
CaDiCaL, Gimsatul, IsaSAT and Kissat
Entering the SAT Competition 2024

Armin Biere∗ , Tobias Faller∗ , Katalin Fazekas† , Mathias Fleury∗ , Nils Froleyks‡ , Florian Pollitt∗
∗ University of Freiburg, Germany † TU Wien, Austria ‡ Johannes Kepler University, Linz, Austria

Abstract—In this short system description we describe our
three sequential SAT solvers CaDiCaL, IsaSAT and Kissat
submitted to the main track of the SAT competition 2024 as
well as an update to Gimsatul submitted to the parallel track.

I. CaDiCaL

In the SAT competition 2023, CaDiCaL performed
quite well, especially when combined with structured
blocked clause addition (SBVA) [1] in SBVA-CaDiCaL [2].
The authors of SBVA-CaDiCaL used CaDiCaL 1.5.3,
which was also the basis for the CaDiCaL hack track
in 2023. The CaDiCaL hack track was actually won
CaDiCaL_vivinst [3]. by integration of instantiation as
last resort during vivification. In contrast to 2024, we did
not submit an updated CaDiCaL version to the SAT com-
petition 2023, compared to 1.5.3 used in the hack track, as
we opted instead to use our main track submission slot for
TabularaSAT. We omitted TabularaSAT in 2024. In 2022
we used all slots to submit several variants of Kissat [4].

For the SAT competition 2024, we submitted our
major release, CaDiCaL 2.0 [5], which was described in a
recent CAV’24 paper. It adds many new features around
incremental usage, proof generation [6], interpolation, and
the user-propagator [7]. Notably, the stand-alone solver
core of CaDiCaL 2.0 is similar to version 1.9.4, which
served as the basis for the CaDiCaL hack track. The
only difference between the two versions is an unintended
performance regression compared to release 1.7.4 from
September 2023. However, this regression was only slightly
visible on the anniversary track and in particular was not
detected before the competition organizers had to freeze
the version of the hack track.

This regression was due to a change taking success
in shrinking the glue [8] during strengthening redundant
clauses [9] in forward subsumption as a sign for such a
clause to have been used, which in turn gives those affected
redundant clauses a higher chance to survive the next
learned clause reduction. This change has been reverted
in version 1.9.5 and in the submitted 2.0.0 version too and
is expected to give a minor advantage for our submitted
version over the hack track base version 1.9.4.

From version 1.5.3 (used in the hack track of the SAT
competition 2023 and the winner of the main track SBVA-
CaDiCaL in 2023) to 1.9.4 (as used in the hack track
in 2024), we have the following algorithmic changes to

the core solver on top of features described in [5]: on-
the-fly self-subsuming resolution and instantiation during
vivification as last resort plus the update of the “used”
flag which in turn was reverted in 1.9.5 and kept reverted
in the submitted version 2.0.0.

II. Gimsatul
Our multi-threaded shared-memory SAT solver Gim-

satul [10] has been extended with glue-promotion (recom-
puting and reducing the glue of resolved clauses), dynamic
computation of the tier 1 glue limit (as described for Kissat
below), thread-local eager subsumption of the last learned
clauses and we further revisited vivification (again see
below as described for Kissat).

III. IsaSAT
Compared to last year [3] there are no major feature

changes in IsaSAT, but we only consolidated existing
techniques. First, we identified and fixed a minor heuristic
issue. Instead of bumping the literals involved in conflict
analysis, we also bumped the conflict clause. This minor
difference made a small (but noticeable) difference on
the SAT Competition 2022 benchmarks, without any real
difference on the 2023 benchmarks. We further fixed the
computation of the height of the conflict-free part of the
trail which is used in the target and best phasing (cf. [11]).

For one family we observed a very low conflict rate
in focused mode (with many restarts and VMTF decision
heuristics), and therefore introduced ticks (as implemented
in Kissat for a long time) and thus limited recursive reason
side bumping when the decision rate (number of decisions
between two conflicts) is too high, however, without much
success on the investigated family. Still it achieves the
effect that focused and stable mode are more balanced,
which was the motivation to keep it.

Finally, we deactivated our version of pure literal elim-
ination as it is not compatible with DRAT (as discovered
last year during the competition when proof checking
broke). Our implementation simply learns the unit clause
of that literal and is (provably) correct. In our test cases
however these clauses were always blocked (our proof
output is not verified), which however in general does
not have to be the case. The issue is that pure literals
redundancy is a criteria that needs only be checked on
irredundant clauses [9], i.e., redundant clauses can be

Proceedings of SAT Competition 2024: Solver and Benchmark Descriptionsvolume B-2024-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2024 .

8



ignored. However, DRAT does not distinguish these sets
of clauses, leading to incorrect proofs (even if the answer
is correct). Most SAT solvers use variable elimination
where all clauses containing the pure literal are elimi-
nated, without learning a unit. However, we found our
approach easier to include in our framework. In private
communication, Jakob Nordström pointed out that veriPB
actually supports adding units for pure literals, but we
leave production of veriPB proofs as future work.

IV. Kissat
Clausal congruence closure [12] is a major new addition

to the submitted version of Kissat. It combines syntactic
extraction of gates and a bit-level version of congruence
closure. In contrast to other attempts achieving the same
effect in earlier solvers this is our first implementation
which can be run to completion on large instances. It
solves isomorphic miters instantly (comparing two iden-
tical circuits [12]) while other techniques fail including
plain CDCL. Congruence closure is run during each round
of probing-inprocessing and nicely complements semantic
SAT-sweeping technique using our embedded SAT solver
Kitten. This clausal equivalence sweeping was available
before and is thoroughly described in [13]. Note that our
implementation of gate extraction and congruence closure
is fast enough to run until completion whenever it is
scheduled initially and during inprocessing in contrast to
semantic SAT sweeping which needs to be preempted.

We further added an internal version of bounded vari-
able addition [14], a technique which performed very well
in SBVA-CaDiCaL [2] as preprocessor for CaDiCaL in
the SAT competition 2023. We have implemented an
optimized version of the original version [14] and on-top
the tie-breaking heuristic of [1], which however is disabled
as it only helped on a few benchmarks (high-lighted in
[1]) but overall gave worse results.

We also realized that the average glue (LBD) [8] varies
dramatically between different formulas and actually also
on the same formula between running in an interleaved
fashion in stable and focused mode (called SAT/UNSAT
in [15]), i.e., differing in restart frequency and variable
score decay. Therefore, for (each mode) we count how
many clauses of a certain glue where used (resolved
and thus bumped) during conflict analysis. Then we use
these statistics to dynamically compute limits on the
glue for tier 1 (clauses kept unconditionally) and tier 2
clauses (clauses given a second chance if not used since
the last redundant clause-data-base reduction). Typical
hard coded limits are glue 2 and 6 for tier 1 and tier 2
respectively, which we also use initially.

Our dynamic glue limit for tier 1 is computed as the
glue of 50% of the used clauses, i.e., a clause with glue up
to that limit has a 50% chance of being used. The limit for
tier 2 is the glue where 90% of the used clauses is reached,
i.e., clauses with glue above that limit have a chance of less
than 10% of being used. We compute those dynamic tier 1

and tier 2 glue limits separately for stable and focused
mode. During learned clause data-base reduction they
determine which clauses are kept unconditionally (tier 1)
and those which are given a second chance (tier 2) as well
as on which clauses vivification should focus (as described
below). Note that the glue of individual clauses is updated
(promoted) regularly during conflict analysis.

We further argue, that those glue limits are mostly
important for unsatisfiable formulas, and usually larger
in stable mode anyhow. Therefore, we actually only use
those limits computed during focused mode, even in stable
mode (for vivification and learned clause reduction). A
more sensible selection of which limits (stable/focused)
should be used in which mode is left to future work.

On hard combinatorial unsatisfiable factoring bench-
marks, an intermediate version of Kissat performed much
better. In that version certain redundant [9] (thus mostly
learned) clauses were eagerly dropped during vivifica-
tion [16] if shown implied by unit propagation (asymmetric
tautologies). More specifically, redundant clauses during
vivification were removed (instead of keeping them) if the
negation of all but one of the literals in a clause imply
exactly the remaining literal and no conflict occurred
during propagation nor any other form of subsumption
or shrinking applies. On these considered benchmarks
eagerly dropping these clauses lead to far less accumulated
redundant clauses and thus faster propagation, without
increasing the number of required conflicts.

Thus we revisited vivification in Kissat once more,
carefully separating all the different forms of possible
subsumption and shrinking of candidate clauses and also
try variable instantiation if vivifying a candidate otherwise
would remain inconclusive [3], i.e., as in CaDiCaL_vivinst.

We vivify redundant tier 1 and tier 2 clauses separately,
in this order, as before within a per-tier propagation (ticks)
budget limited relative to propagation (ticks) used in the
CDCL search loop. We now also spend some time on
vivifying tier 3 clauses. At the end we continue to vivify
irredundant clauses, again with a relative propagation
(ticks) limit. However, we now add any left over budget
from vivifying a tier to the budget of vivifying the next
tier or even the irredundant clauses. Clauses not vivified
due to hitting the limit are marked and tried in the next
probing-inprocessing round for vivification.

Binary reason jumping was introduced in Kissat [13]
to reduce time spent in conflict analysis, but appears to
have negative effects in general (arguably due to skipping
first unique implication points in the binary implication
graph). We keep it now only enabled on formulas with
many clauses (more than 100 000 clauses) with a large
fraction of binary clauses (more than 99% of all clauses).

After lucky phase detection [17], ported from CaDiCaL
and extended with SLUR [18] look-ahead, we perform
an initial round of preprocessing, which consists of one
complete run of congruence closure [12], some limited
binary backbone extraction [19], and clausal equivalence

9



sweeping [13], followed by a new separate, simple, fast
and more limited bounded variable elimination [20] with
integrated forward subsumption but without syntactic nor
semantic gate extraction [21]. All these preprocessors are
rerun as inprocessors except for lucky phase extraction
and fast variable elimination. In inprocessing the latter
is replaced by the already existing more sophisticated
elimination procedure (including for instance semantic
gate extraction [21]).

Acknowledgements

This work was supported in part by the Austrian
Science Fund (FWF) under project T-1306, W1255-
N23, and S11408-N23, the state of Baden-Württemberg
through bwHPC, the German Research Foundation
(DFG) through grant INST 35/1597-1 FUGG, the German
Federal Ministry of Education and Research (BMBF)
within the project Scale4Edge under contract 16ME0132,
and by a gift from Intel Corporation.

References

[1] A. Haberlandt, H. Green, and M. J. H. Heule, “Effective
auxiliary variables via structured reencoding,” in 26th Interna-
tional Conference on Theory and Applications of Satisfiability
Testing, SAT 2023, July 4-8, 2023, Alghero, Italy, ser. LIPIcs,
M. Mahajan and F. Slivovsky, Eds., vol. 271. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2023, pp. 11:1–11:19.

[2] A. Haberlandt and H. Green, “SBVA-CADICAL and SBVA-
KISSAT: Structured bounded variable addition,” in Proc. of
SAT Competition 2023 – Solver and Benchmark Descriptions,
ser. Department of Computer Science Report Series B, T. Balyo,
N. Froleyks, M. J. H. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2023-1. University of Helsinki, 2023, p. 18.

[3] A. Biere, M. Fleury, and F. Pollitt, “CaDiCaL_vivinst, IsaSAT,
Gimsatul, Kissat, and TabularaSAT entering the SAT compe-
tition 2023,” in Proc. of SAT Competition 2023 – Solver and
Benchmark Descriptions, ser. Department of Computer Science
Report Series B, T. Balyo, N. Froleyks, M. Heule, M. Iser,
M. Järvisalo, and M. Suda, Eds., vol. B-2023-1. University
of Helsinki, 2023, pp. 14–15.

[4] A. Biere and M. Fleury, “Gimsatul, IsaSAT and Kissat entering
the SAT Competition 2022,” in Proc. of SAT Competition
2022 – Solver and Benchmark Descriptions, ser. Department of
Computer Science Series of Publications B, T. Balyo, M. Heule,
M. Iser, M. Järvisalo, and M. Suda, Eds., vol. B-2022-1.
University of Helsinki, 2022, pp. 10–11.

[5] A. Biere, T. Faller, K. Fazekas, M. Fleury, N. Froleyks, and
F. Pollitt, “CaDiCaL 2.0,” in Computer Aided Verification
- 36th International Conference, CAV 2024, Montreal, QC,
Canada, July 24-27, 2024, Proceedings, Part I, ser. Lecture
Notes in Computer Science, A. Gurfinkel and V. Ganesh, Eds.,
vol. 14681. Springer, 2024, pp. 133–152.

[6] K. Fazekas, F. Pollitt, M. Fleury, and A. Biere, “Certifying
incremental SAT solving,” in LPAR 2024: Proceedings of 25th
Conference on Logic for Programming, Artificial Intelligence
and Reasoning, Port Louis, Mauritius, May 26-31, 2024, ser.
EPiC Series in Computing, N. S. Bjørner, M. Heule, and
A. Voronkov, Eds., vol. 100. EasyChair, 2024, pp. 321–340.

[7] K. Fazekas, A. Niemetz, M. Preiner, M. Kirchweger, S. Szeider,
and A. Biere, “IPASIR-UP: user propagators for CDCL,” in
26th International Conference on Theory and Applications of
Satisfiability Testing, SAT 2023, July 4-8, 2023, Alghero, Italy,
ser. LIPIcs, M. Mahajan and F. Slivovsky, Eds., vol. 271.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, pp.
8:1–8:13.

[8] G. Audemard and L. Simon, “Predicting learnt clauses
quality in modern SAT solvers,” in IJCAI 2009, Proceedings
of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11-17, 2009,
C. Boutilier, Ed., 2009, pp. 399–404. [Online]. Available:
http://ijcai.org/Proceedings/09/Papers/074.pdf

[9] M. Järvisalo, M. Heule, and A. Biere, “Inprocessing rules,”
in Automated Reasoning - 6th International Joint Conference,
IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings,
ser. Lecture Notes in Computer Science, B. Gramlich, D. Miller,
and U. Sattler, Eds., vol. 7364. Springer, 2012, pp. 355–370.

[10] M. Fleury and A. Biere, “Scalable proof producing multi-
threaded SAT solving with gimsatul through sharing instead of
copying clauses,” CoRR, vol. abs/2207.13577, 2022. [Online].
Available: https://doi.org/10.48550/arXiv.2207.13577

[11] S. Cai, X. Zhang, M. Fleury, and A. Biere, “Better decision
heuristics in CDCL through local search and target phases,” J.
Artif. Intell. Res., vol. 74, pp. 1515–1563, 2022.

[12] A. Biere, K. Fazekas, M. Fleury, and N. Froleyks, “Clausal
congruence closure,” in 27th International Conference on The-
ory and Applications of Satisfiability Testing, SAT 2024, Pune,
India, ser. LIPIcs, S. Chakraborty and J.-H. R. Jian, Eds.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

[13] ——, “Clausal equivalence sweeping,” in Formal Methods in
Computer-Aided Design, FMCAD 2024, Praque, Czech Repub-
lic, October 14-18, 2024, N. Narodytska and P. Rümmer, Eds.
IEEE, 2024.

[14] N. Manthey, M. Heule, and A. Biere, “Automated reencoding
of boolean formulas,” in Hardware and Software: Verification
and Testing - 8th International Haifa Verification Conference,
HVC 2012, Haifa, Israel, November 6-8, 2012. Revised Selected
Papers, ser. Lecture Notes in Computer Science, A. Biere,
A. Nahir, and T. E. J. Vos, Eds., vol. 7857. Springer, 2012,
pp. 102–117.

[15] C. Oh, “Between SAT and UNSAT: the fundamental difference
in CDCL SAT,” in Theory and Applications of Satisfiability
Testing - SAT 2015 - 18th International Conference, Austin, TX,
USA, September 24-27, 2015, Proceedings, ser. Lecture Notes
in Computer Science, M. Heule and S. A. Weaver, Eds., vol.
9340. Springer, 2015, pp. 307–323.

[16] C. Li, F. Xiao, M. Luo, F. Manyà, Z. Lü, and Y. Li,
“Clause vivification by unit propagation in CDCL SAT
solvers,” Artif. Intell., vol. 279, 2020. [Online]. Available:
https://doi.org/10.1016/j.artint.2019.103197

[17] A. Biere, “CaDiCaL at the SAT Race 2019,” in Proc. of
SAT Race 2019 – Solver and Benchmark Descriptions, ser.
Department of Computer Science Series of Publications B,
M. J. H. Heule, M. Järvisalo, and M. Suda, Eds., vol. B-2019-1.
University of Helsinki, 2019, pp. 8–9.

[18] J. S. Schlipf, F. S. Annexstein, J. V. Franco, and R. P. Swami-
nathan, “On finding solutions for extended Horn formulas,” Inf.
Process. Lett., vol. 54, no. 3, pp. 133–137, 1995.

[19] N. Froleyks, E. Yu, and A. Biere, “BIG backbones,” in Formal
Methods in Computer-Aided Design, FMCAD 2023, Ames, IA,
USA, October 24-27, 2023, A. Nadel and K. Y. Rozier, Eds.
IEEE, 2023, pp. 162–167.

[20] N. Eén and A. Biere, “Effective preprocessing in SAT through
variable and clause elimination,” in Theory and Applications of
Satisfiability Testing, 8th International Conference, SAT 2005,
St. Andrews, UK, June 19-23, 2005, Proceedings, ser. Lecture
Notes in Computer Science, F. Bacchus and T. Walsh, Eds.,
vol. 3569. Springer, 2005, pp. 61–75.

[21] M. Fleury and A. Biere, “Mining definitions in kissat with
kittens,” Formal Methods Syst. Des., vol. 60, no. 3, pp. 381–404,
2022.

10


