
CaDiCaL 2.0

Armin Biere1,2(B) , Tobias Faller1 , Katalin Fazekas3 , Mathias Fleury1,2 ,
Nils Froleyks2 , and Florian Pollitt1

1 University Freiburg, Freiburg, Germany
2 Johannes Kepler University Linz, Linz, Austria

biere@cs.uni-freiburg.de
3 TU Wien, Vienna, Austria

Abstract. The SAT solver CaDiCaL provides a rich feature set with a
clean library interface. It has been adopted by many users, is well doc-
umented and easy to extend due to its effective testing and debugging
infrastructure. In this tool paper we give a high-level introduction into
the solver architecture and then go briefly over implemented techniques.
We describe basic features and novel advanced usage scenarios. Experi-
ments confirm that CaDiCaL despite this flexibility has state-of-the-art
performance both in a stand-alone as well as incremental setting.

1 Introduction

Progress in SAT solving has a large impact on model checking, SMT, theorem
proving, software- and hardware-verification, and automated reasoning in gen-
eral, and, according to “The SAT Museum” [20], SAT solvers get faster and
faster, at least on benchmarks consisting of a single formula. For incremental
SAT solving it was less clear, particularly as preprocessing [24] and inprocess-
ing [69] heavily contributing to this improvement were considered incompatible
with incremental solving (the winners of the SAT competition main track rely
on inprocessing since 2009 except in 2011/2012/2016 and since 2005 all on pre-
processing).

A simple and elegant solution to this problem is due to the award win-
ning incremental SAT solving approach [39] first implemented in CaDiCaL. It
reverts clause removal, i.e., restores clauses removed during pre- and inprocess-
ing, restrictively on a case-by-case basis. It allows incremental solving to make
full use of pre- and inprocessing techniques, in contrast to less general solu-
tions [87,89,90,112], without reducing their effectiveness nor burden the user to
“freeze” and “melt” variables (“Don’t Touch” variables in [74]) as necessary with
MiniSat [37].

This is the first tool paper on CaDiCaL, while previous, actually well cited,
descriptions appeared only as system description in non-peer-reviewed SAT com-
petition proceedings [14–16,18,21,22]. In general, even though “SAT is consid-
ered a killer app for the 21st century” (Donald Knuth), there are few tool papers
on SAT solvers, with the prominent exception of MiniSat [37], which appeared
in 2003 and was awarded the test-of-time award at SAT’22. The descriptions of
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 133–152, 2024.
https://doi.org/10.1007/978-3-031-65627-9_7

https://doi.org/10.5281/zenodo.10943125
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_7&domain=pdf
http://orcid.org/0000-0001-7170-9242
http://orcid.org/0000-0002-0864-077X
http://orcid.org/0000-0002-0497-3059
http://orcid.org/0000-0002-1705-3083
http://orcid.org/0000-0003-3925-3438
http://orcid.org/0009-0001-4337-6919
https://doi.org/10.1007/978-3-031-65627-9_7

134 A. Biere et al.

CryptoMiniSat [106], Glucose [5] and IntelSAT [86] introduce the corre-
sponding SAT solver and can be considered to be tool papers too though.

Development of CaDiCaL was triggered by discussions at the “Theoreti-
cal Foundations of SAT Solving Workshop” in 2016 at the Fields Institute in
Toronto, where it became apparent that both theoreticians and practitioners in
SAT have a hard time understanding how practical SAT solving evolved, what
key components there are in modern SAT solvers and, most importantly, that
it was apparently getting harder and harder to modify state-of-the-art solvers
for controlled experiments or to try out new ideas. With CaDiCaL we tried to
change this, thus the main objective was to produce a clean solver, with well-
documented source code, which is easy to read, understand, modify, test, and
debug, without sacrificing performance too much.

The first goals were achieved from the beginning and performance improved
over the years. After its introduction in 2017 CaDiCaL continued to achieve high
rankings in yearly SAT competitions, e.g., in 2019 it solved the largest number
of instances in the main track, but scored less than the winner. It never won
though except for the most recent SAT competition in 2023 where CaDiCaL was
combined with a strong preprocessor employing bounded variable addition [55,
82]. The competition organizers paraphrased this as “CaDiCaL strikes back”.

Moreover, with the show-case of our new incremental approach [39] we
invested in increasing the feature set supported by CaDiCaL culminating for
now in supporting “user propagators”. This for instance allowed to replace the
original but highly modified MiniSat based SAT engine in cvc5 by CaDiCaL,
as described in a recent well-received SAT’23 paper [40].

The users of CaDiCaL fall into three categories. A first group applies the
solver out of the box on benchmarks where CaDiCaL turns out to have superior
performance. As an example consider solving mathematical problems with the
help of SAT solving such as [78,91,108,114]. Second, there is an increasing user
base, including [6,11,23,39,40,65,92,95,101], which relies on the rich application
programmable interface (API) provided by CaDiCaL, particularly its incre-
mental features. Third, there are research prototypes modifying or extending
CaDiCaL to achieve new features, including [7,17,43,55,64,71]. Some of these
modifications have been integrated [44,100] but others remain future work [55].

Finally, CaDiCaL is used as a blue-print for understanding, porting, and
integrating state-of-the-art techniques into other solvers. In this regard we are in
contact with companies in cloud services, hardware design, and eletronic design
automation. It was also consulted in developing IsaSAT [45], the only competi-
tive fully verified SAT solver. Furthermore CaDiCaL was adopted as template
solver for the “hack track” of the yearly SAT competition since 2021 as an “easy
to hack” state-of-the-art SAT solver.

Related SAT solvers in the SAT competition often lack documentation, are
hard to extend and modify, and, most importantly, do not provide such a rich and
clean library interface as CaDiCaL. For instance our SAT solver Kissat [18]
falls into this category. It has been dominating the SAT competition 2020–2022
(in 2022 all top-ten solvers were descendants of Kissat), is more compact in

CaDiCaL 2.0 135

memory usage and often faster on individual instances, but is lacking support
for even the most basic incremental features such as assumptions.

The majority of the solvers in the SAT competition are restricted in their
feature set as they are tuned for stand-alone usage, i.e., running the solver on
a single formula stored in a file in DIMACS format [76], even though there is
occasionally an incremental track in the SAT competition (last one that really
took place was in 2020 as the one announced in 2021 was later cancelled).

Prominent SAT solvers with a richer feature set and particularly support-
ing incremental solving, beside the rather out-dated MiniSat [37], are newer
versions of CryptoMiniSat [106], and Glucose [4]. The former is actively
developed and in terms of implemented techniques has quite some overlap with
CaDiCaL. In addition it offers special support for XOR reasoning, solution
sampling and model counting [105]. The Glucose solver has been improved for
incremental solving [3] but is not comparable in terms of implemented techniques
nor features.

Unique and non-common features of CaDiCaL include: literal flipping [23],
single clause assumption [46], incremental solving without freezing [39], extensive
logging support, record & play of API calls, model-based testing, internal proof
and solution (model) checking, termination and clause learner interfaces, various
preprocessing techniques, an online proof tracing interface, formula extraction
(after simplification), support of many external proof formats (DRAT, LRAT,
FRAT, VeriPB) [100], and last but not least the user propagator [40].

This paper is structured by describing in the next section the architecture of
CaDiCaL, which also acts as a summary of integrated techniques and provided
features. The rest of the paper consists of highlighting recently added features
of the solver or features not presented before, followed by experiments showing
that CaDiCaL has state-of-the-art performance, before concluding.

2 Architecture

CaDiCaL is a modern SAT solver with many features written in C++. It can
be used as stand-alone application through the command-line interface (CLI) or
as library through its application programming interface (API) in C++ (or in lim-
ited form in C). Figure 1 depicts a structural overview. The central component,
called Internal, implements CDCL search [83,103] and formula simplification
techniques [24,69]. On top of it, the External facade hides the internals while
maintaining the proofs and solutions (aka models) of solved problems.

The heart of the solver is the function cdcl_loop_with_inprocessing in
Internal which interleaves the CDCL loop with formula simplification steps (i.e.,
with inprocessing [69]). During Search, CaDiCaL supports several techniques,
like chronological backtracking [84,88], rephasing [32], and shrinking [44], which
are only some of the important features. See Fig. 1 for more references.

The CDCL loop [83] is scheduled to be preempted in regular intervals to
let the solver apply various formula simplification [24] and inprocessing tech-
niques [69]. Each technique is implemented separately (e.g., in file subsume.cpp)

136 A. Biere et al.

Fig. 1. An overview of the main components of CaDiCaL.

and has (i) a corresponding function which determines if the solver should pre-
empt CDCL search and apply the technique (e.g., subsuming()) and (ii) a
function that actually applies the technique (e.g., subsume()).

As Fig. 1 shows, CaDiCaL implements a variety of preprocessing/inprocess-
ing techniques, including bounded variable elimination (BVE) [36], arguably
the most effective one. As further examples, CaDiCaL also supports vivifica-
tion [79,98] and instantiation [1]. Combining them [22] won the CaDiCaL “hack
track” 2023.

The External component communicates with Internal by mapping active
variables into a consecutive sequence of integers (compacting) and extends inter-
nal solutions back to complete solution of the input problem with the help of
the reconstruction stack [67]. In incremental use cases External also keeps the
reconstruction stack clean [39] by “undoing” previous inprocessing steps. Beyond
that, External connects internal and external proof generation (see Sect. 4).

We distinguish two types of API usage in CaDiCaL: static and dynamic. The
static API provides access to standard solver functionalities between SAT solving
calls (like IPASIR [8], parsing DIMACS, or iCNF files). With ILB as proposed by
IntelSAT [86], we try to keep the trail unchanged between incremental calls.

The dynamic API interacts and controls the solver during Search. The
solver provides dynamic access to clauses learned during conflict analysis to
connected Learner instances. The Terminator class interface allows users to
asynchronously terminate the solving procedure. Through the Iterator inter-

CaDiCaL 2.0 137

face of CaDiCaL, the user can iterate over the irredundant (simplified) clauses
of the problem or can iterate through clauses on the reconstruction stack, sup-
porting simplified formula extraction and external model reconstruction.

3 External Propagator

Applications of CaDiCaL, for example within the SMT solver cvc5 [11] (and
maybe in the future within other lazy SMT solvers, such as Z3 [85] or Yices [35]),
or to support Satisfiability Modulo Symmetries (SMS) [40,116], require more
control over the solver than provided by the standard incremental IPASIR inter-
face [8]. To this purpose CaDiCaL supports a more fine-grained and tighter inte-
gration into larger systems by allowing an external user propagator [26,48,49]
to be connected to it through the Ipasir-Up interface [40].

This abstract interface is defined in the ExternalPropagator class which
provides corresponding notification and callback functions. Inheriting from this
class allows users to implement dedicated external propagators which for instance
import and export learned clauses or suggest decisions to the SAT solver. The full
description of functionalities supported by the Ipasir-Up interface is available
in [40]. Here we focus on CaDiCaL-specific implementation details.

First, CaDiCaL ensures that only external variables appear in the
Ipasir-Up interactions, thereby allowing users to ignore the internal (compacted)
details. Furthermore, CaDiCaL employs preprocessing and inprocessing even
when an external propagator is connected. To avoid the need to restore clauses
during the CDCL loop and to ensure that solution reconstruction [67] does not
change assignments of observed variables (i.e., relevant to the external prop-
agator), every observed variable is automatically frozen. As a side effect, the
external propagator can only set clean [39] variables as new observed variables
during search. As fresh variables are always clean, this is acceptable and mostly
sufficient in practice.

Finally, CaDiCaL, by default, considers every external clause as irredun-
dant, exactly as the original input clauses of the problem. Thus, during clause
database reduction they are not candidates for removal and so can be deleted
only when implied by the rest of the formula. In future work we plan to allow
users to specify the redundancy of the external clauses and to support incremen-
tal inprocessing [39] even for variables observed by the external propagator.

4 Proofs

Unsatisfiability proof certificates are an integral part of SAT solving [59,60]. Even
though clausal proofs were introduced in 2003 [37,52], checking large proofs only
became viable with deletion information [58]. The most prominent format today
is DRAT [111] which was mandatory in the SAT competition from 2016 [10] to
2022. In 2023 both DRAT [111] and VeriPB [28] were allowed in the competi-
tion [9].

138 A. Biere et al.

Fig. 2. Tracer virtual callback function to add a derived clause to the proof.

The proof formats GRAT [75] and LRAT [34] were proposed to allow even
faster proof checking, i.e., by trading time for space, but also to facilitate for-
mally verified proof checkers (e.g., Cake_Lpr [110]). They require hints for
clause additions in form of antecedent clause identifiers (ids). External tools like
Drat-Trim [111] can add such hints in a post-processing step to DRAT proofs.

The proof formats DRAT [111], FRAT [7], LRAT [34], and VeriPB [28] are
supported by CaDiCaL. It is the first solver to support LRAT natively. Without
the need for post-processing this reduces proof checking time [100] substantially.

Recent diversification of proof formats in the SAT competition [9] moti-
vated us to add VeriPB. It is a general proof format for various applica-
tions [28,50,51]. The tool-chain for checking SAT solver proofs with the veri-
fied VeriPB backend [28] is under development and not fast enough yet. Actu-
ally, BreakID-Kissat [9], one of the top performers in the SAT competition
2023, lost due to multiple timeouts during proof checking. Similarly to FRAT,
CaDiCaL can provide antecedents in VeriPB proofs. We expect this to speed
up VeriPB proof checking considerably.

5 Tracer Interface

The dynamic API allows to extract proof information from CaDiCaL online
without files by connecting user-defined tracers as instances of the virtual C++

class Tracer. It provides notifications and callbacks for proof-related events,
such as addition and deletion of clauses. Proof writers for all formats (Sect. 4)
as well as both internal proof checkers (Sect. 8) go through the Tracer class.
Furtheremore, there is ongoing work to produce VeriPB proofs for the MaxSAT
solver Pacose [97] using the Tracer interface in CaDiCaL.

We support a large set of event types covering a multitude of use cases.
Information provided includes antecedent ids and literals of clauses, separation
between original, derived, and restored [39] clauses, and information of clause
redundancy, as well as weakening [69] and strengthening [28,69]. For example,
Fig. 2 shows the callback function for the proof event of adding a derived clause,
where “derived” means entailed by the formula (i.e., not original input clause).
Additional notifications include reserving ids for original clauses, as used for
generating file based proof formats, such as VeriPB and LRAT.

For each solve call, a concluding event gives precise information about the
result: a model concludes satisfiable instances, whereas for unsatisfiable instances
we provide information about the final conflict clause. We have recently started
to explore incremental proof tracing as well [41,42].

CaDiCaL 2.0 139

6 Constraints and Flipping

SAT solvers are used in a wide range of applications in many different ways.
For incremental solving, MiniSat has been the predominant choice. However, in
recent years, CaDiCaL has begun to replace MiniSat in numerous applications,
most prominently cvc5. This can be attributed to its overall better performance
and various application-specific features unique to CaDiCaL.

A prime example is the constraint feature [46], which allows users to define
a temporary clause with the same lifespan as assumptions. It was initially
developed to support the SAT based model checking algorithm IC3 [29], which
requires often millions of incremental SAT calls during a single run, where each
query needs to assume a single clause valid only for that call.

Constraints do not introduce new functionality per se, as temporary clauses
can be simulated by activation literals. But they do allow the solver to employ
a more efficient implementation, as they particularly avoid to introduce those
assumption variables. Beyond IC3, constraints have also proven useful in our
backbone extractor CadiBack [23]. The purpose of using constraint in backbone
extraction is to find maximally diverging models in order to eliminate backbone
candidates fast. CadiBack uses constraints to ensure that each new model
includes at least one literal not observed in previous models. If this is not possible,
all unseen literals are immediately determined to be in the backbone.

Once a model is found, we use another feature called literal flipping [19] to
eliminate further backbone candidates [23]. A literal is flippable if toggling its
value also results in a model. This concept was employed to speed-up backbone
MiniBones [66] before and also MUS extraction [13]. In these earlier works it
was implemented by iterating over all clauses outside the SAT solver, searching
for literals that can be flipped in the model provided by the solver. Using clause
watching our implementation inside of CaDiCaL is much more efficient.

7 Interpolation

Software-based test generation targeting RISC-V in the Scale4Edge project [38]
relied on interpolation-based model checking and MiniCraig to generate inter-
polants. It uses MiniSat as SAT solver and in this application constitutes a
performance bottleneck. Therefore we developed a new more scalable solver
CaDiCraig based on CaDiCaL and its proof tracer API (Sect. 5).

The implementation of CaDiCraig is external to CaDiCaL. It uses the
same interpolant construction as in MiniCraig but is now seperated from
MiniSat. We are not aware of any other modern open-source SAT solver which
allows to build interpolants through a generic API without being forced to write
the whole proof to a file, trimming and prost-processing it on disk, such as in [53].

The CaDiCraig tracer constructs partial interpolants as usual, e.g., see [73].
Through the proof tracer API the tracer is notified by CaDiCaL about each
new clause and its antecedents needed to derive it by resolution. It then builds a
partial interpolant for that clause using previously computed partial antecedent

140 A. Biere et al.

interpolants. When the solver concludes deriving an empty clause and thus show-
ing unsatisfiability (Sect. 5) the final interpolant is built from the antecedents of
the empty clause. It can then be retrieved by via the CaDiCraig API.

8 Testing and Debugging

Such a sophisticated and complex software as CaDiCaL necessitates rigorous
testing to ensure correctness of interactions between its multitude of features. In
this section we discuss our arsenal of essential testing and debugging techniques.

First, we primarily rely on logging for debugging purposes. For instance, when
enabled, CaDiCaL will print every single step from its creation to its deletion.
From an implementation perspective, logging features are not compiled in by
default to avoid performance overhead in release builds. Furthermore, if enabled
at run-time, CaDiCaL prints verbose information about the inprocessing sched-
ule, useful for debugging performance regressions (e.g., inprocessor scheduling).

Further useful debugging tools are the built-in checkers. The LRAT and DRAT
checkers are optional and ensure that every learned clause is properly derived.
The new LRAT checker [100] was crucial for achieving LRAT support.

Last but not least we want to mention the API fuzzer Mobical, which
generates random API calls and minimizes failing runs. Internally, Mobical

implements a state machine issuing API calls. It also performs option fuzzing by
varying available options. This approach is extremely useful to produce short fail-
ing API call traces focusing on the actual defect, e.g., like picking a low garbage
collection limit to trigger a defect in the garbage collector. Combining checkers
with Mobical greatly increases its strength. During development it is advisable
to build Mobical and CaDiCaL with assertions and checkers enabled.

Mobical is similar in spirit to the related model-based tester of
Lingeling [2] for SAT and BtorMBT [94] and Murxla [93] targeting SMT.
Note that other SMT fuzzers [27,30,96,102] focus on non-incremental usage or
only support incremental “push & pop” [80]. For non-incremental SAT solving,
there is also cnffuzz fuzzer and the cnfdd delta-debugger [2,31].

Accordingly, we have implemented a MockPropagator class in Mobical

to test the ExternalPropagator API. It fuzzes the Ipasir-Up implementa-
tion in combination with all options and features of the solver. It revealed several
corner-cases which we believe would have been very hard to trigger otherwise.

Mobical targets only incremental SAT problems and could not help when
incorrect interpolants showed up in earlier experiments with MiniCraig and
CaDiCraig. Therefore, we have built an external interpolation fuzzer in Python.
It checks interpolants and an accompanying delta-debugger minimizes problems
by deleting command line options, clauses, and variables.

9 Experiments

The performance of CaDiCaL 2.0 was evaluated in three experiments. We first
follow the non-incremental setup of the main track of the SAT competition,

CaDiCaL 2.0 141

where solvers are run on benchmark files in DIMACS format. The second exper-
iment focuses on incremental usage, i.e., following the incremental track of the
competition. Finally we show the effectiveness of CaDiCaL in the context of
interpolation via its Tracer API. All experiments were conducted on our cluster
with Intel Xeon E5-2620 v4 CPUs running at 2.10 GHz (turbo-mode disabled).

Non-Incremental. The winner Sbva-CaDiCaL [54] of the main track of the SAT
Competition 2023 combined a novel technique for bounded variable addition [82]
with CaDiCaL 1.5.3. In their implementation preprocessing was limited to 200 s
which yields different preprocessed formulas over multiple runs. Therefore, we ran
the preprocessor of Sbva-CaDiCaL separately for 200 s, and then gave the same
formulas to CaDiCaL 1.5.3 and our new version CaDiCaL 2.0. Running them
for 5000 s as in the competition (ignoring preprocessing time in essence) gave
very similar results. We provide more details in the artifact. This confirms that
CaDiCaL (also in version 2.0) is state-of-the-art in non-incremental solving.

Incremental. How to assess the incremental performance of a SAT solver is less
established. To present an unbiased evaluation, we follow the principles set out
by the last incremental track of the SAT competition in 2020 [47]: The solvers
are evaluated in six different applications, each featuring 50 benchmarks, with
a 2000 s timeout and 24 GB memory limit. Four applications are carried over
directly from the 2020 competition: the CEGAR-based QBF solver Ijtihad,
the simple backbone extractor Bones, the longest simple-path search LSP, and
the MaxSAT solver Max. However, we exclude two applications: the essential
variable extractor and the classical planner Pasar. Both use features that are
not present in all solvers. The former queries ipasir_learned, which is missing
from CaDiCaL 1.0, and the latter relies on limiting the number of conflicts.
Instead, we include the bounded model checker for bit-level hardware designs
CaMiCaL [39] and the sophisticated backbone extractor CaDiBack [23].

The benchmarks from the incremental track from the 2020 SAT Competition
remain unchanged. For CaMiCaL, we randomly select 50 Boolean circuits used
in HWMCC’17 [25]. Although CaDiBack solves the same problem as Bones,
we opt for a distinct set of benchmarks. In 2020 the “smallest and easiest sat-
isfiable” [47] CNF formulas were selected and even though backbone extraction
is harder than mere solving, they were rather easy. Conversely, we compile a
non-trivial set of benchmarks by randomly selecting satisfiable formulas from
past competitions (2004–2022) [23] that take Kissat 3.0.0 [19] more than 20 s
to solve. We use Kissat as it is not incremental and hence does not compete.

The artifact has a comparison of CryptoMiniSat and CaDiCaL on 1798
formulas [23] and indicates that our selection does not impact the outcome. As
detailed in Sect. 6, CaDiBack utilizes constraints, which are only available in
recent versions of CaDiCaL and are simulated with activation literals otherwise.

Our evaluation includes all solvers that competed in 2020: Riss 7.1.2 [81],
CryptoMiniSat 5 (CMS) [104,107], and abcdSat i20 [33]. The CaDiCaL

version from that year is referred to as CaDiCaL 2020. The other two versions
are 1.0 from 2019 and our latest release 2.0. We also include MiniSat 2.2 and

142 A. Biere et al.

the latest version of Glucose 4.2.1. Table 1 presents for each SAT solver and
application: the PAR2 score, which is the average runtime in seconds with a
penalty of 4000 for unsolved instances; and the number of solved instances.

Table 1. Performance comparison of six incremental solvers, with three versions of
CaDiCaL (2000 s timeout). For each solver, we report PAR2 score over 50 benchmarks
per application and number of solved instances (“PAR2|#solved”). The four applications
to the right have been used in the incremental track of the 2020 SAT competition. The
best results per application are marked in bold. The last row presents the hypothetical
Virtual Best Solver which always picks the best performing backend for each instance.

CaDiBack CaMiCaL Bones LSP Max Ijtihad Total
CaDiCaL 2.0 3297|11 2606|18 494|45 1898|27 1976|26 2980|13 2209|140

2020 3409|9 2677|17 622|43 1955|26 2015|25 2986|13 2277|133
1.0 3495|7 2627|18 595|44 2011|26 2028|25 2989|13 2291|133
CMS 3491|8 2701|17 397|46 1773|29 2021|25 3057|12 2240|137
MiniSat 3678|5 2807|16 687|43 1993|26 2094|24 3123|11 2397|125
Riss 3665|6 2836|15 892|40 1835|28 2017|25 3140|11 2398|125
abcdSat 3582|7 2966|13 535|46 2493|21 2037|26 3207|10 2470|123
Glucose 3778|4 2981|13 948|40 2078|25 2117|24 3206|10 2518|116
VBS 3127|14 2546|19 257|48 1765|29 1856|28 2896|14 2075|152

Our results show that CaDiCaL 2.0 reaches state-of-the-art performance,
demonstrating a distinct improvement over previous versions. Also, differing
from the findings in [72], we see a significant advantage of the newer CaDiCaL

and CryptoMiniSat, over the older MiniSat, further substantiated below.

Interpolants. To validate CaDiCraig using CaDiCaL, we converted all 400
benchmarks of the SAT Competition 2023 into interpolation problems split into
A and B parts chosen with the goal to assign related clauses to the same part in
order to keep the number of global variables limited. The index of the smallest
variable of each clause determines the probability of the clause being assigned
to A. On our crafted benchmarks (5000 s timeout, 7 GB), CaDiCraig signifi-
cantly outperforms MiniCraig, solving 117 benchmarks, compared to only 75.

10 Conclusion

In this very first conference paper on CaDiCaL we reviewed its most important
components and features as well as its testing and debugging infrastructure.
We highlighted its use as SAT engine in SMT solving via the user propagator
interface and how the tracer API can be used to compute interpolants. Our
experiments show that CaDiCaL remains efficient despite this flexibility.

Producing incremental proofs is ongoing work [41,42]. Further future work
consists of producing incremental proofs for all features supported by CaDiCaL,

CaDiCaL 2.0 143

avoiding to freeze observed variables by the user propagator, and porting into
the main branch features provided by other users.

Acknowledgements. This work was supported in part by the Austrian Science
Fund (FWF) under project T-1306, W1255-N23, and S11408-N23, the state of Baden-
Württemberg through bwHPC, the German Research Foundation (DFG) through grant
INST 35/1597-1 FUGG, the German Federal Ministry of Education and Research
(BMBF) within the project Scale4Edge under contract 16ME0132, and by a gift from
Intel Corporation.

References

1. Andersson, G., Bjesse, P., Cook, B., Hanna, Z.: A proof engine approach to solving
combinational design automation problems. In: Proceedings of the 39th Design
Automation Conference, DAC 2002, New Orleans, LA, USA, 10–14 June 2002,
pp. 725–730. ACM (2002). https://doi.org/10.1145/513918.514101

2. Artho, C., Biere, A., Seidl, M.: Model-based testing for verification back-ends. In:
Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp. 39–55. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38916-0_3

3. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39071-5_23

4. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, 11–17 July 2009,
pp. 399–404. Morgan Kaufmann Publishers Inc., San Francisco (2009). http://
ijcai.org/Proceedings/09/Papers/074.pdf

5. Audemard, G., Simon, L.: On the glucose SAT solver. Int. J. Artif.
Intell. Tools 27(1), 1840001:1–1840001:25 (2018). https://doi.org/10.1142/
S0218213018400018

6. Bacchus, F.: MaxHS in the 2022 MaxSat evaluation. In: Bacchus, F., Berg, J.,
Järvisalo, M., Martins, R. (eds.) Proceedings of MaxSAT Evaluation 2020 – Solver
and Benchmark Descriptions. Department of Computer Science Series of Publica-
tions B, vol. B-2022-2, p. 17. University of Helsinki (2022)

7. Baek, S., Carneiro, M., Heule, M.J.H.: A flexible proof format for SAT solver-
elaborator communication. In: TACAS 2021. LNCS, vol. 12651, pp. 59–75.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2_4

8. Balyo, T., Biere, A., Iser, M., Sinz, C.: SAT race 2015. Artif. Intell. 241, 45–65
(2016)

9. Balyo, T., Heule, M.J.H., Iser, M., Järvisalo, M., Suda, M. (eds.): Proceedings
of SAT Competition 2023: Solver, Benchmark and Proof Checker Descriptions.
Department of Computer Science Series of Publications B, Department of Com-
puter Science, University of Helsinki, Finland (2023)

10. Balyo, T., Heule, M.J.H. (eds.): Proceedings of SAT Competition 2016 – Solver
and Benchmark Descriptions. Department of Computer Science Series of Publica-
tions B, vol. B-2016-1. University of Helsinki (2016)

11. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: Fis-
man, D., Rosu, G. (eds.) TACAS 2022. LNCS, vol. 13243, pp. 415–442. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_24

https://doi.org/10.1145/513918.514101
https://doi.org/10.1007/978-3-642-38916-0_3
https://doi.org/10.1007/978-3-642-39071-5_23
http://ijcai.org/Proceedings/09/Papers/074.pdf
http://ijcai.org/Proceedings/09/Papers/074.pdf
https://doi.org/10.1142/S0218213018400018
https://doi.org/10.1142/S0218213018400018
https://doi.org/10.1007/978-3-030-72016-2_4
https://doi.org/10.1007/978-3-030-99524-9_24

144 A. Biere et al.

12. Barnett, L.A., Cerna, D., Biere, A.: Covered clauses are not propagation redun-
dant. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12166, pp. 32–47. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51074-9_3

13. Belov, A., Marques-Silva, J.: Accelerating MUS extraction with recursive model
rotation. In: Bjesse, P., Slobodová, A. (eds.) International Conference on Formal
Methods in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, 30 October–
02 November 2011, pp. 37–40. FMCAD Inc. (2011)

14. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT entering the SAT
competition 2017. In: Balyo, T., Heule, M.J.H., Järvisalo, M. (eds.) Proceedings of
SAT Competition 2017 – Solver and Benchmark Descriptions. Department of
Computer Science Series of Publications B, vol. B-2017-1, pp. 14–15. University
of Helsinki (2017)

15. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT entering the
SAT competition 2018. In: Heule, M.J.H., Järvisalo, M., Suda, M. (eds.) Proceed-
ings of SAT Competition 2018 – Solver and Benchmark Descriptions. Department
of Computer Science Series of Publications B, vol. B-2018-1, pp. 13–14. University
of Helsinki (2018)

16. Biere, A.: CaDiCaL at the SAT race 2019. In: Heule, M.J.H., Järvisalo, M., Suda,
M. (eds.) Proceedings of SAT Race 2019 – Solver and Benchmark Descriptions.
Department of Computer Science Series of Publications B, vol. B-2019-1, pp. 8–9.
University of Helsinki (2019)

17. Biere, A., Chowdhury, M.S., Heule, M.J.H., Kiesl, B., Whalen, M.W.: Migrating
solver state. In: SAT. LIPIcs, vol. 236, pp. 27:1–27:24. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022). https://doi.org/10.4230/LIPICS.SAT.2022.27

18. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M.J.H., Iser, M., Järvisalo, M., Suda, M. (eds.) Proceed-
ings of SAT Competition 2020 – Solver and Benchmark Descriptions. Depart-
ment of Computer Science Report Series B, vol. B-2020-1, pp. 51–53. University
of Helsinki (2020)

19. Biere, A., Fleury, M.: Gimsatul, IsaSAT and Kissat entering the SAT competition
2022. In: Balyo, T., Heule, M.J.H., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of
SAT Competition 2022 – Solver and Benchmark Descriptions. Department of
Computer Science Series of Publications B, vol. B-2022-1, pp. 10–11. University
of Helsinki (2022)

20. Biere, A., Fleury, M., Froleyks, N., Heule, M.J.: The SAT museum. In: Järvisalo,
M., Le Berre, D. (eds.) Proceedings of the 14th International Workshop on Prag-
matics of SAT Co-located with the 26th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2003), Alghero, Italy, 4 July
2023. CEUR Workshop Proceedings, vol. 3545, pp. 72–87. CEUR-WS.org (2023).
http://ceur-ws.org/Vol-3545/paper6.pdf

21. Biere, A., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba entering the
SAT competition 2021. In: Balyo, T., Froleyks, N., Heule, M.J.H., Iser, M.,
Järvisalo, M., Suda, M. (eds.) Proceedings of SAT Competition 2021 – Solver
and Benchmark Descriptions. Department of Computer Science Report Series B,
vol. B-2021-1, pp. 10–13. University of Helsinki (2021)

22. Biere, A., Fleury, M., Pollitt, F.: CaDiCaL_vivinst, IsaSAT, Gimsatul, Kissat,
and Tabulara SAT entering the SAT competition 2023. In: Balyo, T., Froleyks,
N., Heule, M.J.H., Iser, M., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT

https://doi.org/10.1007/978-3-030-51074-9_3
https://doi.org/10.1007/978-3-030-51074-9_3
https://doi.org/10.4230/LIPICS.SAT.2022.27
http://ceur-ws.org/Vol-3545/paper6.pdf

CaDiCaL 2.0 145

Competition 2023 – Solver and Benchmark Descriptions. Department of Com-
puter Science Report Series B, vol. B-2023-1, pp. 14–15. University of Helsinki
(2023)

23. Biere, A., Froleyks, N., Wang, W.: CadiBack: extracting backbones with CaDiCaL.
In: Mahajan, M., Slivovsky, F. (eds.) 26th International Conference on Theory and
Applications of Satisfiability Testing, SAT 2023, Alghero, Italy, 4–8 July 2023.
LIPIcs, vol. 271, pp. 3:1–3:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2023). https://doi.org/10.4230/LIPICS.SAT.2023.3

24. Biere, A., Järvisalo, M., Kiesl, B.: Preprocessing in SAT solving. In: Biere, A.,
Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Fron-
tiers in Artificial Intelligence and Applications, 2nd edn., vol. 336, pp. 391–435.
IOS Press (2021)

25. Biere, A., van Dijk, T., Heljanko, K.: Hardware model checking competition 2017.
In: 2017 Formal Methods in Computer Aided Design (FMCAD), pp. 9–9. IEEE
(2017)

26. Bjørner, N.S., Eisenhofer, C., Kovács, L.: Satisfiability modulo custom theories in
Z3. In: Dragoi, C., Emmi, M., Wang, J. (eds.) VMCAI. LNCS, vol. 13881, pp. 91–
105. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-24950-1_5

27. Blotsky, D., Mora, F., Berzish, M., Zheng, Y., Kabir, I., Ganesh, V.: StringFuzz:
a fuzzer for string solvers. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018.
LNCS, vol. 10982, pp. 45–51. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96142-2_6

28. Bogaerts, B., Gocht, S., McCreesh, C., Nordström, J.: Certified symmetry and
dominance breaking for combinatorial optimisation. J. Artif. Intell. Res. 77, 1539–
1589 (2023)

29. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

30. Bringolf, M., Winterer, D., Su, Z.: Finding and understanding incompleteness
bugs in SMT solvers. In: ASE, pp. 43:1–43:10. ACM (2022)

31. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT
and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol.
6175, pp. 44–57. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14186-7_6

32. Cai, S., Zhang, X., Fleury, M., Biere, A.: Better decision heuristics in CDCL
through local search and target phases. J. Artif. Intell. Res. 74, 1515–1563 (2022).
https://doi.org/10.1613/jair.1.13666

33. Chen, J.: optsat, abcdsat and solvers based on simplified data structure and hybrid
solving strategies. In: Proceedings of SAT Competition 2020: Solver and Bench-
mark Descriptions, p. 25 (2020)

34. Cruz-Filipe, L., Heule, M.J.H., Hunt, W.A., Kaufmann, M., Schneider-Kamp,
P.: Efficient certified RAT verification. In: de Moura, L. (ed.) CADE 2017. LNCS
(LNAI), vol. 10395, pp. 220–236. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63046-5_14

35. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol.
8559, pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9_49

36. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107_5

https://doi.org/10.4230/LIPICS.SAT.2023.3
https://doi.org/10.1007/978-3-031-24950-1_5
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1613/jair.1.13666
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/11499107_5

146 A. Biere et al.

37. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

38. Faller, T., Deligiannis, N.I., Schwörer, M., Reorda, M.S., Becker, B.: Constraint-
based automatic SBST generation for RISC-V processor families. In: IEEE Euro-
pean Test Symposium, ETS 2023, Venezia, Italy, 22–26 May 2023, pp. 1–6. IEEE
(2023).https://doi.org/10.1109/ETS56758.2023.10174156

39. Fazekas, K., Biere, A., Scholl, C.: Incremental inprocessing in SAT solving. In:
Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 136–154. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_9

40. Fazekas, K., Niemetz, A., Preiner, M., Kirchweger, M., Szeider, S., Biere, A.:
IPASIR-UP: user propagators for CDCL. In: Mahajan, M., Slivovsky, F. (eds.)
26th International Conference on Theory and Applications of Satisfiability Test-
ing, SAT 2023, Alghero, Italy. LIPIcs, vol. 271, pp. 8:1–8:13. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.SAT.
2023.8

41. Fazekas, K., Pollitt, F., Fleury, M., Biere, A.: Certifying incremental sat solving.
In: Bjorner, N., Heule, M., Voronkov, A. (eds.) Logic for Programming, Artificial
Intelligence, and Reasoning - 25th International Conference, LPAR-25, Balaclava,
Mauritius, 26–31 May 2024. Proceedings (2024)

42. Fazekas, K., Pollitt, F., Fleury, M., Biere, A.: Incremental proofs for bounded
model checking. In: Kunz, W., Große, D. (eds.) Workshop on Methods and
Description Languages for Modelling and Verification of Circuits and Systems,
MBMV 2024, Kaiserslautern, Germany, 14–15 February 2023. ITG Fachberichte,
VDE Verlag (2024)

43. Feng, N., Bacchus, F.: Clause size reduction with all-UIP learning. In: Pulina, L.,
Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 28–45. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-51825-7_3

44. Fleury, M., Biere, A.: Efficient All-UIP learned clause minimization. In: Li, C.-
M., Manyà, F. (eds.) SAT 2021. LNCS, vol. 12831, pp. 171–187. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-80223-3_12

45. Fleury, M., Lammich, P.: A more pragmatic CDCL for isasat and targetting
LLVM (short paper). In: Pientka, B., Tinelli, C. (eds.) Automated Deduction -
CADE 29 - 29th International Conference on Automated Deduction, Rome, Italy,
1–4 July 2023, Proceedings. Lecture Notes in Computer Science, vol. 14132, pp.
207–219. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-38499-
8_12

46. Froleyks, N., Biere, A.: Single clause assumption without activation literals to
speed-up IC3. In: Formal Methods in Computer Aided Design, FMCAD 2021,
New Haven, CT, USA, 19–22 October 2021, pp. 72–76. IEEE (2021). https://doi.
org/10.34727/2021/ISBN.978-3-85448-046-4_15

47. Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M.: SAT competition 2020.
Artif. Intell. 301, 103572 (2021). https://doi.org/10.1016/J.ARTINT.2021.103572

48. Ganesh, V., O’Donnell, C.W., Soos, M., Devadas, S., Rinard, M.C., Solar-Lezama,
A.: Lynx: a programmatic SAT solver for the RNA-folding problem. In: Cimatti,
A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 143–156. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-31612-8_12

49. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: ICLP (Technical Communications).
OASIcs, vol. 52, pp. 2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2016)

https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1109/ETS56758.2023.10174156
https://doi.org/10.1007/978-3-030-24258-9_9
https://doi.org/10.4230/LIPICS.SAT.2023.8
https://doi.org/10.4230/LIPICS.SAT.2023.8
https://doi.org/10.1007/978-3-030-51825-7_3
https://doi.org/10.1007/978-3-030-80223-3_12
https://doi.org/10.1007/978-3-031-38499-8_12
https://doi.org/10.1007/978-3-031-38499-8_12
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_15
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_15
https://doi.org/10.1016/J.ARTINT.2021.103572
https://doi.org/10.1007/978-3-642-31612-8_12

CaDiCaL 2.0 147

50. Gocht, S.: Certifying Correctness for Combinatorial Algorithms by Using
Pseudo-Boolean Reasoning. Ph.D. thesis, Lund University, Lund, Swe-
den (2022). https://portal.research.lu.se/en/publications/certifying-correctness-
for-combinatorial-algorithms-by-using-pseu

51. Gocht, S., Nordström, J.: Certifying parity reasoning efficiently using pseudo-
Boolean proofs. In: Proceedings of the 35th AAAI Conference on Artificial Intel-
ligence (AAAI ’21), pp. 3768–3777 (2021)

52. Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for cnf formulas.
In: 2003 Design, Automation and Test in Europe Conference and Exhibition, pp.
886–891 (2003). https://api.semanticscholar.org/CorpusID:10504432

53. Gurfinkel, A., Vizel, Y.: DRUPing for interpolates. In: Formal Methods in
Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, 21–24 October
2014, pp. 99–106. IEEE (2014). https://doi.org/10.1109/FMCAD.2014.6987601

54. Haberlandt, A., Green, H.: SBVA-CADICAL and SBVA-KISSAT: structured
bounded variable addition. In: Balyo, T., Froleyks, N., Heule, M.J.H., Iser, M.,
Järvisalo, M., Suda, M. (eds.) Proc. of SAT Competition 2023 – Solver and Bench-
mark Descriptions. Department of Computer Science Report Series B, vol. B-2023-
1, p. 18. University of Helsinki (2023)

55. Haberlandt, A., Green, H., Heule, M.J.H.: Effective auxiliary variables via struc-
tured reencoding. In: Mahajan, M., Slivovsky, F. (eds.) 26th International Con-
ference on Theory and Applications of Satisfiability Testing, SAT 2023, Alghero,
Italy. LIPIcs, 4–8 July 2023, vol. 271, pp. 11:1–11:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.SAT.2023.11

56. Hamadi, Y., Jabbour, S., Sais, L.: Learning for dynamic subsumption. In: ICTAI
2009, 21st IEEE International Conference on Tools with Artificial Intelligence,
Newark, New Jersey, USA, 2–4 November 2009, pp. 328–335. IEEE Computer
Society (2009). https://doi.org/10.1109/ICTAI.2009.22

57. Han, H., Somenzi, F.: On-the-fly clause improvement. In: Kullmann, O. (ed.) SAT
2009. LNCS, vol. 5584, pp. 209–222. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02777-2_21

58. Heule, M., Jr., W.A.H., Wetzler, N.: Trimming while checking clausal proofs. In:
Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
20–23 October 2013, pp. 181–188. IEEE (2013)

59. Heule, M.J.H.: Proofs of unsatisfiability. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability - Second Edition, Frontiers in Artificial
Intelligence and Applications, vol. 336, pp. 635–668. IOS Press (2021).https://doi.
org/10.3233/FAIA200998

60. Heule, M.J.H., Biere, A.: Proofs for satisfiability problems. In: All about Proofs,
Proofs for All (APPA), Mathmatical, Logic and Foundations, vol. 55. College
Publication (2015)

61. Heule, M., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF for-
mulas. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp.
357–371. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16242-
8_26

62. Heule, M.J.H., Järvisalo, M., Biere, A.: Covered clause elimination. In: Voronkov,
A., Sutcliffe, G., Baaz, M., Fermüller, C.G. (eds.) Short papers for 17th Inter-
national Conference on Logic for Programming, Artificial intelligence, and Rea-
soning, LPAR-17-short, Yogyakarta, Indonesia, 10–15 October 2010. EPiC Series
in Computing, vol. 13, pp. 41–46. EasyChair (2010). https://doi.org/10.29007/
CL8S

https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://api.semanticscholar.org/CorpusID:10504432
https://doi.org/10.1109/FMCAD.2014.6987601
https://doi.org/10.4230/LIPICS.SAT.2023.11
https://doi.org/10.1109/ICTAI.2009.22
https://doi.org/10.1007/978-3-642-02777-2_21
https://doi.org/10.1007/978-3-642-02777-2_21
https://doi.org/10.3233/FAIA200998
https://doi.org/10.3233/FAIA200998
https://doi.org/10.1007/978-3-642-16242-8_26
https://doi.org/10.1007/978-3-642-16242-8_26
https://doi.org/10.29007/CL8S
https://doi.org/10.29007/CL8S

148 A. Biere et al.

63. Heule, M.J.H., Järvisalo, M., Biere, A.: Revisiting hyper binary resolution. In:
Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 77–93.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38171-3_6

64. Hickey, R., Bacchus, F.: Trail saving on backtrack. In: Pulina, L., Seidl, M. (eds.)
SAT 2020. LNCS, vol. 12178, pp. 46–61. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-51825-7_4

65. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a python toolkit for pro-
totyping with SAT oracles. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT
2018. LNCS, vol. 10929, pp. 428–437. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94144-8_26

66. Janota, M., Lynce, I., Marques-Silva, J.: Algorithms for computing backbones of
propositional formulae. AI Commun. 28(2), 161–177 (2015). https://doi.org/10.
3233/AIC-140640

67. Järvisalo, M., Biere, A.: Reconstructing solutions after blocked clause elimination.
In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 340–345.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_30

68. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-12002-2_10

69. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_28

70. Kiesl, B., Heule, M.J.H., Biere, A.: Truth assignments as conditional autarkies. In:
Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol. 11781, pp.
48–64. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31784-3_3

71. Kiesl-Reiter, B., Whalen, M.W.: Proofs for incremental SAT with inprocessing.
In: Nadel, A., Rozier, K.Y. (eds.) Formal Methods in Computer-Aided Design,
FMCAD 2023, Ames, IA, USA, 24–27 October 2023, pp. 132–140. IEEE (2023).
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_21

72. Kochemazov, S., Ignatiev, A., Marques-Silva, J.: Assessing progress in SAT solvers
through the lens of incremental SAT. In: Li, C.-M., Manyà, F. (eds.) SAT 2021.
LNCS, vol. 12831, pp. 280–298. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-80223-3_20

73. Kupferschmid, S.: Über Craigsche Interpolation und deren Anwendung in der
formalen Modellprüfung. Ph.D. thesis, University of Freiburg (2013)

74. Kupferschmid, S., Lewis, M., Schubert, T., Becker, B.: Incremental preprocess-
ing methods for use in BMC. Formal Methods Syst. Des. 39(2), 185–204 (2011).
https://doi.org/10.1007/S10703-011-0122-4

75. Lammich, P.: Efficient verified (UN)SAT certificate checking. J. Autom. Reason.
64(3), 513–532 (2020). https://doi.org/10.1007/s10817-019-09525-z

76. Le Berre, D., Roussel, O., Simon, L.: SAT competition 2009: Benchmark sub-
mission guidelines. https://web.archive.org/web/20190325181937/https://www.
satcompetition.org/2009/format-benchmarks2009.html. Accessed 15 Jan 2024

77. Li, C.M.: Integrating equivalency reasoning into Davis-Putnam procedure. In:
Kautz, H.A., Porter, B.W. (eds.) Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence and Twelfth Conference on on Innovative Appli-
cations of Artificial Intelligence, Austin, Texas, USA, 30 July–3 August 2000,
pp. 291–296. AAAI Press/The MIT Press (2000), http://www.aaai.org/Library/
AAAI/2000/aaai00-045.php

https://doi.org/10.1007/978-3-642-38171-3_6
https://doi.org/10.1007/978-3-030-51825-7_4
https://doi.org/10.1007/978-3-030-51825-7_4
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.3233/AIC-140640
https://doi.org/10.3233/AIC-140640
https://doi.org/10.1007/978-3-642-14186-7_30
https://doi.org/10.1007/978-3-642-12002-2_10
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-030-31784-3_3
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_21
https://doi.org/10.1007/978-3-030-80223-3_20
https://doi.org/10.1007/978-3-030-80223-3_20
https://doi.org/10.1007/S10703-011-0122-4
https://doi.org/10.1007/s10817-019-09525-z
https://web.archive.org/web/20190325181937/https://www.satcompetition.org/2009/format-benchmarks2009.html
https://web.archive.org/web/20190325181937/https://www.satcompetition.org/2009/format-benchmarks2009.html
http://www.aaai.org/Library/AAAI/2000/aaai00-045.php
http://www.aaai.org/Library/AAAI/2000/aaai00-045.php

CaDiCaL 2.0 149

78. Lohn, E., Lambert, C., Heule, M.J.H.: Compact symmetry breaking for tourna-
ments. In: Griggio, A., Rungta, N. (eds.) 22nd Formal Methods in Computer-
Aided Design, FMCAD 2022, Trento, Italy, 17–21 October 2022, pp. 179–188.
IEEE (2022). https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_24

79. Luo, M., Li, C., Xiao, F., Manyà, F., Lü, Z.: An effective learnt clause mini-
mization approach for CDCL SAT solvers. In: Sierra, C. (ed.) Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, 19–25 August 2017, pp. 703–711. ijcai.org (2017).
https://doi.org/10.24963/IJCAI.2017/98

80. Mansur, M.N., Christakis, M., Wüstholz, V., Zhang, F.: Detecting critical bugs
in SMT solvers using blackbox mutational fuzzing. In: ESEC/SIGSOFT FSE, pp.
701–712. ACM (2020)

81. Manthey, N.: Riss 7 in proceedings of SAT competition 2020. In: Proceedings of
SAT Competition 2020: Solver and benchmark descriptions (2020)

82. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of Boolean formulas.
In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 102–117.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39611-3_14

83. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiabil-
ity - Second Edition, Frontiers in Artificial Intelligence and Applications, vol. 336,
pp. 133–182. IOS Press (2021). https://doi.org/10.3233/FAIA200987

84. Möhle, S., Biere, A.: Backing backtracking. In: Janota, M., Lynce, I. (eds.) SAT
2019. LNCS, vol. 11628, pp. 250–266. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-24258-9_18

85. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

86. Nadel, A.: Introducing Intel(R) SAT Solver. In: Meel, K.S., Strichman, O.
(eds.) 25th International Conference on Theory and Applications of Satisfia-
bility Testing (SAT 2022). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 236, pp. 8:1–8:23. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.SAT.2022.8.
https://drops.dagstuhl.de/opus/volltexte/2022/16682

87. Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-31612-8_19

88. Nadel, A., Ryvchin, V.: Chronological backtracking. In: Beyersdorff, O., Winter-
steiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 111–121. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8_7

89. Nadel, A., Ryvchin, V., Strichman, O.: Preprocessing in incremental SAT. In:
Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 256–269.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_20

90. Nadel, A., Ryvchin, V., Strichman, O.: Ultimately incremental SAT. In: Sinz, C.,
Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 206–218. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09284-3_16

91. Neiman, D., Mackey, J., Heule, M.J.H.: Tighter bounds on directed ramsey num-
ber R(7). Graphs Comb. 38(5), 156 (2022). https://doi.org/10.1007/S00373-022-
02560-5

92. Niemetz, A., Preiner, M.: Bitwuzla. In: Enea, C., Lal, A. (eds.) Computer Aided
Verification - 35th International Conference, CAV 2023, Paris, France, 17–22 July

https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_24
https://doi.org/10.24963/IJCAI.2017/98
https://doi.org/10.1007/978-3-642-39611-3_14
https://doi.org/10.3233/FAIA200987
https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.4230/LIPIcs.SAT.2022.8
https://drops.dagstuhl.de/opus/volltexte/2022/16682
https://doi.org/10.1007/978-3-642-31612-8_19
https://doi.org/10.1007/978-3-319-94144-8_7
https://doi.org/10.1007/978-3-642-31612-8_20
https://doi.org/10.1007/978-3-319-09284-3_16
https://doi.org/10.1007/S00373-022-02560-5
https://doi.org/10.1007/S00373-022-02560-5

150 A. Biere et al.

2023, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13965, pp.
3–17. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-37703-7_1

93. Niemetz, A., Preiner, M., Barrett, C.W.: Murxla: a modular and highly extensible
API fuzzer for SMT solvers. In: Shoham, S., Vizel, Y. (eds.) CAV (2). Lecture
Notes in Computer Science, vol. 13372, pp. 92–106. Springer, Heidelberg (2022).
https://doi.org/10.1007/978-3-031-13188-2_5

94. Niemetz, A., Preiner, M., Biere, A.: Model-based API testing for SMT solvers. In:
SMT. CEUR Workshop Proceedings, vol. 1889, pp. 3–14. CEUR-WS.org (2017)

95. Niemetz, A., Preiner, M., Biere, A.: Boolector at the SMT competition 2019. In:
Hendrix, J., Sharygina, N. (eds.) Proceedings of the 17th International Workshop
on Satisfiability Modulo Theories (SMT 2019), affiliated with the 22nd Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT 2019),
Lisbon, Portugal, 7–8 July 2019, p. 2 (2019)

96. Park, J., Winterer, D., Zhang, C., Su, Z.: Generative type-aware mutation for
testing SMT solvers. Proc. ACM Program. Lang. 5(OOPSLA), 1–19 (2021)

97. Paxian, T., Reimer, S., Becker, B.: Dynamic polynomial watchdog encoding for
solving weighted MaxSAT. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT
2018. LNCS, vol. 10929, pp. 37–53. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94144-8_3

98. Piette, C., Hamadi, Y., Sais, L.: Vivifying propositional clausal formulae. In: Ghal-
lab, M., Spyropoulos, C.D., Fakotakis, N., Avouris, N.M. (eds.) ECAI 2008 - 18th
European Conference on Artificial Intelligence, Patras, Greece, 21–25 July 2008,
Proceedings. Frontiers in Artificial Intelligence and Applications, vol. 178, pp.
525–529. IOS Press (2008). https://doi.org/10.3233/978-1-58603-891-5-525

99. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for
satisfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72788-0_28

100. Pollitt, F., Fleury, M., Biere, A.: Faster LRAT checking than solving with CaD-
iCaL. In: Mahajan, M., Slivovsky, F. (eds.) 26th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2023). Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 271, pp. 21:1–21:12. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl (2023). https://doi.org/10.
4230/LIPIcs.SAT.2023.21

101. Sanders, P., Schreiber, D.: Mallob: scalable SAT solving on demand with decen-
tralized job scheduling. J. Open Source Softw. 7(77), 4591 (2022). https://doi.
org/10.21105/JOSS.04591

102. Scott, J., Sudula, T., Rehman, H., Mora, F., Ganesh, V.: BanditFuzz: fuzzing SMT
solvers with multi-agent reinforcement learning. In: Huisman, M., Păsăreanu, C.,
Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp. 103–121. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-90870-6_6

103. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: Rutenbar, R.A., Otten, R.H.J.M. (eds.) Proceedings of the 1996 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 1996, San Jose, CA,
USA, 10–14 November 1996, pp. 220–227. IEEE Computer Society/ACM (1996).
https://doi.org/10.1109/ICCAD.1996.569607

104. Soos, M., Devriendt, J., Gocht, S., Shaw, A., Meel, K.S.: CryptoMiniSat with
ccanr at the SAT competition 2020. In: Proceedings of SAT Competition 2020:
Solver and Benchmark Descriptions 2020, vol. 27 (2020)

https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1007/978-3-031-13188-2_5
https://doi.org/10.1007/978-3-319-94144-8_3
https://doi.org/10.1007/978-3-319-94144-8_3
https://doi.org/10.3233/978-1-58603-891-5-525
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.4230/LIPIcs.SAT.2023.21
https://doi.org/10.4230/LIPIcs.SAT.2023.21
https://doi.org/10.21105/JOSS.04591
https://doi.org/10.21105/JOSS.04591
https://doi.org/10.1007/978-3-030-90870-6_6
https://doi.org/10.1109/ICCAD.1996.569607

CaDiCaL 2.0 151

105. Soos, M., Gocht, S., Meel, K.S.: Tinted, Detached, and Lazy CNF-XOR solving
and its applications to counting and sampling. In: Lahiri, S.K., Wang, C. (eds.)
CAV 2020. LNCS, vol. 12224, pp. 463–484. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53288-8_22

106. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24

107. Soos, M., Selman, B., Kautz, H., Devriendt, J., Gocht, S.: CryptoMiniSat with
WalkSAT at the SAT competition 2020. In: Proceedings of SAT Competition
2020: Solver and Benchmark Descriptions, p. 29 (2020)

108. Subercaseaux, B., Heule, M.J.H.: The packing chromatic number of the infinite
square grid is 15. In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems - 29th International Confer-
ence, TACAS 2023, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2022, Paris, France, 22–27 April 2023, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 13993, pp. 389–406. Springer,
Heidelberg (2023).https://doi.org/10.1007/978-3-031-30823-9_20

109. van der Tak, P., Ramos, A., Heule, M.J.H.: Reusing the assignment trail in CDCL
solvers. J. Satisf. Boolean Model. Comput. 7(4), 133–138 (2011). https://doi.org/
10.3233/SAT190082

110. Tan, Y.K., Heule, M.J.H., Myreen, M.O.: cake_lpr: verified propagation redun-
dancy checking in CakeML. In: TACAS 2021. LNCS, vol. 12652, pp. 223–241.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72013-1_12

111. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-09284-3_31

112. Whittemore, J., Kim, J., Sakallah, K.A.: SATIRE: a new incremental satisfiability
engine. In: Proceedings of the 38th Design Automation Conference, DAC 2001,
Las Vegas, NV, USA, 18–22 June 2001, pp. 542–545. ACM (2001).https://doi.
org/10.1145/378239.379019

113. Wieringa, S., Niemenmaa, M., Heljanko, K.: Tarmo: A framework for parallelized
bounded model checking. In: Brim, L., van de Pol, J. (eds.) Proceedings 8th Inter-
national Workshop on Parallel and Distributed Methods in verifiCation, PDMC
2009, Eindhoven, The Netherlands, 4 November 2009. EPTCS, vol. 14, pp. 62–76
(2009). https://doi.org/10.4204/EPTCS.14.5

114. Yolcu, E., Aaronson, S., Heule, M.J.H.: An automated approach to the collatz
conjecture. J. Autom. Reason. 67(2), 15 (2023). https://doi.org/10.1007/S10817-
022-09658-8

115. Zhang, L.: On subsumption removal and on-the-fly CNF simplification. In: Bac-
chus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 482–489. Springer,
Heidelberg (2005). https://doi.org/10.1007/11499107_42

116. Zhang, T., Szeider, S.: Searching for smallest universal graphs and tournaments
with SAT. In: Yap, R.H.C. (ed.) 29th International Conference on Principles and
Practice of Constraint Programming, CP 2023, Toronto, Canada, 27–31 August
2023. LIPIcs, vol. 280, pp. 39:1–39:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2023). https://doi.org/10.4230/LIPICS.CP.2023.39

https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-031-30823-9_20
https://doi.org/10.3233/SAT190082
https://doi.org/10.3233/SAT190082
https://doi.org/10.1007/978-3-030-72013-1_12
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1145/378239.379019
https://doi.org/10.1145/378239.379019
https://doi.org/10.4204/EPTCS.14.5
https://doi.org/10.1007/S10817-022-09658-8
https://doi.org/10.1007/S10817-022-09658-8
https://doi.org/10.1007/11499107_42
https://doi.org/10.4230/LIPICS.CP.2023.39

152 A. Biere et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	CaDiCaL 2.0
	1 Introduction
	2 Architecture
	3 External Propagator
	4 Proofs
	5 Tracer Interface
	6 Constraints and Flipping
	7 Interpolation
	8 Testing and Debugging
	9 Experiments
	10 Conclusion
	References

