competitive on optimized494

(opt) ones (Fig. 12, Tab. 13). Note that simple probing can not handle XOR nor ITE gates.495

Fig. 12 shows the results on IWLSS’22 benchmarks. Our implementation in Kissat496

(in contrast to Abc) can provide DRAT proofs [69] as standard in the SAT Competition.497

Actually only DRUP proofs are relevant for congruence closure, as described in Sect. 9.498

The results demonstrate that the overhead for proof production (proof) for Kissat is low499

and proof checking (check) has comparable run-time to solving. On these 5 benchmarks500

our new algorithm gives substantial improvements in solving time, i.e., kissat-xits-default501

vs. kissat-xits-no-congruence in Tab. 13. On four of these benchmarks Abc still wins (running502

on the AIGER circuit model while Kissat only gets CNF) except for test02 where Kissat503

is faster for the xits encoding. See Fig. 8+9 for an explanation.504

SAT 2024



N:18 Clausal Congruence Closure

Hard Combinational Equivalence Checking Miters from IWLS’22 [70,72]

0 1000 2000 3000 4000 5000 6000

1
2

3
4

5
100%

5 instances
50 sec 500 sec 5000 sec time limit

5  abc−240306−fraig
5  kissat−xits−check
5  kissat−ands−check
5  kissat−xits−default
5  kissat−xits−proof
5  kissat−xits−no−sweep
5  kissat−xits−no−congruenceites
5  kissat−xits−no−congruence
5  kissat−xits−no−congruence−no−sweep
5  kissat−ands−default
5  blocked−clause−decomposition−ands
5  lingeling−1.0.0−ands−default
4  lingeling−1.0.0−xits−prbsimplertc
4  blocked−clause−decomposition−xits
4  lingeling−1.0.0−ands−no−prbsimple
4  lingeling−1.0.0−ands−prbsimplertc
3  sbva−cadical−ands
3  cadical−1.9.5−ands
3  minisat−2.2.0−xits
2  cadical−1.9.5−xits
2  sbva−cadical−xits
2  minisat−2.2.0−ands

Figure 12 These miters from [70] were target of optimizations reported in [72]. They are indeed
hard for monolithic SAT solving starting after Tseitin encoding. Results on benchmark test02
are particularly interesting as kissat-xits-default took 1.79 s. to solve it, Abc 5.75 s, while disabling
extraction of ITE gates in kissat-xits-no-congruenceites already needs 2032.41 s and plain AND-only
Tseitin encoding in kissat-ands-default even 4585.76 s (cf. Tab. 13 for more detailed results).

Table 13 The actual run-time on the IWLS’22 miters from [70,72] (cf. CDF in Fig. 12).

n01 n04 n06 test01 test02
abc-240306-fraig 5.96 5.38 4.86 2.89 5.75
kissat-xits-check 95.45 162.38 282.61 54.28 9.06
kissat-ands-check 81.57 209.54 233.75 67.95 431.21
kissat-xits-default 305.60 160.01 542.18 352.15 1.79
kissat-xits-proof 287.21 179.72 593.54 345.60 2.38
kissat-xits-no-sweep 199.17 807.07 644.22 669.11 1.79
kissat-xits-no-congruenceites 238.32 157.06 631.46 363.93 2032.41
kissat-xits-no-congruence 222.25 218.73 684.94 404.48 2270.00
kissat-xits-no-congruence-no-sweep 221.25 678.17 720.29 1073.75 2620.65
kissat-ands-default 231.87 201.45 664.81 479.28 4585.76
blocked-clause-decomposition-ands 840.19 1058.28 2345.20 2368.54 4846.14
lingeling-1.0.0-ands-default 563.03 3192.09 1997.28 2788.51 3788.10
lingeling-1.0.0-xits-prbsimplertc 607.82 1039.04 1540.55 2459.75 —
blocked-clause-decomposition-xits 622.46 822.68 1841.48 2628.96 —
lingeling-1.0.0-ands-no-prbsimple 733.61 1928.03 2144.69 2568.83 —
lingeling-1.0.0-ands-prbsimplertc 700.58 3085.86 2092.79 2875.45 —
sbva-cadical-ands 244.94 1800.21 1135.28 — —
cadical-1.9.5-ands 236.14 2270.17 701.13 — —
minisat-2.2.0-xits 895.77 4088.40 3525.61 — —
cadical-1.9.5-xits 227.21 — 801.69 — —
sbva-cadical-xits 205.70 — 853.77 — —
minisat-2.2.0-ands 1229.07 — 3660.71 — —



A. Biere, K. Fazekas, M. Fleury and N. Froleyks N:19

Kissat and Sbva-CaDiCaL on all 400 SAT Competition 2022 main track benchmarks

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

30
0

316  kissat−default
314  kissat−no−sweep
305  kissat−no−congruence−no−sweep
302  kissat−no−congruence
291  sbva−cadical

Figure 14 On the problems of the main track of the SAT Competition 2022 [18] the congruence
closure algorithm is successful. In fact, all versions of Kissat are faster than Sbva-CaDiCaL. Two
benchmarks 6133-sc2014 and 6s184, reused from our HWMCC’12 isomorphic miter benchmarks
submitted to the SAT Competition 2013 [24], were solved immediately by congruence closure (in
0.07 s and 0.04 s), but were also solved without congruence closure (in 37.51 s and 25.99 s). The default
configuration of Kissat eliminated a total of 108 272 236 equivalent literals found by congruence
closure among all the 400 benchmarks of the main track.

Kissat and Sbva-CaDiCaL on all 400 SAT Competition 2023 main track benchmarks

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

30
0

287  sbva−cadical
277  kissat−no−congruence
276  kissat−no−sweep
275  kissat−no−congruence−no−sweep
273  kissat−default

Figure 15 In the main track of the SAT Competition 2023 [19] with many hard combinatorial
problems, Structured Bounded Variable Addition (SBVA) [43] in Sbva-CaDiCaL, the winner of
this track, has an advantage over Kissat, because SBVA and congruence closure are orthogonal.
The different variants of congruence closure are very similar here, although the default version spent
on average 4.41% of the running time in congruence closure.

SAT 2024



N:20 Clausal Congruence Closure

To assess the effectiveness of congruence closure on a more general set of problems, we also505

evaluated our new version of Kissat on problem instances [18,19] from the SAT Competition506

2022 and 2023. The results show that our implementation is fast enough to run to completion507

even when there are few or no gates to extract. On the 2022 problems our method solves 14508

more instances (Fig. 14). The effect of congruence closure on the 2023 problem set is small509

(cf. Fig. 15), probably due to a large fraction of combinatorial benchmarks. Following the510

SAT practitioner manifesto [27] we also compare against the 2023 winner Sbva-CaDiCaL.511

Finally, we want to investigate the average learned clause length, related to the observation512

in the introduction on CDCL not being able to produce short proofs. Therefore, we have513

rerun without congruence closure (no-congruence) but with more statistics all the isomorphic514

HWMCC’12 miters again (see the metrics directories in the experimental data artifact [14])515

and computed the average learned clause lengths over all miters, which is 43.6 literals per516

learned clause for ands-iso-no-congruence, and 46.7 for xits-iso-no-congruence. Our default517

version of Kissat with congruence closure solves these miters instantly through preprocessing,518

without the need to learn any clause, and thus we computed instead the average added clause519

length in the Rup proofs which is 1.88 literals for ands-iso and 2.12 for xits-iso.520

Source code is available on Zenodo [15]. The HWMCC’12 benchmarks [17] and ILWS’22521

benchmarks [16] are available on Zenodo too, as well as all experimental data [14].522

12 Conclusion523

We explored the idea of applying congruence closure to gates extracted from CNF using an524

inverse of the Tseitin encoding. Our new optimized extraction algorithms for AND, XOR, and525

ITE gates are able to run until completion within seconds on large combinational equivalence526

checking miters and benchmarks from the SAT competition. These gates are then used in a527

congruence closure algorithm to match equivalent gates and deduce equivalent literals, which528

can also run to completion on standard benchmarks from the SAT competition and is now529

enabled by default in our new version of the SAT solver Kissat.530

Our experiments show that this is the first approach in the literature to instantly solve large531

isomorphic CNF encoded miters. Further, it gives substantial improvements on industrially532

relevant optimized miters, where our CNF level approach reaches the performance or even is533

better than a dedicated circuit level SAT sweeping technique.534

Acknowledgements535

Finally, we want to thank the anonymous reviewers for valuable comments and useful536

suggestions, which definitely helped us to improve the paper considerably, particularly in the537

exposition of the experimental part.538

References539

1 Luca G. Amarù, Felipe S. Marranghello, Eleonora Testa, Christopher Casares, Vinicius N.540

Possani, Jiong Luo, Patrick Vuillod, Alan Mishchenko, and Giovanni De Micheli. Sat-sweeping541

enhanced for logic synthesis. In 57th ACM/IEEE Design Automation Conference, DAC 2020,542

San Francisco, CA, USA, July 20-24, 2020, pages 1–6. IEEE, 2020. doi:10.1109/DAC18072.543

2020.9218691.544

2 Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for545

testing the truth of certain quantified Boolean formulas. Inf. Process. Lett., 8(3):121–123,546

1979. doi:10.1016/0020-0190(79)90002-4.547

https://doi.org/10.1109/DAC18072.2020.9218691
https://doi.org/10.1109/DAC18072.2020.9218691
https://doi.org/10.1109/DAC18072.2020.9218691
https://doi.org/10.1016/0020-0190(79)90002-4


A. Biere, K. Fazekas, M. Fleury and N. Froleyks N:21

3 Fahiem Bacchus. Enhancing Davis Putnam with extended binary clause reasoning. In Rina548

Dechter, Michael J. Kearns, and Richard S. Sutton, editors, Proceedings of the Eighteenth549

National Conference on Artificial Intelligence and Fourteenth Conference on Innovative550

Applications of Artificial Intelligence, July 28 - August 1, 2002, Edmonton, Alberta, Canada,551

pages 613–619. AAAI Press / The MIT Press, 2002.552

4 Fahiem Bacchus and Jonathan Winter. Effective preprocessing with hyper-resolution and553

equality reduction. In Enrico Giunchiglia and Armando Tacchella, editors, Theory and554

Applications of Satisfiability Testing, 6th International Conference, SAT 2003. Santa Margherita555

Ligure, Italy, May 5-8, 2003 Selected Revised Papers, volume 2919 of Lecture Notes in Computer556

Science, pages 341–355. Springer, 2003. doi:10.1007/978-3-540-24605-3_26.557

5 Tomás Balyo, Andreas Fröhlich, Marijn Heule, and Armin Biere. Everything you always558

wanted to know about blocked sets (but were afraid to ask). In Carsten Sinz and Uwe Egly,559

editors, Theory and Applications of Satisfiability Testing - SAT 2014 - 17th International560

Conference, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July561

14-17, 2014. Proceedings, volume 8561 of Lecture Notes in Computer Science, pages 317–332.562

Springer, 2014. doi:10.1007/978-3-319-09284-3_24.563

6 Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds. Congruence closure with free variables.564

In Axel Legay and Tiziana Margaria, editors, Tools and Algorithms for the Construction565

and Analysis of Systems - 23rd International Conference, TACAS 2017, Held as Part of566

the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,567

Sweden, April 22-29, 2017, Proceedings, Part II, volume 10206 of Lecture Notes in Computer568

Science, pages 214–230, 2017. doi:10.1007/978-3-662-54580-5_13.569

7 Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability570

modulo theories. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors,571

Handbook of Satisfiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence572

and Applications, pages 1267–1329. IOS Press, 2021. doi:10.3233/FAIA201017.573

8 Armin Biere. The AIGER And-Inverter Graph (AIG) format version 20071012. Technical574

Report 07/1, Institute for Formal Models and Verification, Johannes Kepler University,575

Altenbergerstr. 69, 4040 Linz, Austria, 2007.576

9 Armin Biere. P{re,i}coSAT@SC’09. In SAT 2009 Competitive Event Booklet, 2009. URL:577

http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf.578

10 Armin Biere. Lingeling and friends entering the SAT Challenge 2012. In Adrian Balint, Anton579

Belov, Daniel Diepold, Simon Gerber, Matti Järvisalo, and Carsten Sinz, editors, Proc. of580

SAT Challenge 2012: Solver and Benchmark Descriptions, volume B-2012-2 of Department of581

Computer Science Series of Publications B, pages 33–34. Univ.Helsinki, 2012.582

11 Armin Biere. Yet another local search solver and Lingeling and friends entering the SAT583

Competition 2014. In Adrian Balint, Andon Belov, Marijn Heule, and Matti Järvisalo, editors,584

Proc. of SAT Competition 2014 – Solver and Benchmark Descriptions, volume B-2014-2 of585

Department of Computer Science Series of Publications B, pages 39–40. Univ.Helsinki, 2014.586

12 Armin Biere. Collection of combinational arithmetic miters submitted to the SAT Competition587

2016. In Tomáš Balyo, Marijn Heule, and Matti Järvisalo, editors, Proc. of SAT Competition588

2016 – Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer589

Science Series of Publications B, pages 65–66. Univ.Helsinki, 2016.590

13 Armin Biere. CaDiCaL at the SAT Race 2019. In Marijn Heule, Matti Järvisalo, and Martin591

Suda, editors, Proc. of SAT Race 2019 – Solver and Benchmark Descriptions, volume B-2019-1592

of Department of Computer Science Series of Publications B, pages 8–9. Univ.Helsinki, 2019.593

14 Armin Biere. Clausal congruence closure paper logs, plots and tables, June 2024. doi:594

10.5281/zenodo.11658133.595

15 Armin Biere. Clausal congruence closure paper source code, June 2024. doi:10.5281/zenodo.596

11652423.597

16 Armin Biere. CNF encoded hard miters from IWLS’22 paper, March 2024. doi:10.5281/598

zenodo.10823099.599

SAT 2024

https://doi.org/10.1007/978-3-540-24605-3_26
https://doi.org/10.1007/978-3-319-09284-3_24
https://doi.org/10.1007/978-3-662-54580-5_13
https://doi.org/10.3233/FAIA201017
http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf
https://doi.org/10.5281/zenodo.11658133
https://doi.org/10.5281/zenodo.11658133
https://doi.org/10.5281/zenodo.11658133
https://doi.org/10.5281/zenodo.11652423
https://doi.org/10.5281/zenodo.11652423
https://doi.org/10.5281/zenodo.11652423
https://doi.org/10.5281/zenodo.10823099
https://doi.org/10.5281/zenodo.10823099
https://doi.org/10.5281/zenodo.10823099


N:22 Clausal Congruence Closure

17 Armin Biere. CNF encoded isomorphic and optimized miters from Hardware Model Checking600

Competition 2012 models, March 2024. doi:10.5281/zenodo.10823128.601

18 Armin Biere. SAT Competition 2022 main track benchmarks, June 2024. doi:10.5281/602

zenodo.11428010.603

19 Armin Biere. SAT Competition 2023 main track benchmarks, June 2024. doi:10.5281/604

zenodo.11426992.605

20 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,606

Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo,607

Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of608

SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department609

of Computer Science Report Series B, pages 51–53. Univ.Helsinki, 2020.610

21 Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition611

2022. In Tomas Balyo, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors,612

Proc. of SAT Competition 2022 – Solver and Benchmark Descriptions, volume B-2022-1 of613

Department of Computer Science Series of Publications B, pages 10–11. Univ.Helsinki, 2022.614

22 Armin Biere, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat, Paracooba entering615

the SAT Competition 2021. In Tomas Balyo, Nils Froleyks, Marijn Heule, Markus Iser, Matti616

Järvisalo, and Martin Suda, editors, Proc. of SAT Competition 2021 – Solver and Benchmark617

Descriptions, volume B-2021-1 of Department of Computer Science Report Series B, pages618

10–13. Univ.Helsinki, 2021.619

23 Armin Biere, Mathias Fleury, and Florian Pollitt. CaDiCaL_vivinst, IsaSAT, Gimsatul, Kissat,620

and TabularaSAT entering the SAT competition 2023. In Tomas Balyo, Nils Froleyks, Marijn621

Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of SAT Competition622

2023 – Solver and Benchmark Descriptions, volume B-2023-1 of Department of Computer623

Science Report Series B, pages 14–15. Univ.Helsinki, 2023.624

24 Armin Biere, Marijn Heule, Matti Järvisalo, and Norbert Manthey. Equivalence checking of625

HWMCC 2012 circuits. In Adrian Balint, Andon Belov, Marijn Heule, and Matti Järvisalo,626

editors, Proc. of SAT Competition 2013 – Solver and Benchmark Descriptions, volume B-2013-1627

of Department of Computer Science Series of Publications B, page 104. Univ.Helsinki, 2013.628

25 Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of629

Satisfiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications.630

IOS Press, 2021. doi:10.3233/FAIA336.631

26 Armin Biere, Matti Järvisalo, and Benjamin Kiesl. Preprocessing in SAT solving. In Armin632

Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability633

- Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications, pages634

391–435. IOS Press, 2021. doi:10.3233/FAIA200992.635

27 Armin Biere, Matti Järvisalo, Daniel Le Berre, Kuldeep S. Meel, and Stefan Mengel. The SAT636

Practitioner’s Manifesto, September 2020. doi:10.5281/zenodo.4500928.637

28 Alain Billionnet and Alain Sutter. An efficient algorithm for the 3-satisfiability problem. Oper.638

Res. Lett., 12(1):29–36, 1992. doi:10.1016/0167-6377(92)90019-Y.639

29 Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient implementation of a BDD640

package. In Richard C. Smith, editor, Proceedings of the 27th ACM/IEEE Design Automation641

Conference. Orlando, Florida, USA, June 24-28, 1990, pages 40–45. IEEE Computer Society642

Press, 1990. doi:10.1145/123186.123222.643

30 Daniel Brand. Verification of large synthesized designs. In Michael R. Lightner and Jochen644

A. G. Jess, editors, Proceedings of the 1993 IEEE/ACM International Conference on Computer-645

Aided Design, 1993, Santa Clara, California, USA, November 7-11, 1993, pages 534–537.646

IEEE Computer Society / ACM, 1993. doi:10.1109/ICCAD.1993.580110.647

31 Robert K. Brayton and Alan Mishchenko. ABC: an academic industrial-strength verification648

tool. In Tayssir Touili, Byron Cook, and Paul B. Jackson, editors, Computer Aided Verification,649

22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings,650

https://doi.org/10.5281/zenodo.10823128
https://doi.org/10.5281/zenodo.11428010
https://doi.org/10.5281/zenodo.11428010
https://doi.org/10.5281/zenodo.11428010
https://doi.org/10.5281/zenodo.11426992
https://doi.org/10.5281/zenodo.11426992
https://doi.org/10.5281/zenodo.11426992
https://doi.org/10.3233/FAIA336
https://doi.org/10.3233/FAIA200992
https://doi.org/10.5281/zenodo.4500928
https://doi.org/10.1016/0167-6377(92)90019-Y
https://doi.org/10.1145/123186.123222
https://doi.org/10.1109/ICCAD.1993.580110


A. Biere, K. Fazekas, M. Fleury and N. Froleyks N:23

volume 6174 of Lecture Notes in Computer Science, pages 24–40. Springer, 2010. doi:651

10.1007/978-3-642-14295-6_5.652

32 Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of653

SAT and QBF solvers. In Ofer Strichman and Stefan Szeider, editors, Theory and Applications654

of Satisfiability Testing - SAT 2010, 13th International Conference, SAT 2010, Edinburgh,655

UK, July 11-14, 2010. Proceedings, volume 6175 of Lecture Notes in Computer Science, pages656

44–57. Springer, 2010. doi:10.1007/978-3-642-14186-7\_6.657

33 Randal E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans.658

Computers, 35(8):677–691, 1986. doi:10.1109/TC.1986.1676819.659

34 Maciej J. Ciesielski, Cunxi Yu, Walter Brown, Duo Liu, and André Rossi. Verification of660

gate-level arithmetic circuits by function extraction. In Proceedings of the 52nd Annual Design661

Automation Conference, San Francisco, CA, USA, June 7-11, 2015, pages 52:1–52:6. ACM,662

2015. doi:10.1145/2744769.2744925.663

35 Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter Schneider-664

Kamp. Efficient certified RAT verification. In Leonardo de Moura, editor, Automated Deduction665

- CADE 26 - 26th International Conference on Automated Deduction, Gothenburg, Sweden,666

August 6-11, 2017, Proceedings, volume 10395 of Lecture Notes in Computer Science, pages667

220–236. Springer, 2017. doi:10.1007/978-3-319-63046-5_14.668

36 Alvaro del Val. Simplifying binary propositional theories into connected components twice669

as fast. In Robert Nieuwenhuis and Andrei Voronkov, editors, Logic for Programming,670

Artificial Intelligence, and Reasoning, 8th International Conference, LPAR 2001, Havana,671

Cuba, December 3-7, 2001, Proceedings, volume 2250 of Lecture Notes in Computer Science,672

pages 392–406. Springer, 2001. doi:10.1007/3-540-45653-8_27.673

37 Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and clause674

elimination. In Fahiem Bacchus and Toby Walsh, editors, Theory and Applications of675

Satisfiability Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June 19-23,676

2005, Proceedings, volume 3569 of Lecture Notes in Computer Science, pages 61–75. Springer,677

2005.678

38 Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia and679

Armando Tacchella, editors, Theory and Applications of Satisfiability Testing, 6th International680

Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised681

Papers, volume 2919 of Lecture Notes in Computer Science, pages 502–518. Springer, 2003.682

doi:10.1007/978-3-540-24605-3_37.683

39 Mathias Fleury and Armin Biere. Mining definitions in Kissat with Kittens. Formal Methods684

Syst. Des., 60(3):381–404, 2022. doi:10.1007/S10703-023-00421-2.685

40 Zhaohui Fu and Sharad Malik. Extracting logic circuit structure from conjunctive normal form686

descriptions. In 20th International Conference on VLSI Design (VLSI Design 2007), Sixth687

International Conference on Embedded Systems (ICES 2007), 6-10 January 2007, Bangalore,688

India, pages 37–42. IEEE Computer Society, 2007. doi:10.1109/VLSID.2007.81.689

41 Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In International690

Symposium on Artificial Intelligence and Mathematics, ISAIM 2008, Fort Lauderdale,691

Florida, USA, January 2-4, 2008, 2008. URL: http://isaim2008.unl.edu/PAPERS/692

TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf.693

42 Roman Gershman and Ofer Strichman. Cost-effective hyper-resolution for preprocessing694

CNF formulas. In Fahiem Bacchus and Toby Walsh, editors, Theory and Applications of695

Satisfiability Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June 19-23,696

2005, Proceedings, volume 3569 of Lecture Notes in Computer Science, pages 423–429. Springer,697

2005. doi:10.1007/11499107_34.698

43 Andrew Haberlandt, Harrison Green, and Marijn J. H. Heule. Effective auxiliary variables via699

structured reencoding. In Meena Mahajan and Friedrich Slivovsky, editors, 26th International700

Conference on Theory and Applications of Satisfiability Testing, SAT 2023, July 4-8, 2023,701

SAT 2024

https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1145/2744769.2744925
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/3-540-45653-8_27
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/S10703-023-00421-2
https://doi.org/10.1109/VLSID.2007.81
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
https://doi.org/10.1007/11499107_34


N:24 Clausal Congruence Closure

Alghero, Italy, volume 271 of LIPIcs, pages 11:1–11:19. Schloss Dagstuhl - Leibniz-Zentrum702

für Informatik, 2023. doi:10.4230/LIPICS.SAT.2023.11.703

44 Marijn Heule and Armin Biere. Blocked clause decomposition. In Kenneth L. McMillan, Aart704

Middeldorp, and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and705

Reasoning - 19th International Conference, LPAR-19, Stellenbosch, South Africa, December706

14-19, 2013. Proceedings, volume 8312 of Lecture Notes in Computer Science, pages 423–438.707

Springer, 2013. doi:10.1007/978-3-642-45221-5_29.708

45 Marijn Heule, Matti Järvisalo, and Armin Biere. Revisiting hyper binary resolution. In709

Carla P. Gomes and Meinolf Sellmann, editors, Integration of AI and OR Techniques710

in Constraint Programming for Combinatorial Optimization Problems, 10th International711

Conference, CPAIOR 2013, Yorktown Heights, NY, USA, May 18-22, 2013. Proceedings,712

volume 7874 of Lecture Notes in Computer Science, pages 77–93. Springer, 2013. doi:713

10.1007/978-3-642-38171-3_6.714

46 Marijn J. H. Heule. Proofs of unsatisfiability. In Armin Biere, Marijn Heule, Hans van715

Maaren, and Toby Walsh, editors, Handbook of Satisfiability - Second Edition, volume 336716

of Frontiers in Artificial Intelligence and Applications, pages 635–668. IOS Press, 2021.717

doi:10.3233/FAIA200998.718

47 Marijn J. H. Heule and Armin Biere. Proofs for satisfiability problems. In All about Proofs,719

Proofs for All (APPA), volume 55 of Math. Logic and Foundations. College Pub., 2015.720

48 Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Strong extension-free proof systems. J.721

Autom. Reason., 64(3):533–554, 2020. doi:10.1007/S10817-019-09516-0.722

49 Markus Iser. Recognition and Exploitation of Gate Structure in SAT Solving. PhD thesis,723

Karlsruhe Institute of Technology, Germany, 2020. URL: https://nbn-resolving.org/urn:724

nbn:de:101:1-2020042904595660732648.725

50 Markus Iser, Felix Kutzner, and Carsten Sinz. Using gate recognition and random simulation726

for under-approximation and optimized branching in SAT solvers. In 29th IEEE International727

Conference on Tools with Artificial Intelligence, ICTAI 2017, Boston, MA, USA, November728

6-8, 2017, pages 1029–1036. IEEE Computer Society, 2017. doi:10.1109/ICTAI.2017.00158.729

51 Daniela Kaufmann and Armin Biere. Improving AMulet2 for verifying multiplier circuits using730

SAT solving and computer algebra. Int. J. Softw. Tools Technol. Transf., 25(2):133–144, 2023.731

doi:10.1007/s10009-022-00688-6.732

52 Daniela Kaufmann, Manuel Kauers, Armin Biere, and David Cok. Arithmetic verification733

problems submitted to the SAT Race 2019. In Marijn Heule, Matti Järvisalo, and Martin734

Suda, editors, Proc. of SAT Race 2019 – Solver and Benchmark Descriptions, volume B-2019-1735

of Department of Computer Science Series of Publications B, page 49. Univ.Helsinki, 2019.736

53 Andreas Kuehlmann and Florian Krohm. Equivalence checking using cuts and heaps. In737

Ellen J. Yoffa, Giovanni De Micheli, and Jan M. Rabaey, editors, Proceedings of the 34st738

Conference on Design Automation, Anaheim, California, USA, Anaheim Convention Center,739

June 9-13, 1997, pages 263–268. ACM Press, 1997. doi:10.1145/266021.266090.740

54 Andreas Kuehlmann, Viresh Paruthi, Florian Krohm, and Malay K. Ganai. Robust boolean741

reasoning for equivalence checking and functional property verification. IEEE Trans. Comput.742

Aided Des. Integr. Circuits Syst., 21(12):1377–1394, 2002. doi:10.1109/TCAD.2002.804386.743

55 Jean-Marie Lagniez, Emmanuel Lonca, and Pierre Marquis. Definability for model counting.744

Artif. Intell., 281:103229, 2020. doi:10.1016/j.artint.2019.103229.745

56 Chu Min Li. Integrating equivalency reasoning into Davis-Putnam procedure. In Henry A.746

Kautz and Bruce W. Porter, editors, Proceedings of the Seventeenth National Conference747

on Artificial Intelligence and Twelfth Conference on on Innovative Applications of Artificial748

Intelligence, July 30 - August 3, 2000, Austin, Texas, USA., pages 291–296. AAAI Press /749

The MIT Press, 2000.750

57 Robert Nieuwenhuis and Albert Oliveras. Fast congruence closure and extensions. Inf. Comput.,751

205(4):557–580, 2007. doi:10.1016/J.IC.2006.08.009.752

https://doi.org/10.4230/LIPICS.SAT.2023.11
https://doi.org/10.1007/978-3-642-45221-5_29
https://doi.org/10.1007/978-3-642-38171-3_6
https://doi.org/10.1007/978-3-642-38171-3_6
https://doi.org/10.1007/978-3-642-38171-3_6
https://doi.org/10.3233/FAIA200998
https://doi.org/10.1007/S10817-019-09516-0
https://nbn-resolving.org/urn:nbn:de:101:1-2020042904595660732648
https://nbn-resolving.org/urn:nbn:de:101:1-2020042904595660732648
https://nbn-resolving.org/urn:nbn:de:101:1-2020042904595660732648
https://doi.org/10.1109/ICTAI.2017.00158
https://doi.org/10.1007/s10009-022-00688-6
https://doi.org/10.1145/266021.266090
https://doi.org/10.1109/TCAD.2002.804386
https://doi.org/10.1016/j.artint.2019.103229
https://doi.org/10.1016/J.IC.2006.08.009


A. Biere, K. Fazekas, M. Fleury and N. Froleyks N:25

58 Richard Ostrowski, Éric Grégoire, Bertrand Mazure, and Lakhdar Sais. Recovering and753

exploiting structural knowledge from CNF formulas. In Pascal Van Hentenryck, editor,754

Principles and Practice of Constraint Programming - CP 2002, 8th International Conference,755

CP 2002, Ithaca, NY, USA, September 9-13, 2002, Proceedings, volume 2470 of Lecture Notes756

in Computer Science, pages 185–199. Springer, 2002. doi:10.1007/3-540-46135-3_13.757

59 Tobias Philipp and Adrian Rebola-Pardo. DRAT proofs for XOR reasoning. In Loizos Michael758

and Antonis C. Kakas, editors, Logics in Artificial Intelligence - 15th European Conference,759

JELIA 2016, Larnaca, Cyprus, November 9-11, 2016, Proceedings, volume 10021 of Lecture760

Notes in Computer Science, pages 415–429, 2016. doi:10.1007/978-3-319-48758-8_27.761

60 Jarrod A. Roy, Igor L. Markov, and Valeria Bertacco. Restoring circuit structure from SAT762

instances. In Proceedings of International Workshop on Logic and Synthesis (IWLS), pages763

663–678, 2004.764

61 Amr A. R. Sayed-Ahmed, Daniel Große, Ulrich Kühne, Mathias Soeken, and Rolf Drechsler.765

Formal verification of integer multipliers by combining gröbner basis with logic reduction. In766

Luca Fanucci and Jürgen Teich, editors, 2016 Design, Automation & Test in Europe Conference767

& Exhibition, DATE 2016, Dresden, Germany, March 14-18, 2016, pages 1048–1053. IEEE,768

2016. URL: https://ieeexplore.ieee.org/document/7459464/.769

62 Friedrich Slivovsky. Interpolation-based semantic gate extraction and its applications to770

QBF preprocessing. In Shuvendu K. Lahiri and Chao Wang, editors, Computer Aided771

Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24,772

2020, Proceedings, Part I, volume 12224 of Lecture Notes in Computer Science, pages 508–528.773

Springer, 2020. doi:10.1007/978-3-030-53288-8_24.774

63 Gordon L. Smith, Ralph J. Bahnsen, and Harry Halliwell. Boolean comparison of hardware775

and flowcharts. IBM J. Res. Dev., 26(1):106–116, 1982. doi:10.1147/RD.261.0106.776

64 Mate Soos and Kuldeep S. Meel. BIRD: engineering an efficient CNF-XOR SAT solver and777

its applications to approximate model counting. In The Thirty-Third AAAI Conference on778

Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial779

Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in780

Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019,781

pages 1592–1599. AAAI Press, 2019. doi:10.1609/AAAI.V33I01.33011592.782

65 Yong Kiam Tan, Marijn J. H. Heule, and Magnus O. Myreen. cake_lpr: Verified propagation783

redundancy checking in cakeml. In Jan Friso Groote and Kim Guldstrand Larsen, editors, Tools784

and Algorithms for the Construction and Analysis of Systems - 27th International Conference,785

TACAS 2021, Held as Part of the European Joint Conferences on Theory and Practice of786

Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings,787

Part II, volume 12652 of Lecture Notes in Computer Science, pages 223–241. Springer, 2021.788

doi:10.1007/978-3-030-72013-1_12.789

66 Robert Endre Tarjan. A class of algorithms which require nonlinear time to maintain disjoint790

sets. J. Comput. Syst. Sci., 18(2):110–127, 1979. doi:10.1016/0022-0000(79)90042-4.791

67 Grigorii Samuilovich Tseitin. On the complexity of derivation in propositional calculus. Studies792

in Mathematics and Mathematical Logic, 2:115–125, 1968.793

68 Allen Van Gelder and Yumi K. Tsuji. Satisfiability testing with more reasoning and less guessing.794

In David S. Johnson and Michael A. Trick, editors, Cliques, Coloring, and Satisfiability,795

Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, October 11-13, 1993,796

volume 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,797

pages 559–586. DIMACS/AMS, 1993.798

69 Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and799

trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, Theory800

and Applications of Satisfiability Testing - SAT 2014 - 17th International Conference, Held801

as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.802

Proceedings, volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer,803

2014. doi:10.1007/978-3-319-09284-3_31.804

SAT 2024

https://doi.org/10.1007/3-540-46135-3_13
https://doi.org/10.1007/978-3-319-48758-8_27
https://ieeexplore.ieee.org/document/7459464/
https://doi.org/10.1007/978-3-030-53288-8_24
https://doi.org/10.1147/RD.261.0106
https://doi.org/10.1609/AAAI.V33I01.33011592
https://doi.org/10.1007/978-3-030-72013-1_12
https://doi.org/10.1016/0022-0000(79)90042-4
https://doi.org/10.1007/978-3-319-09284-3_31


N:26 Clausal Congruence Closure

70 He-Teng Zhang, Jie-Hong R. Jiang, Luca G. Amarù, Alan Mishchenko, and Robert K. Brayton.805

Deep integration of circuit simulator and SAT solver. In 58th ACM/IEEE Design Automation806

Conference, DAC 2021, San Francisco, CA, USA, December 5-9, 2021, pages 877–882. IEEE,807

2021. doi:10.1109/DAC18074.2021.9586331.808

71 He-Teng Zhang, Jie-Hong R. Jiang, and Alan Mishchenko. A circuit-based SAT solver for logic809

synthesis. In IEEE/ACM International Conference On Computer Aided Design, ICCAD 2021,810

Munich, Germany, November 1-4, 2021, pages 1–6. IEEE, 2021. doi:10.1109/ICCAD51958.811

2021.9643505.812

72 He-Teng Zhang, Jie-Hong R. Jiang, Alan Mishchenko, and Luca G. Amarù. Improved large-813

scale SAT sweeping. In Proc. 31st International Workshop on Logic & Synthesis, 2022.814

https://doi.org/10.1109/DAC18074.2021.9586331
https://doi.org/10.1109/ICCAD51958.2021.9643505
https://doi.org/10.1109/ICCAD51958.2021.9643505
https://doi.org/10.1109/ICCAD51958.2021.9643505

	1 Introduction
	2 Preliminaries
	3 Simple Probing
	4 Gate Extraction
	5 AND-Gate Extraction
	6 XOR-Gate Extraction
	7 ITE-Gate Extraction
	8 Congruence Closure
	9 Proofs
	10 Benchmarks
	11 Experiments
	12 Conclusion

