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Abstract. We present a new technique for verification of complex hardware devices that allows both generality
and a high degree of automation. The technique is based on our new way of constructing a “light-weight”” completion
function together with new encoding of uninterpreted functions called reference file representation.

Our technique combines our completion function method and reference file representation with compositional
model checking and theorem proving. This extends the state of the art in two directions. First, we obtain a more
general verification methodology. Second, it is easier to use, since it has a higher degree of automation.

As a benchmark, we take Tomasulo’s algorithm for scheduling out-of-order instruction execution used in many
modern superscalar processors like the Pentium-II and the PowerPC 604. The algorithm is parameterized by the
processor configuration, and our approach allows us to prove its correctness in general, independent of any actual
design.
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1. Introduction

Modern microprocessors have become extremely complicated, involving superscalar
pipelines and out-of-order (OOO) instruction execution [12], and a new generation of
VLIW and microcode-based designs. This complexity increases the demand for fast but
reliable validation methods to ensure timely delivery of new chips to the market with as few
errors as possible.

Formal verification is one of the most precise techniques that can guarantee the correct-
ness of the design. However, the growing complexity of microprocessors makes formal
verification increasingly difficult because data and control flow are tightly coupled. There-
fore, a formal model cannot easily separate the data and focus only on control flow, or vice
versa. Instead, it has to capture all the relevant data dependencies in each control state. As
a result, the state space may become enormous.
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In this paper, we consider verification techniques for a particular type of OOO processors
which employ Tomasulo’s algorithm for scheduling instruction execution.

Processor verification has been an active research topic in the recent years. Model check-
ing [6, 7] has been one of the more successful techniques in hardware verification. An
advantage of model checking is that it is completely automatic. However, straightforward
application of it can not handle the complexity of modern processors because of the state
explosion problem. It is also limited to verification of finite state systems, and can only
prove correctness of a particular processor configuration.

McMillan [20] has used compositional model checking to verify a variant of Tomasulo’s
algorithm (see Section 2). The main idea in his paper is to use compositional reasoning
to reduce the complexity of the verification. However, his technique is no longer fully
automatic, and the user has to find a good balance of lemmas that, in effect, state the
relatively complex invariant for induction over time.

Theorem proving can potentially handle a complex mix of data and control in a hardware
device and is able to prove properties in general for arbitrary processor configurations. But
direct theorem proving [10, 22] usually involves significant manual effort. Moreover, when
a circuit has a complex control structure, a theorem prover has to consider a lot of cases
arising from the branches in the control logic. This quickly makes the proofs too large
and tedious to be manageable for real processors. Model checkers usually do not have this
problem, since symbolic, or BBD-based, model checking techniques [19] are specifically
designed to handle extensive case analysis.

An alternative approach based on theorem proving uses completion functions [14]. A
completion function is a projection provided by the user that maps any OOQO processor
state into a flushed state, which corresponds to an architectural state of the machine visible
by a sequential program executed on that processor. A simple way of reaching this state is by
Sflushing the OO0 machine directly, that is, running it without dispatching new instructions
until all pending instructions are completed. If the completion function is simpler to compute
than directly flushing the machine, then proofs can also be simplified. For Tomasulo’s
algorithm, direct construction of such a completion function was previously infeasible. A
suitable completion function for an OOO processor with reorder buffer has been proposed in
arecent paper [15]. This function is recursive, and the complexity is handled by performing
induction on its recursion depth. Although feasible, this still requires significant manual
effort and human insight to carry this induction over.

Burch and Dill [5] use the notion of uninterpreted functions to represent data and opera-
tions on data symbolically. The behavior of a processor is specified in terms of uninterpreted
function symbols, and symbolic execution is performed. The result of each operation in
such a representation is a term constructed from uninterpreted function symbols. Providing
a concrete interpretation for these function symbols results in a particular run of a concrete
processor being verified. All of the formulas with uninterpreted function symbols that can be
proven to remain true under arbitrary interpretations. Thus, the approach of Burch and Dill
can be used prove the correctness of a device without knowing the concrete implementation
details.

Symbolic execution is based on extensive term rewriting and simple proof-theoretic rea-
soning, and thus can be easily automated. However, it requires special decision procedures
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for uninterpreted function symbols and does not use previously existing techniques like
BDDs [4]. Also the rate at which formulas grow with each cycle of the symbolic execution
depends on the size of the circuit. Therefore, when the circuit is relatively large, the formu-
las quickly become unmanageable. In addition, the number of symbolic execution cycles
required to complete the verification grows with the circuit size, making the approach
non-scalable.

Skakkebek et al. [23] propose an incremental flushing technique for verification of an
00O design. The technique is designed to overcome the fast growth of formulas in sym-
bolic execution at the expense of automation, and heavily relies on human-guided theorem
proving. Their approach is also based on uninterpreted function symbols and uses the SVC
tool as a decision procedure.

Sajid et al. [23] have extended the decision procedures for uninterpreted function symbols
to use BDDs. However, their work shares the disadvantage of [5]; the decision procedure
they give can not be easily combined with symbolic model checking. They have also not
investigated how their techniques can be applied to the verification of OOO processors.

Hojati and Brayton [13] have developed a formal description technique for integer combi-
national/sequential (ICS) systems. Their technique is even more general than uninterpreted
functions ([5]). For a restricted class of models they show, by applying the notion of data
independence [26], that 0—1 instantiation can reduce the size of the model to a finite num-
ber of states. This allows the usage of efficient symbolic model checkers. However, OOO
execution is inherently data dependent and thus these abstraction techniques can not be
applied. Hojati and Brayton also investigate how approximate reachability analysis can be
performed for general ICS models. They give an algorithm that makes use of BDDs, but
their technique is only used for reachability analysis and no limit on the number of terms
occurring in the verification can be given.

Velev, Bryant, and German [3, 24] have developed methods of combining uninterpreted
function symbols with BDD-based symbolic model checking. However, their work is mostly
focused on completely automatic techniques, and can handle only fixed-size processor
designs.

In this paper we introduce two main techniques: a new method of incorporating uninter-
preted function symbols into traditional model checking, and a “light-weight” propositional
completion function for Tomasulo’s algorithm. This allows us to verify Tomasulo’s algo-
rithm in arbitrary an configuration; that is, for any number of registers, reservation stations,
functional units, and an arbitrary instruction set.! We observe that the terms that appear
during symbolic execution are not arbitrary. Often, they share subterms and have similar
structure. We exploit this observation by introducing a special state representation that re-
duces the number of copies of identical subterms. This representation is based on a data
structure called the reference file. Terms that share common subexpressions simply have
references to the same entries in the reference file. This greatly reduces the number of bits
needed for the state representation, thus reduces the number of states. It also simplifies
the problem of checking equivalence between terms—we simply compare the references.
Although structure sharing has been widely used for term representation in software, this is
the first time the technique is used in a finite-state SMV program, and it is one of the main
contributions of this paper. The use of reference file enables us to use traditional CTL model
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checking for uninterpreted function symbols. This representation alone makes it possible
to verify a Tomasulo’s machine with up to 5 reservation stations [2].

In addition, the reference file representation allows us to construct a relatively simple
propositional completion function for Tomasulo’s algorithm. This dramatically reduces
the complexity of verification, and since the specifications are propositional formulas, we
can take advantage of SAT procedures to speed up model checking [2]. No complicated
induction as in [15] is necessary for our completion function. To enhance the verification
further, we combine it with theorem proving and compositional model checking, where the
most tedious parts of the proofs are carried out by a model checking engine. The resulting
technique permits a high degree of automation with low computational complexity, and at
the same time is able to prove the correctness of Tomasulo’s algorithm in its full generality.
We believe that this new methodology can be extended to handle even more complex and
realistic superscalar processor designs in the future.

Our paper is organized as follows. We describe the Out-Of-Order engine in Section 2.
The completion function technique is explained in Section 3. Our encoding of the model
is given in Section 4. Section 5 provides the details of the case splitting technique, and
the entire verification process is summarized in Section 6. We give experimental results in
Section 7 and conclude in Section 8.

2. Out-of-order execution

As a benchmark for our method we have verified an implementation of Tomasulo’s Out
Of Order (OOO) execution algorithm [12] in its general case. This algorithm is the basic
technique that is used to implement OOQO execution in modern microprocessors. It also has
been used in previous work on the verification of OOO devices [10, 20]. We will explain
the idea behind OOO execution and how Tomasulo’s algorithm implements it. At the end
of this section we briefly describe our model.

To achieve greater throughput of instructions, superscalar microprocessors use several
functional units that can execute instructions in parallel. However, if two instructions depend
on each other (e.g. the later needs the result of an earlier instruction) one of them has to
wait until the other has finished. In this case, one functional unit is idle. But if a different
instruction, potentially following the other two in the instruction sequence, does not depend
on their results, then it can be executed in parallel on the free functional unit.

For instance, in figure 1 instruction I1 depends on the result computed by 10, and 12 does
not have to wait for 10 or I1. This allows 12 to be executed in parallel with I0. Since a
multiplication can take much longer than an addition, the execution of 12 could be finished
before I1 has started. In this case R1 may be updated with the result of 12 before I1
starts execution, and the execution of I1 may read the wrong value from register R1. This

[0 [RO := RO * RI
1 |RO:= RO = RI
[2 [R]1:=RIl + RI

Figure 1. An instruction sequence that allows OOO execution.
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Name | Description Example
Ii: Ryx Ry — Ry
In: Ri+R:— Rs

RAW | Read After Write: instruction reading from a register may com-
plete before the previous instruction writes to the same register.
Since we need the result of the previous instruction, this situa-
tion is called the true data dependency. This hazard can only be
prevented by waiting for the result of the previous instruction.

Ih: Rox Ry — Rp

WAR | Write After Read: instruction writing to a register may complete Ini Ryt R Rs

before the previous instruction reads from the same register. Can
be prevented by saving the old value of the register in a separate
location.

Ii: R4 xRs - Rz

WAW | Write After Write: two instructions writing to the same register In: Ryt R Ra

may complete out of order, leaving the wrong value in the regis-
ter. Can be prevented by either in-order dispatching and tagging
the destination registers, or in-order completion.

Figure 2. Definition of data hazards in out-of-order processor. The names of the hazards are derived from the
intended order of events, and it is the hazard when this order can be violated.

[nstruction 10 RO Registers
Sequence 11 R1 P
12 R2
13 R3
14 Operand Bus
Operation Bus
» w h
S0
51 Reservation
S2 Stations
53

Functional
FO Units Fl

+ Common Data Bus (CDB) 4

Figure 3. A model of an implementation of Tomasulo’s algorithm.

is a data hazard (“write after read” in this case), and it must be handled properly. In
general, a data hazard arises when changing the instruction execution order influences the
result of the computation (see figure 2). Tomasulo’s algorithm was designed to avoid such
problems.

The main idea behind Tomasulo’s algorithm is to dispatch instructions from the in-
struction sequence into a pool of reservation stations (figure 3). The arguments for each
instruction are read from its source registers and placed into its reservation station. Then the
destination register is marked with a special fag indicating that its value is not yet available
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and will be produced by the instruction in this reservation station. Note, that previously
issued instructions may have had the current source registers as their destination registers.
So, the current source registers may already be tagged, in which case the tags are copied
into the reservation station instead of the values.

When an instruction completes, its result is posted on the Common Data Bus (CDB)
together with the reservation station number that is responsible for the instruction. Each
tagged register compares its tag with the reservation station number on the bus, and if it
matches, copies the value from the bus and clears its own tag. This mechanism is used
to update both the register file (architectural registers), and the argument registers in the
reservation stations.

From a reservation station an instruction is scheduled for execution on an unoccupied
functional unit as soon as all its operands are available, i.e., when all tags are cleared and
the corresponding data arrived. Read after write hazards, when the data must be computed
before it can be used, i.e., the “true” dependences, are now handled by delaying the execution
of an instruction until all of its operands are computed. Write after read hazards, when a
new value may overwrite the old one that we need, are eliminated by copying the values
for the dispatched instruction’s arguments into the reservation station from the register file.
Thus, no further updates to the source registers can overwrite the arguments. Write after
write hazards (after executing two instructions writing to the same destination register, the
value of the register must be the result of the second instruction) are resolved by in-order
dispatching and tagging. Since the destination register is tagged no matter whether it has
been tagged before, only the last tag will remain and cause the register to fetch the correct
result from the bus. Figure 2 summarizes these hazards in a table.

A pictorial diagram of our model is given in figure 3. It is similar to the OOO unit
described by [12] and the same as described by [2]. It consists of a set of registers (the
register file), a pool of reservation stations, and several functional units. The important
feature of our model is that reservation stations are not associated with specific functional
units. We use a common pool of reservation stations because it makes the model more
general and easier to verify. A similar model was independently used by McMillan [20].
This is not a completely artificial model: the Pentium Pro™ [11] microprocessor also has
a common pool of reservation stations. We can model processors with reservation stations
assigned to functional units simply by restricting the scheduling algorithm. Therefore, our
method can be used, for example, for a PowerPC 604 processor.

3. The verification technique

Intuitively, the OOO processor is correct, if the result of any program executed on it is
consistent with its sequential semantics. That is, the result must be the same if we execute
this program on a sequential machine, which we call a specification machine. In our model,
for any finite sequence of instructions, if the initial contents of the register file in both OOO
and sequential specification machines are the same, and the OOO machine is “flushed” (that
is, all reservation stations are empty, and all pending instructions in them are completed),
then, when they both finish execution of that instruction sequence, the register files will
again have the same values.



VERIFICATION OF OUT-OF-ORDER PROCESSOR DESIGNS 165

Formally, define clock(s) to be a state of the machine after executing it exactly one clock
cycle from the state s without dispatching any new instruction. Note that clock also has
implicit arguments besides the explicit argument s. These implicit arguments drive the OOO
machine’s internal scheduling decisions at each state. Such arguments determine to which
reservation station a new instruction must be dispatched, and which instructions must be
executed next on which functional units, if there is such a choice. We hide these arguments
to simplify the notation, and because they are inessential for the verification purposes.
The hidden arguments are only used by two oracle functions complete(s) and scheduler(s)
which implement the details of internal scheduling in the OOO implementation. The benefit
of using oracles is that a certain implementation of oracles immediately gives us a particular
implementation of Tomasulo’s algorithm. This way we can easier match our model with the
actual designs. For the purpose of verification, we replace the oracles with nondeterministic
choice, which covers all possible scheduling choices, thus verifying the machine in the most
general setting for all possible scheduling algorithms. We will define all these functions
more precisely later in this section.

Definition 3.1.  An OOO state s is called flushed iff all reservation stations in s are empty
(contain no pending instructions).

An OOQO state flush(s) is the result of flushing the machine from the state s; it is equivalent
to executing the machine until all of the instructions in the reservation stations are completed,
that is flush(s) = clock™(s) for some n > 0. The function dispatch(s, i) yields the state after
dispatching a new instruction i in the machine in a state s. Note that dispatch(s, i) also runs
the machine for one clock cycle, which may let another instruction retire (that is, complete
execution and write back the results). In our model we allow at most one instruction to be
dispatched and at most one to retire in the same clock cycle. Function exec(s, i) returns a
state of the machine after executing an instruction i in a flushed state s, as specified by the
sequential semantics. That is, the instruction i is executed with the current values of the
registers and the result is immediately written back to the register file.

Note that flush and dispatch are partial functions, since not every state can be flushed
(e.g. due to possible cyclic dependencies among reservation stations), and not every state
has a reservation station available for dispatching a new instruction. We will define all these
functions explicitly in Section 4.2.

Definition 3.2. For any instruction sequence 7 = iy, ..., i,—1 of length n > 0 define the
set of O0O traces tr,,, (50, ) to be the set of sequences of states sy, . .., s, such that the
initial state sp is flushed and 54 = clockks (dispatch(s;, i;)), where k; > O1is such that s;
has a free reservation station and another instruction can be dispatched to it in the next
cycle. That is, s; is some state of the machine after dispatching all the first j instructions
from 7 in the originally empty machine, and, in addition, the machine in the state s; is
ready to accept a new instruction.

Note that tr,,, (5o, 77) may contain more than one sequence, each corresponding to differ-
ent values of the hidden decision arguments of clock. It may also be empty if the processor
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has an error and can get into a deadlock state—for instance, due to cyclic dependencies
among reservation stations.

Definition 3.3. For any instruction sequence m = iy, . .., i,—1 of length n > 0 define the
set of sequential traces try,(qgo, 77) to be the set of sequences of states qo, . .., g, such that
the initial state g is flushed, and g ;.| = exec(g;, i;).

Since the sequential execution is deterministic, try, (5o, 7r) is always a singleton set, and
can be defined as a function returning the trace. But we define it as a set to be consistent
with tr,.,.

We denote a j-th state of each trace by s; for § €tr,,(so, 7) and g, for g € trye, (s, 77)
respectively, where § and g denote the entire traces. Note that the initial state gq is always
the same as sy. Now the main correctness property of the OOQO algorithm can be stated as
the following theorem:

Theorem 3.4. For an arbitrary flushed state sq, an instruction sequence 7w of length n,
and any traces s €1,,,(so, 7) and g € trseq (S0, ) the following holds:

flush(s,) = q-

Here s, is the OOO state of the machine after dispatching all instructions from 7, and
in the flush(s,) state all these instructions must be completed. At this point, the state of
the machine must be exactly the same as g, the state after executing the same instructions
sequencially on the specification machine (figure 4). This theorem can be vacuously true
for a certain initial state sy and an instruction sequence 7 if the machine cannot be flushed
(e.g. the processor gets to a deadlock state due to a design error), and the set of OOO traces
tro00 (S0, ) is empty. Therefore, the theorem only states the safety property, that the OOO
machine never does anything wrong if it does anything at all. The ability to flush the machine
from any reachable state is a liveness property, and could also be handled in our model.
However, we do not consider it in this paper, and concentrate only on the safety property.

The proof of Theorem 3.4 is done by induction over the instruction sequence length
(figure 4). The base of the induction (n = 0) is trivial, since flush(sy) = 59 = go by definition.
The inductive step states that for any reachable state s, flushing the machine and executing
an instruction i; results in the same state as when we first dispatch this instruction and then
flush the machine (figure 4):

Vj = 0.q; =flush(s;) = g1 = flush(s;41),

where g;,| =exec(q;, i;). We call this property the Burch and Dill Commutative
Diagram [5]. If we express s;41, ¢, and g4 in terms of s;:

sj+1 = clock® (dispatch(s;, i;)), ¢, = flush(s;),

where k; > 0 is the number of cycles to run the machine after dispatching i; before there
is a free reservation station (see Definition 3.2). By Definition 3.3, we also have:

qj+1 = exec(q;, i;) = exec(flush(s;), i;),
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Instruction
Sequence
000 9 Sequential
L]
o flush e
: dispatch
dispatch ¢ ij |' &
b4 execute
5 b4 flush e "
dispatch iju ) dispatch
v
o &
Induction execute
v Step
o
Y flush 7,
.\j+‘;¢?- bo fj+_‘r
dispatch; [T | dispatch
° &
| execute
w
°
; flush >;

Figure 4. Induction over the instruction length.
and notice that
flush(s; 1) = flush(clockkf (dispatch(s;, i;))) = flush(dispatch(s;, i})),

since running a machine for a few cycles and then flushing is the same as just flushing it
right away. From the above, we obtain a “commutative” property of flushing and dispatch-
ing/executing that we need to show in order to prove the inductive step:

Vj = 0. exec(flush(s;), i ;) = flush(dispatch(s;, i;)).

As in any induction, this diagram may not hold in general for arbitrary states s;, and we
need an inductive invariant that restricts this property to some superset of reachable states
where it holds. We call a state s reachable if the machine can reach this state by executing
some instruction sequence from some initial state. Formally, s is reachable if there is an
initial (flushed) state sy and an instruction sequence of some length n such that s = s,,, where
s, is defined as in Theorem 3.4. A sufficient inductive invariant / in our case happens to be
relatively simple:

e [ (s): Tags both in registers and reservation stations in state s point only to reservation
stations that have instructions to be executed in them.
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Since no tags are in use in the initial state s (because it is flushed), 7 (so) is vacuously true
in the initial state. The commutative diagram now is a corollary of the following lemma:

Lemma 3.5. Vs. Vi. I(s) holds and

flush(s), s’ = dispatch(s, i), and flush(s’) are all defined
implies I (s") A exec(flush(s), i) = flush(s").

Additionally, we need to ensure the invariant / (s) holds not only right after dispatching
the instruction 7, but also at some future state clock*(s’) in which the machine is ready to
dispatch the next instruction. For this it is sufficient to prove the following lemma:

Lemma 3.6.
Vs. I(s) = I(clock(s)).

Notice that proving the commutativity of the diagram (Lemma 3.5) requires flushing the
00O machine twice. Since we are effectively using symbolic execution whose complexity
increases exponentially with the number of cycles of the OOO machine, flushing it may be
very costly. Thus, we would like to do an inferior induction over the number of clock cycles
required to flush the machine to ease the burden of the model checker. This inferior induction
will inevitably require another inductive invariant, perhaps much stronger than the one we
already have. The work of Jens Skakkebzak et al. [23] suggests that such an invariant, when
expressed directly, is quite complicated. Moreover, it requires significant changes to the
model, special treatment of nondeterminism, and sometimes even intermediate abstraction
layers.

3.1.  Completion function approach

There is, however, a different way to express the same invariant using a completion func-
tion [14]. A completion function is a function f that takes an OOO state s and returns a
sequential state f(s) corresponding to the flushed state of the machine from s if one exists.
If the machine cannot be flushed from s (e.g. due to cyclic dependencies among reservation
stations), the result of f(s) can be any state. The hard way to compute such a function would
be to run the OOO machine from a state s without dispatching new instructions until it is
flushed. However, if the user can provide a completion function f with lower complexity,
then our commutative diagram (Lemma 3.5) becomes

Lemma 3.7. Vs.Vi. I(s) = I(dispatch(s,i)) A exec(f(s), i) = f(dispatch(s, i)).

The proof of this lemma becomes much easier than the one for Lemma 3.5 with direct
flushing if the function f is much simpler to compute than to flush the machine directly.
However, since the function f can still be a complex expression, we need to prove that it is
indeed a completion function. Formally, this property can be expressed as a lemma:
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Lemma 3.8. [If, for a state s, there is an n >0 such that clock™(s) is flushed, then
f(s) =clock™(s), where clock performs exactly one step of execution of the OOO machine
without dispatching a new instruction.

We prove this lemma by induction over the number of cycles required to flush the OOO
machine. Suppose we are in an OOQO state s. The important property is that f always returns
a flushed state, and if the original state s is flushed, then the result of f(s) must be the same
as s.

The base case is when s is already flushed (n = 0 in Lemma 3.8). Then we need to check
that

f(s) =s.
The inductive step assumes that Lemma 3.8 holds foranyn — 1 > k > 0O:
Vs'. clock (s') is flushed = f(s") = clockX (s").

To prove the lemma for k =n we instantiate s’ in the induction hypothesis by clock(s),
obtaining the following:

Vs. clock” (s) is flushed —

f(clock(s)) = clock” ! (clock(s)) (by ind. hypothesis)
= clock” (s),

To complete the inductive step, we have to show that

Vs. f(clock(s)) = f(s).

Intuitively, flushing the machine immediately is the same as running it for one clock cycle
and then flushing, and the completion function f has to satisfy this property. In general,
this property may not hold as stated for an arbitrary state s, since there are “invalid” states
which cannot be flushed (e.g. due to a tag pointing to an empty reservation station), and
the behavior of the completion function is not specified for such states. Hence, the property
needs to be strengthened. It turns out that the same invariant / that we mentioned earlier is
sufficient for this lemma to go through. Thus, the actual sublemma for the inductive step is
the following:

Lemma 3.9. Vs. I(s) = I(clock(s)) A f(clock(s)) = f(s).

Note, that this lemma also implies Lemma 3.6. The reason that our inductive invariant is
so simple compared to [23] is because all of the complexity is now implicitly encoded into
the completion function.

In the remaining sections we give our implementation of Tomasulo’s algorithm, its en-
coding using a special data structure called a reference file, and define our completion
function. Then we apply another reduction technique known as universal skolemization
in theorem proving, or case splitting in the model checking community. This generates a
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number of smaller lemmas to prove. The number of lemmas is further reduced by symmetry
reductions, and it makes it possible to prove the main correctness property (Theorem 3.4)
for an arbitrary configuration of our Tomasulo’s algorithm model.

4. Encoding of Tomasulo’s algorithm

In order to verify Tomasulo’s algorithm we need to abstract the concrete details of data
manipulation in the functional units. We reformulate the algorithm using uninterpreted
functions in place of concrete ALU operations in the same way as Burch and Dill [5]. For
simplicity we focus only on arithmetic instructions that take two arguments and produce
one result. The arguments are read from source registers, and the result is written back to
its destination register. Each instruction performs a distinct operation f,, specified by its
opcode op € Op. If the source registers contain values x and y, then the instruction produces
the result f,,(x, y). In our framework, the function f;,, is uninterpreted, and thus, the result
fop(x, y) is not really computed, but is rather treated and recorded in the destination register
as a term.

We start with the same basic idea as Burch and Dill [5]. Our model of the microprocessor
does not compute concrete values. It only manipulates symbolic terms made of constants
and uninterpreted function symbols. This is explained in figure 5(a) where a symbolic
execution trace of a sequential microprocessor is shown. This example processor has two
registers and an instruction sequence consisting of two instructions. The registers RO and
R1 contain the initial symbolic values r0 and rl respectively. The first instruction adds
these two values and stores the symbolic result ‘tO4rl’ into register RO. Note that ‘4’
is treated as an uninterpreted function with no actual meaning. In particular, we can not
assume commutativity or associativity of these functions. The second instruction computes

_55@|R0_R0+R1| [RO := RO + RI] RO := RO + RI
23 ﬂnished [ fimished ] PC | finished I
%2 [Ro 10 RO 0 + rl RO 0 + rl
E‘J— RI rl R1 rl R1| (0 + rl) * rl

(a) with Uninterpreted Functions
2= [Ro 0 RO p0 RO p0
3"* RI rl R1 o RI pl
3 +
52 |P0 PO 0+ rl PO 0 + rl +
£ |PI Pl Pl p0 # rl

(b) with Reference File

Figure 5. Execution trace of a sequential machine with and without reference file.
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the product of the result and the initial value r1 of register R1. The final symbolic result
‘(rt04rl) * rl’ is generated and stored in register R1.

In general, we associate different uninterpreted constants with the initial values of the
registers. Since the number of registers is finite, the number of constants is also finite. Thus,
if we execute a finite number of instructions, the number of terms that occur during this
symbolic execution will also be finite. Consequently, the processor model will be finite
and can, in principle, be represented in a finite state model checker. A direct encoding of
all possible terms would allow us to use model checking for the model with uninterpreted
function symbols. However, we will show that the number of bits needed to represent
these terms grows exponentially with the number of instructions. This makes this approach
infeasible.

In general, any term occurring in the symbolic execution will have a height no larger than
i 4+ 1, where i is the number of instructions. The height of a term is defined as the height
of its syntax tree or, equivalently, the maximal number of nested function applications plus
one. As a rough lower bound on the number of all possible terms we use a lower bound
on the number of terms with maximal height and maximal number of subterms. Since all
function symbols are binary in our example, the number of atomic terms in the largest
terms is 2. In each place there can be one of r constants, thus, the total number of different
maximal terms is 2.

Since this is doubly exponential, the number of bits needed in a binary encoding of that
domain would grow exponentially with the number of instructions. As an example consider
the case where r =4 and i = 5. Ina binary encoding we have to use atleastlog, 42 =26 =64
bits for each register and other locations where a data value can be stored. With four registers
and four reservation stations the number of state bits would be at least 64 - (4 +2-4) = 768.
Note that 64 bits is often as big as the width of a register in a concrete model.

4.1. The reference file

While the brute force approach of direct encoding of all possible terms is not feasible, it
is important to note that in one execution trace not all possible terms can occur. Moreover,
the same terms or subterms are referenced at different locations. For instance, in the final
state of the execution trace in figure 5(a) the subterm ‘rO +r1’ occurs both in register RO
and R1. In this model it has to be stored twice and can not be shared.

A similar problem occurs in the implementation of logic and functional programming
languages like Prolog and Lisp [17, 18, 25]. They use a heap to store newly generated terms.
Registers in the abstract machine for these languages (e.g. WAM [25]) only contain constant
values or pointers to the heap. This prevents unnecessary copying and allows sharing of
common subterms.

We use a special data structure, called a reference file, similar to a heap. This is a much
more compact encoding of the terms produced during an execution. Each entry of the
reference file contains an application of an uninterpreted function symbol. Each operand of
the function application is either an initial value of a register or a pointer to another entry
of the reference file. Unlike the heap, the size of the reference file is finite and is equal to
the number of instructions i.
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As an example, figure 5(b) shows the execution of the same instruction sequence as in
figure 5(a). Now all terms are represented with a reference file. After the first instruction
the entry PO of the reference file stores the corresponding function symbol (‘+’) together
with its operands. In our case the operands are the constants ‘r0’ and ‘rl’. Instead of the
whole term (‘rO+r1’) only the pointer (‘p0’) is written into the destination register RO.
This result is further used by the second instruction. In the entry P1 of the reference file
allocated for this instruction the first operand is again stored as a pointer (‘p0’) without being
expanded. Finally, the pointer ‘pl’ is written to the destination register R1 of the second
instruction.

Compared to the first execution trace in figure 5(a), the difference is that the registers do
not contain terms anymore. Instead, symbolic constants (‘r0’ and ‘r1’) or pointers to the
reference file (‘p0’ and ‘pl’) are stored in the registers. When a functional unit finishes a
computation, a new entry is allocated in the reference file for a newly generated term, and
the registers are updated with pointers to it. Note that the terms occurring in the first run
can easily be restored from the reference file by expanding the pointers.

Since in an OOO machine the reference file may be filled in different order than in a
corresponding sequential machine run, we need to make sure we can still compare reference
file contents in the two machines at the end. One way to do this is to index the reference
file by the opcode. That is, when a new term is created by executing an instruction with
an opcode op, it is placed in the op’s slot of the reference file. If all the opcodes in the
instruction stream are different, then the order of terms in the reference file does not depend
on the execution order. Moreover, we do not have to record the opcode in the reference file
for a new term, since it is now implicitly encoded into the index. The reference file entry
therefore stores only the two operands of the instruction arg; and arg,, and if they are stored
in an entry p, then it represents the term f,(arg;, arg»).

The requirement that all the opcodes should be different does not compromise the gener-
ality of the verification, since the opcodes are just uninterpreted symbols. If later we want to
instantiate such a symbolic sequence of instructions with an actual program that has repeated
instructions, we simply interpret several symbolic opcodes with the same concrete value.

This assumption brings an additional inductive invariant that all opcodes differ at all
times, which, in particular, requires the newly dispatched instruction to have an opcode not
used before.

Now we can calculate an upper bound on the number of bits for the representation of the
reference file. Each entry has to store two operands, where an operand is a constant or a
pointer to the reference file. For i instructions and r registers there are i 4 r values for each
operand. This requires 2 - log, (i 4 r) bits to encode the two operands per entry. The entire
reference file consists of i entries, and thus, can be encoded with O (i - log,(i + r)) bits.

We also need to encode the contents of the register file and the reservation stations.
There, in addition to data values, we also need to store tags (see Section 2). For ¢ reser-
vation stations this requires log, (i +r 4 t) bits, since we have ¢ different tag values. Each
reservation station contains a busy bit, two operands and an opcode. This takes ¢ - (142 -
log, (i +r +1t) + log, i) bits for all ¢ reservation stations. We also need r - log,(i +r +1)
bits for r registers. Putting it all together, our model of Tomasulo’s algorithm can be encoded
with O((i +r +1¢) - log, (i +r + 1)) state bits.
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For an example with four registers (r =4), four reservation stations (r =4), and five
instructions (i =5) the exact number of bits is 16 for the register file, 48 bits for the
reservation stations, and 55 bits for the reference file, giving a total of 119 bits.

4.2.  Completion function with reference file

With a direct representation, any naively generated completion function for Tomasulo’s
algorithm would be nearly as hard to compute as just flushing the machine step by step. The
reason is that the final value of a register may, in the worst case, depend on all the reservation
stations, when every instruction needs the result of the previous one. Thus, simply tracing
the datapath, recording the transformations made to the data, and rewriting it as a function
will yield an expression involving the entire system, even if it returns only the value of one
register. Thus, the verification remains as complex as the brute force model checking of the
entire system and is not scalable.

The main reason that the complexity of the completion function is so high when written
in a straightforward way is that it mentions all or almost all of the components of the system.
If we can write a completion function that only references a fixed number of components
for each register, regardless of the actual size of the design, then the complexity will be
bounded for each register, and, therefore, grow linearly with the number of registers. It turns
out that using our reference file representation we can write the completion function in such
a scalable way.

We denote the entire OOO state by the 4-tuple:

s = (R, tag, rff, rs),

and the result of applying the completion function to it by f(s) = (R’, @, rff’, @), where R
is the register file, tag is the array of tags for the registers, rff is the reference file, and rs
is the pool of reservation stations. The register file R is the array of register values, and
does not include the tag part. When a register is not marked by a tag, the corresponding tag
entry has a special value . The reference file rff is the array of value pairs. Recall that each
reference file entry needs to hold only the values of the two arguments. The opcode of the
instruction is encoded implicitly into the index of that entry. Each reservation station in the
array rsis a tuple (op, argy, tag;, argz, tag,) holding the opcode and the two arguments with
their tags.

The components of the state are extracted by their names. For instance, the value of the
entire register file in the state s is R(s), and an individual register 7 is R, (s). Similarly, the
the first argument of the instruction from reservation station ¢ is arg; (rs;(s)), and its tag is
tagy (rs;(s)).

The completion function s’ = f (s) is defined below by the components R (s’) and rff(s’).
The tags and reservation stations are empty after flushing the machine, and we use ¢ to
reflect this.

Recall that the reference file is indexed by the opcodes, and every time we construct a
term with an opcode p, we place it into the corresponding reference file entry and refer to
it by a pointer—that is, the opcode p itself.
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For each register, if its value is not ready and its tag is pointing to a reservation station
holding an opcode p, then eventually this register will hold the pointer p. Otherwise its
value remains the same (we use some uninterpreted constants to represent initial values
of the registers). Notice that we reference only one reservation station per register. The
pseudo-code for this part of the completion function is

For every register r
if tag, (s) # ¥ then R, (s") := 0p(rsyg, (5));
else R.(s") := R, (s);

Here R, (s) is the register numbered r, and tag, is its tag which could be inactive (=0) if
the register is untagged. R, (s’) is the value of the same register after flushing the machine
(or, more precisely, after applying the completion function f). The op operator extracts the
opcode from the reservation station pointed to by tag, .

Since we will use this tag expansion mechanism again for the reference file, we define it
as a new function:

function expand(s, val, tag)
if tag # ¢ then return op(rsig(s));
else return val;

And the final value of a register » can now be computed as
R, (s") :=expand(s, R, (s), tag, (s)).

For each entry p of the reference file we check whether there is a reservation station that
holds this opcode. If there is one, then the value of this reference file entry will be a pair
of the final values of the arguments in that reservation station. Recall that we do not store
the entire term in the reference file entry that results from the execution of the instruction.
Since the reference file is indexed by opcode, it is sufficient to store only the two arguments
of a corresponding instruction in each entry (see Subsection 4.1).

Each argument in the reservation station is similar in its structure to a register (it has a
“value” field and a tag), and its final value is computed in the same way as a register. That
is, for each argument we look at its tag and either copy the “value” field or follow the tag
to another reservation station and extract its opcode. In total, we have to look into at most
3 reservation stations to compute the final value of the reference file entry. In pseudo-code,
this can be written as follows:

For every opcode p
if 3 reservation station ¢ such that op(rs,(s)) = p then
rff, (s") := (arg), arg));
where
arg; (s") = expand(s, arg, (rs; (s)), tag; (rs; (s)));
arg, (s’) = expand(s, arg, (rs;(s)), tag, (rs; (s)));
else rff, (s") :=0;
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function f(s) =
For every register r:
R, (s') :=expand(s, R,(s),tag,(s));
For every opcode p
if 3 reservation station ¢ such that op(rs;(s)) = p then
fff (') i=(arg) argh);
where
arg, (+') = expand(s, arg, (rs:(s)), tag, (rs(s)):
arg,(s') = expand(s, arg,(rs:(s)), tagy(rs:(s)));
else rff,(s') :=0;
return(s’);

Figure 6. Completion function f in pseudo-code.

function exec(s, i) =

For every register r:
if 7 = dest(7) then R.(s') :=op(i);
else B,.(s') := R.(s);

For every reference file entry p:
if p = op(i) then rff,{s") :=(Rsc, (5 (5), Rurea(iy (5));
else rff,(s") :=rff,(s);

return s’;

Figure 7. Pseudo-code for function exec.

Here arg;(rs;(s)) and tag;(rs,(s)), j € {1, 2}, are the value field and the tag of the j-th
argument in reservation station ¢. A reference file entry can be either empty (¥), if there is
no instruction with the corresponding opcode, or it can be a pair of values representing the
two arguments of the instruction. The entire completion function is summarized in figure 6,
and can be easily expressed in a specification language like SMV.

Now we give pseudo-code for exec, clock, and dispatch. For exec we only need to define
the values of registers and the reference file, since the other fields are not needed for
sequential execution and do not change. op(i), src; (i), src, (i), dest(i) are the opcode, two
source registers, and one destination register, respectively, of the instruction i (figure 7).

Intuitively, we update only the destination register with the pointer to a reference file
entry, and create a new term in that entry using the values in the source registers. All the
other parts of the state remain the same.

The clock(s) “executes” the machine for one clock cycle from the state s without dis-
patching new instructions. The processor either stays idle (the state does not change), or
completes one instruction from some reservation station that has all of its arguments ready
(i.e. arguments are untagged). Completion means writing back the value of the instruction
to the registers and removing the instruction from its reservation station when the execution
has finished. In our model we execute the instruction at the time of completion. We use a
special oracle complete(s) that returns a reservation station containing an instruction with
its arguments ready, or ¥, if no instruction should be completed in the current cycle. We do
not require the machine to complete an instruction as soon as it is ready; this allows us to
model multi-cycle execution time for some instructions.
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function bus(s) =
let ¢ = complete(s) in
if ¢ = () then tg’ :=0);
else
tg' i =1;
op’ :=op(rs¢(s));
res’:=(arg, (rsy(s)), argy (rse(s)));
endif
return (tg', op', res');

Figure 8. Pseudo-code for function bus.

First, we define an auxiliary function bus(s) that computes the value of the Common
Data Bus (CDB) where the result of a completed instruction is written back. The bus has
three fields: tg, op, and res that denote the reservation station number where the completed
instruction is stored, the opcode of the instruction, and the term resulting from the execution
of the instruction compatible with the reference file representation (that is, it is a pair of
the arguments’ values). If no instruction is completed in the current cycle, then the value
of the tg field is ¥ (figure 8). Notice that the function bus constructs the term resulting from
the instruction execution, which in a real processor is the job of the functional units. But
since in our model we only generate terms and do not compute the real values, it is very
easy to write the combination of functional units and the bus in one single function. It also
makes our model simpler and easier to understand.

The clock function is defined in figure 9. Similarly to the completion function, the return
value is composed of the primed variables. It fully defines the functionality of the OOO
Tomasulo machine when no instructions are being dispatched, and therefore is relatively
complex. First, we check whether any instruction has been completed, and if none, then
the processor idles and the state remains the same. When an instruction completes from
a reservation station ¢, we must free that reservation station (assign ¢ to it) after updating
all the internal registers that are waiting for this result. A register is waiting for the result
of the reservation station ¢ if its tag is pointing to ¢. For each register with the tag r we
erase the tag and write the opcode from the bus to that register (which is a pointer to the
corresponding term in the reference file). Otherwise the values of both the register and
the tag remain the same. This has to be done for both the architectural registers R, and the
argument registers arg; and arg, in the non-empty reservation stations. The reference file
entry for the completing instruction is also updated with the term on the bus.

We are ready to define the dispatch function (figure 10). The dispatch function updates
the tag in the destination register and the reservation station where the new instruction is
dispatched. It also allows the OOO machine to execute one clock cycle in parallel, and
it uses the clock function to achieve that. The new instruction can be dispatched into any
free reservation station (one that does not have an instruction in it) which it is determined
by a scheduler. In our pseudo-code we use another oracle scheduler(s) that returns a free
reservation station if there is one, or a special symbol ¥ otherwise. We also assume that we
only apply dispatch to those states s where scheduler(s) # ¢, and do not include this check
in the code.
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function clock(s) =
let ¢ = tg(bus(s)) in
/* No write back, state doesn’t change */
if ¢ = ¢ then return s; else
/* Otherwise update all values in: ¥/
/* Register File */
For every register number r:
if tag,(s) = ¢ then
R, (s'):=op(bus(s)); /* Pointer to the ref. file entry */
tag,.(s') :==0;
else
R,(s) := R.(s);
tag, (s') :=tag.(s};
/* Reference File */
For every reference file entry p:
if p = op(bus(s)) then rff,(s") :=res(bus(s));
else rff (') :=rff,(s);
/* Reservation Stations */
For every reservation station #;:
ift; = ¢ then rs;, :=0;
elsif rs;, # 0 then
/* Argument 1 ¥/
if tag, (rsy, (s)) = ¢ then
arg; (rsy, (') :==op(bus(s)}; /* Pointer to the ref. file entry */
tag; (rs;, (') :=0;
else
arg; (rsy, (s)) := argy (rs,, (5));
tag; (rss, (5')) :=tag, (s, (s));
/* Argument 2 ¥/
if tag,(rss, (s)) = t then
argy(rsy, (s')) :=op(bus(s)); /* Pointer to the ref. file entry */
tagy(rs;, (s)) == 0;
else
arg, (15, (+)) = argy(rsi, (5));
tagy(rsy, (s') 1= tagy(rsy, (5));
return s';

Figure 9. Function clock(s) in pseudo-code.

The reference file is not influenced by the newly dispatched instruction, and can only
change due to the completion of a previously issued instruction. The destination register
must be tagged and the tag must point to the reservation station ¢ where the new instruction
is dispatched. Then the reservation station ¢ must receive the opcode of the new instruction,
and the arguments are read from the registers and copied to the reservation station. However,
if a source register was tagged and at the same cycle the value for this tag appears on the
bus, we must be able to detect this and forward the value from the bus instead of the register,
which is done by the bypass function. If we do not forward the value, the tag that we copy
from that register will point at the end of the cycle to a reservation station that has just
completed, and, hence, is empty. This would violate our invariant /.
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function dispatch(s, ) =
let ¢ = scheduler(s) in
/* Reference File: not directly affected */
rff(s") :=rff(clock(s));
/* Register File: update tag in destination */
For every register number r:
R, (s') := R, {clock(s));
if r = dest(7) then tag (s') :=1¢;
else tag, (s') :=tag, (clock(s));
/* Reservation stations */
For every reservation station £;:
if t; # t then rs;, (s') :=rs;, (clock(s));

else
op(rs;, (s')) :=op(z);
(argl (rstl (81)>7 tagl(rstl (5’))) = bypass(s, RSrcl(i) (5)7 tagsrc;(i)(s));
(argZ(rStl (SI))v tagZ(rSil (3,))) = bypass(s, Rsrcz(i)(s)’ tagsrcz(i)(s));
return s’;

/* Forwarding logic from the bus */
function bypass(s, val, tag) =
if tag # 0 A tag = tg{bus{s)) then
val':=op(bus(s)); /* Pointer to the ref. file entry */
tag' :=0;
else
val' :=val; tag’ :=tag,
return (val’, tag');

Figure 10. Function dispatch(s, ) in pseudo-code.

We do not explicitly define the oracles complete and scheduler. In our SMV implemen-
tation they return nondeterministic values, and therefore, the correctness we prove extends
to any scheduling algorithm in a concrete processor.

5. Case splitting transformation

So far we have discussed the high-level steps of the verification of Tomasulo’s algorithm,
which is also summarized in figure 12, in Section 6. Our primary goal is to show that the
00O machine is equivalent to the sequential (specification) machine for arbitrary instruction
sequences. This is proven by induction over the instruction sequence. The base case, when
the sequence is empty, is trivial. The induction step comprises the Commutative Diagram
of Burch and Dill [5].

To prove the commutative diagram, we use the Reference File encoding of terms. This
encoding allows us to write a Completion Function f which eliminates the need for an
expensive flushing operation. The commutative diagram property is then reformulated in
terms of f. However, since f is provided by the user, we also need to prove that f is indeed
a completion function, that is, it is equivalent to flushing. This is done by induction over
the number of cycles required to flush the OOO machine. The base case is again simple,
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and the induction step essentially shows that flushing the machine immediately using f is
the same as first running it for one clock cycle and then flushing it.

At the end of this stage, we are left with two properties: the commutative diagram in
terms of f in the reference file representation, and the induction step for the function f.
These two properties are still hard to prove directly, since they heavily rely on the OOO
model.

In this section, we describe the Case Splitting transformations to make the properties
small enough for direct application of model checking.

Now, let us look back at the commutative diagram with the completion function (omitting
the invariant for brevity):

exec(f(s),i) = f(dispatch(s, i)).
Separated by the individual components, the diagram can be written as:

Vr. R, (exec(f(s),1)) = R,(f(dispatch(s, i)))
Vj. rif;(exec(f(s), i) = rif;( f (dispatch(s, i))).

Each universal quantifier can be replaced by a conjunction over all the values of r and j,
since the number of values is finite. This creates a number of separate formulas to check
for each value of r and j. However, these proofs will all be very similar to each other,
and instead, we are going to reduce this plethora of proofs to just a few more general
ones.

For each formula of the form Vx. ¢ (x) we first apply universal Skolemization to eliminate
the quantifier:

M = ¢(a)
M E=Vx.p(x)’

where a is a new uninterpreted constant, or a Skolem constant. This is a standard quantifier
elimination rule used in theorem proving. It states that in order to prove Vx. ¢ (x) in the
model M, it is sufficient to prove ¢ (a) in M for arbitrary interpretations of the constant a.
Instead of checking every interpretation of a (which would effectively be an expansion of
the quantifier into the conjunction), in theorem proving this constant is left as a symbolic
uninterpreted constant, and treated just as any other constant. The values of the terms that
depend on a may not always be computed, for example, a = 0, or a + 1, and such terms
are also kept in their symbolic representation.

In general, in a successful proof of ¢(a) a finite number of terms occur which depend
on a (by the mere reason that the proof is finite). Let us call these terms #q, ..., t,. For
simplicity, we assume that these terms are all uninterpreted Skolem constants. If this is not
true, and some term ¢ is more complex than just a constant, then we rewrite ¢ (a) in an
equivalent form

Vy.t =y = ¢(a)[t/y]. o))
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After applying Skolemization once again to eliminate Vy, we obtain a new formula
1 =b= ¢(a)lt/b],

and the term ¢ is now replaced everywhere in the proof of ¢ (a) by the new Skolem constant b.
This technique can be applied not only to the terms that depend on a, but also to other terms
whose values are not known at the time of verification. These, in particular, include input
variables and terms that depend on them.

As a heuristic, we assume that only equivalences of the uninterpreted terms matter in
the proof of ¢ (a). That is, it may be important whether a = b or not, but not the particular
values of a and b. Since we have to prove ¢ (a) for arbitrary interpretations of all Skolem
constants, this means that we have to consider all the cases for the equalities. For instance,
if we only have two Skolem constants a and b, then we have to prove ¢ (a) whena = b, and
when a # b. Since the actual values of a and b are irrelevant, we can assign them abstract
values, e.g. a = b = ¢y in the first case, and a = ¢y, b = ¢ in the second, where ¢y # ¢
are some constants. The model M can now be rebuilt with {cg, c¢;} as the new domain for
a and b using abstract interpretation, which may result in significant reduction of the state
space and make the model amenable to model checking. All together, these steps comprise
a transformation that we call Universal Case Splitting. A variant of this transformation has
been first introduced in the Mur¢ model checker [16] and later used in the Cadence SMV
implementation [20].

Although the model size can be reduced dramatically by the case splitting, the number
of cases to verify may grow exponentially with the number of Skolem constants. Also, the
state space may still be too big if the number of terms is large, due to the size of the abstract
domain. One way to alleviate this problem is to consider only a few important terms, and
assign the rest of the terms a special value L which means an arbitrary nondeterministic
choice. The same abstract interpretation mechanism can be used to construct the abstracted
model, and the resulting abstraction is conservative for ACTL*. The “important” terms in
most cases will be chosen by the user. Some useful hints, however, can be easily generated
automatically, and we will see how it is done in our example of Tomasulo’s algorithm.

To illustrate the idea, let us consider the proof of Lemma 3.9, the inductive step in the
proof of Lemma 3.8 stating that f is indeed a completion function. The register file part of
the lemma is:

Vr. Ry (f(s)) = R,(f(clock(s))).

Expanding f on the left (see figure 6) leads to

Vr. if tag, (s) # ¥ then op(rsisq, 5)(5)) = R, (f(clock(s)))
else R, (s) = R, (f(clock(s)))

This formula refers to the reservation station indexed by tag, (s). This term depends on r,
which will become a Skolem constant after Skolemization. Hence, the term will be a
symbolic term in the proof, and we introduce a new quantified variable for it, as in
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Formula (1):

Vr.Vt.tag,(s) =t —=
if r £ ) then op(rs;(s)) = R, (f(clock(s)))
else R, (s) = R, (f(clock(s)))

After Skolemization, we only reference one register with its tag and one reservation station.’
All the other parts of the state are irrelevant to the specification and can be automatically
removed with the cone of influence reduction. This reduction determines the data depen-
dencies among state variables and prunes out those that cannot influence the specification.

Although we have two Skolem constants in the final formula (for r and t), the proof does
not depend on whether r = ¢ or not (in our model, register numbers are never compared
with reservation station numbers), and we only need to consider one abstract interpretation
of r and ¢. In other words, for this property, it is sufficient to prove it in a model with one
register and a tag, and one reservation station. To finish the proof of the correctness of
f, we have to prove a similar property for the reference file, which requires a few more
terms to be split on. Therefore, the final configuration to model check the latter property on
is slightly bigger and contains several reservation stations, but is still small enough to be
manageable.

The commutative diagram is more complex, since it includes dispatching a new
instruction:

Vs. Vi. I(s) = exec(f(s),i) = f(dispatch(s, i)).

As before, we split the equality into comparison of individual registers and reference file
entries:

Vr. R, (exec(f(s),i)) = R,(f (dispatch(s, i))) 2)
Vp. rff,(exec(f(s), 1)) = rff,(f(dispatch(s, i))), 3)

and then expand f, exec and dispatch in the two equations and apply our case splitting
technique, as we did in the proof of Lemma 3.9.

After expanding these functions in Eq. (2), we have one term tag, (s) that depends on
the quantified variable r (which will become a Skolem constant), and three more terms of
unspecified values: scheduler(s), op(i), and op(rs,(s)). Again, we generate new quantified
variables for them by rewriting (2) as

Vr.Vt. Vt;.Vp,. Vpg.
t = tag, (s) A tg = scheduler(s)
A pr = 0p(rsi(s)) A pa = op(i)
=R, (exec(f(s),i)) = R,(f(dispatch(s, i))).

When we eliminate the quantifiers, we obtain two Skolem constants indexing reservation
stations (¢ and #;) and two constants for opcodes (p; and p,). After expanding all the
functions in the formula, we observe that the value of the register r depends on whether
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its tag ¢ points to the reservation station which is being used for dispatching (z;). In the
latter case, the reservation station ¢ does not change with dispatch, and the final value of
the register r is the opcode p;, stored in that reservation station. If = #;, then the value of the
register r is the opcode p, of the instruction being dispatched. Either way, for each particular
value of r, t, t;, and p, the specification depends on at most one reservation station (¢), one
register (r) and two opcodes. All the other parts of the system can be removed by the cone
of influence reduction, and we only have to model check this small part of the processor,
independently of how many registers and reservation stations it contains. We only need to
consider 4 different interpretations of the Skolem constants: 2 cases of whether p, = p, or
not, times 2 cases of whether t = #; or not.

The reference file part (Eq. (3)) is more complex and requires case splitting on more
terms. First, we separate the comparison of the two arguments of the reference file entry
into two separate formulas:

Vp. arg, (rff,,(exec(f (s), i))) = arg, (rff,, ( f (dispatch(s, i)))) 4)
Vp. arg, (rff,(exec(f (s), i))) = arg, (rff, ( f (dispatch(s, i)))) (@)

Each argument in a reference file entry is read from a reservation station holding its cor-
responding instruction. The instruction i is either dispatched, or is already in the reserva-
tion station. If the arguments are not ready, their tags must be expanded, and one more
reservation station will be referenced by each argument’s tag. We only show the final for-
mula for the first argument of a reference file entry (4), the other argument is handled
similarly.

First, we split the cases on whether the entry’s opcode is in the newly dispatched instruc-
tion, or already in some reservation station, or is not present at all (figure 11). In the last
case, the reference file entry will not change, and it will receive some new value in the first
two cases.

As before, after eliminating the quantifiers and expanding the functions in all three for-
mulas, we end up using up to 2 reservation stations, one register and 2 opcodes. All the other
parts of the machine become irrelevant for the specification and can be removed by the cone
of influence reduction. Thus, we only need to model check three sets of specifications for
this fixed size of the machine in order to prove the correctness of Tomasulo’s algorithm in
general.

6. Summary of the verification technique

Figure 12 gives a high-level view of the verification steps. Our primary goal is to show
that the OOO machine is equivalent to the sequential (specification) machine for arbitrary
instruction sequences. This is proven by induction over the instruction sequence. The base
case, when the sequence is empty, is trivial. The induction step comprises the Commutative
Diagram introduced by Burch and Dill [5]. To prove the commutative diagram, we use our
new Reference File encoding of terms with uninterpreted function symbols. This encoding
allows us to write a Completion Function f which eliminates the need for expensive flushing
operation. The commutative diagram property is then reformulated in terms of f. However,
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For every opcode p:

Case 1: op(i) = p:

Vry. V. Vo Vpy.

op(i) =p

Sr¢y (Z) =T

scheduler(s) = top

(tag, (s) # 0 = tag, (s) =1)

op(rs:(s)) = pr

= arg, (rff,(exec(f(s), 1)) = arg, (rff,( f(dispatch(s,1))))

> > > >

Case 2: 3ty,.0p(rsy,,(s)) = p:
Viop. V1. Vpy. Vd.
op(rsy,, (s)) = p
A argy(rs,,(s)) =d
A (tag(rs,,,(s)) # 0 = tag(rsy,,(s)) = )
A op(rsi(s)) = p
= arg, (rff,(exec(f(s),7))) = arg, (rff,(f(dispatch(s, 1})))

Case 3: Vt.op(rsi(s)) # p A op(i) # p:
arg, (rffp(exec(f(s),1))) =
arg, (rff,( f(dispatch(s, ©)))) = arg, (rff,(s)).

Figure 11. Splitting cases on the first argument of a reference file entry, Eq. (4).

| Concrete Processor Design = ISA Model ‘

‘ Model with Uninterpreted Functions

000 = Seq

Induction on instruction sequence

Base |C0mmutative Diagram (with flushing)
Case

Compact Representation

Reference File
Eliminating flushing
Completion Function

Commutative Diagram ’f(s):ﬂush(s) ‘

with comp. function f
Base Step

Case }>
Case splitting,

v Cone of Influence, v
Model Checking

Figure 12.  Structure of the verification procedure.
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since f is provided by the user, we also need to prove that f is indeed a completion
function, that is, it is equivalent to flushing. This is done by induction over the number of
cycles required to flush the OOO machine. The base case is again simple, since we only
need to check that f(s) =s when s is flushed. The induction step essentially shows that
flushing the machine immediately using f is the same as first running it for one clock cycle
and then flushing it.

At the end of this stage, we are left with two properties: the commutative diagram in
terms of f in the reference file representation, and the induction step for the function f.
These two properties are still hard to prove directly, since they heavily rely on the OOO
model. We then apply Case Splitting transformations to them a number of times before the
properties become small enough for direct application of model checking.

The splitting can also be automated by computing the Cone of Influence for the current
specification and the model, and finding those state variables and terms that have uninter-
preted values, or have infinite or too large finite types, and split on the values of these terms.
Some human guidance might still be required to avoid unnecessary splits, but, in principle,
the technique will work even without it.

7. Experimental results

We have implemented Tomasulo’s algorithm using our reference file representation in the
Cadence version of SMV. This version of SMV supports a limited amount of theorem prov-
ing together with symmetry and cone of influence reductions. After all the case splitting,
as described in Section 5, SMV generates 50 sublemmas which all together verify in 120
seconds on a 450 MHz Pentium-II with 128 MB RAM. The proof of these 50 sublem-
mas accomplishes the partial correctness proof of Tomasulo’s algorithm for an arbitrary
configuration of the machine.

The SMV input specification involves the encoding of Tomasulo’s algorithm, the defini-
tion of our light-weight completion function, Lemmas 3.7 and 3.9, and proof rules for case
splitting as described in Section 5. No additional lemmas were needed. We believe that this
new methodology can be extended to handle even more complex and realistic superscalar
processor designs. We are currently building an automated proof assistant to facilitate this
type of reasoning.

8. Conclusion and future directions

We have designed a methodology that provides generality and high degree of automation
in verification of complex hardware devices, compared to the correspondingly general
existing techniques (figure 13). It is based on our new method for constructing a completion
function with a compact reference file representation. It also benefits from its combination
with several existing techniques such as compositional model checking, theorem proving,
and uninterpreted function symbols. We have demonstrated that our methodology makes
it possible to verify complex parameterized designs almost completely automatically. The
only manual effort required from the user is to write the completion function, which in our
framework can be done relatively easily.
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feature \ approach Ours | SMV | MC | TP
design—model C - - | C-
Induction C+ C - | C+
Case splitting A- C - C
MC (heavy case analysis) A A A -

Figure 13. Summary of supported features in different verification approaches, including ours. Legend:
C =computer assisted under human guidance, C+ = interactive computer assistance, C— = computer assisted,
but very tedious to do; A =automatic, A— =almost automatic; ‘-’ =not supported. SMV = Cadence SMV
(McMillan’s approach), MC = Model Checking, TP = Theorem Proving.

As a benchmark, we take Tomasulo’s algorithm for scheduling out-of-order instruction
execution and demonstrate that it can be easily verified in our framework. The algorithm
is parameterized by the processor configuration, and our approach allows us to prove its
correctness in general, independent of the actual processor setup. For a typical specifica-
tion we apply skolemization to eliminate universal quantifiers and perform straightforward
symmetry reduction to obtain a propositional formula which is then verified by a model
checker. Currently, the skolemization step is specified manually in the Cadence SMV model
checker, and the rest of the verification is done automatically. However, the skolemization
step can also be easily automated. We are currently developing a tool that will be able to
perform this type of verification more automatically.

Another manual part of the verification process is developing and validating the abstract
model. In our case, we represented the actual design with uninterpreted function symbols and
nondeterministic oracles for the instruction scheduling mechanism. Although it is virtually
impossible to automate this step completely, it can be greatly simplified by using a more
sophisticated higher-level input language instead of SMV. The comparative table of features
of such a tool with other existing tools and approaches is given in figure 13.

Notes

1. In this paper, the instructions are restricted to the “arithmetic-style,” taking 2 arguments and producing one
result.

2. Of course, we also need to expand the other f and clock, but this will not yield new register or reservation
station in this case.
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