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Abstract. Non-determinism of the thread schedule is a well-known problem
in concurrent programming. However, other sources of non-determinism exist
which cannot be controlled by an application, such as network availability. Test-
ing a program with its communication resources being unavailable is difficult, as
it requires a change on the host system, which has to be coordinated with the test
suite. Essentially, each interaction of the application with the environment can
result in a failure. Only some of these failures can be tested. Our work identifies
such potential failures and develops a strategy for testingall relevant outcomes
of such actions. Our tool, Enforcer, combines the structureof unit tests, coverage
information, and fault injection. By taking advantage of a unit test infrastructure,
performance can be improved by orders of magnitude comparedto previous ap-
proaches. Our tool has been tested on several real-world programs, where it found
faults without requiring extra test code.

1 Introduction

Testing is a scalable, economic, and effective way to uncover faults in software [19,21].
Even though it is limited to a finite set of example scenarios,it is very flexible and
by far the most widespread quality assurance method today. Testing is often carried
out without formal rigor. However, coverage measurement tools provide a quantitative
measure of the quality of a test suite [7,21]. Uncovered (andthus untested) code may
still contain faults.

In practice, the most severe limitation of testing is non-determinism, given by both
the thread schedule and the actions of the environment. It may cause a program to
produce different results under different schedules, evenwith the same input. Non-
determinism has been used in model checking to model choicesthat have several pos-
sible outcomes [25]. Usually, three kinds of non-determinism are distinguished [20]:
non-determinism arising from different thread schedules,from choices made by the
environment, and from abstractions within an application.The latter is an artefact of
abstraction in static analysis and not of concern here. Non-determinism arising from
different thread schedules has been tackled by previous work in run-time verification
and is subject to ongoing study [1,23]. This paper focuses onnon-determinism arising
from unexpected failures by the environment, such as systemlibrary calls.

For system calls, there are usually two basic outcomes: success or failure. Typically
the successful case is easy to test, while the failure case can be nearly impossible to
trigger. For instance, simulating network outage is non-trivial. If a mechanism exists,
though, testing both outcomes will be very efficient, only requiring a duplication of a



particular test case. Existing ad-hoc approaches include factoring out small blocks of
code in order to manually test error handlers, or adding extra flags to conditionals that
could trigger outcomes that are normally not reachable by modelling test data alone.
Figure 1 illustrates this. In the first example, any exception handling is performed by
a special method, which can be tested separately, but does not have access to local
variables used by the caller. In the second example, which has inspired our work, the
unit test has to set a special flag which causes the error handling code to run artificially.

try {
    socket = new ServerSocket();
} catch (IOException e) {
    handleIOException();
    // error handling code
}

try {
    if (testShouldFail) {
        throw new IOException();
    }
    socket = new ServerSocket();
} catch (IOException e) {
    // error handling code
}

Factoring out error handling. Extra conditional for testing.

Fig. 1. Two manual approaches for exception handler coverage.

The Java programming language uses exceptions to signal failure of a library or sys-
tem call [12]. The ideas in this paper are applicable to any other programming language
suppporting exceptions, such as C++ [24], Eiffel [17], or C#[18]. When an exception is
thrown, the current stack frame is cleared, and its content replaced with a single instance
of typeException. This mechanism helps our goal in two ways:

– Detection of potentially failed system calls is reduced to the analysis of exceptions.
– No special context data is needed except for information contained in the method

signature and the exception.

Our tool is built on these observations. It systematically analyzes a program for untested
exceptional outcomes of library method calls by using faultinjection [13]. Automati-
cally instrumented code measures coverage of unit tests w.r.t. exceptions, utilizing the
Java reflection API to extract information about the currenttest case. After execution
of the test suite, a number of tests is re-executed with faultinjection enabled, triggering
previously untested exceptions. Our tool wraps invocationof repeated tests automati-
cally, i.e., only one launch of the test suite is required by the user.

Similar tools have analyzed exception handling in Java codeand improved cover-
age by fault injection [4,11]. Previous tools have not been able to connect information
about unit tests with exception coverage. Our tool gathers method signature informa-
tion statically and the remaining data at run-time. Being integrated with unit testing, it
avoids re-executing the entire program many times, and therefore can scale to test suites
of large programs. It also supports tuples of failures when analyzing test outcomes at
run-time. Our tool is fully automated and can test the outcome of significant failure sce-
narios in real software. By doing so, it finds faults in previously untested code, without
requiring a single extra line in the test setup or test code.



The contribution of our work is as follows:

– We present a fully automated, high-performance approach atgathering specialized
coverage information which is integrated with JUnit.

– Fault injection is based on a combined static and dynamic analysis.
– Tuples of faults are supported based on dynamically gathered data.

Section 2 gives the necessary background about sources of failures considered here,
and possible implementation approaches. Section 3 describes our implementation used
for experiments, of which the results are given in Section 4.Section 5 describes related
work. Section 6 concludes and outlines future work.

2 Background

An exceptionas commonly used in many programming languages [12,17,18,24] indi-
cates an extraordinary condition in the program, such as theinavailability of a resource.
Exceptions are used instead of error codes to return information about the reason why
a method call failed. Java also supportserrors, which indicate “serious problems that
a reasonable application should not try to catch” [12]. A method call that fails may
“throw” an exception by constructing a new instance ofjava.lang.Exception or a
subtype thereof, and using athrow statement to “return” this exception to the caller. At
the call site, the exception will override normal control flow. The caller may install an
exceptionhandlerby using thetry/catch statement. Atry block includes a sequence
of operations that may fail. Upon failure, remaining instructions of thetry block are
skipped, the current method stack frame is replaced by a stack frame containing only the
new exception, and control is transferred to the exception handler, indicated in Java by
the correspondingcatch block. This process will also be referred to aserror handling.

The usage and semantics of exceptions covers a wide range of behaviors. In Java,
exceptions are used to signal the unavailability of a resource (e.g., when a file is not
found or cannot be written), failure of a communication (e.g., when a socket connec-
tion is closed), when data does not have the expected format,or simply for program-
ming errors such as accessing an array at an illegal index. Two fundamentally different
types of exceptions can be distinguished:Uncheckedexceptions andcheckedexcep-
tions. Unchecked exceptions are of typeRuntimeException and do not have to be de-
clared in a method. They typically concern programming errors, such as array bounds
overflows, and can be tested through conventional means. On the other hand, checked
exceptions have to be declared by a method which may throw them. Failure of external
operations results in such checked exceptions [4,10]. Thiswork therefore focuses on
checked exceptions. For the remainder of this paper, achecked method callrefers to a
call to a method which declared checked exceptions.

Code instrumentationconsists of injecting additional code into an application,adding
extra behavior to it while not changing the original behavior or only changing it in a very
limited way. It corresponds to a generic form of aspect-oriented programming [14],
which organizes code instrumentation into a finite set of operations. Aunit test is a
procedure to verify individual modules of code. Atest harnessexecutes unit tests.Test
suitescombine multiple unit tests into a single set. Execution of asingle unit test is



defined astest execution,running all unit tests astest suite execution.In this paper,
a repeated test suitedenotes an automatically generated test suite that will re-execute
certain unit tests, which will be referred to as repeated tests.

Program steering [15] allows overriding normal execution flow. Program steering
typically refers to altering program behavior using application-specific properties [15],
or as schedule perturbation [23], which covers non-determinism in thread schedules.
Fault injection [13] refers to influencing program behaviorby simulations failures in
hardware or software.

Coverageinformation describes whether a certain piece of code has been executed
or not. In this paper, only coverage of checked method calls is relevant. The goal of
our work was to test program behavior at each location where exceptions are handled,
for each possible occurrence of an exception. This corresponds to theall-e-deactscri-
terion [22]. Treating each checked method call individually allows distinction between
error handling before and after a resource, or several resources, have been allocated.

The first source of potential failures considered here are input/output (I/O) failures,
particularly on networks. The problem is that a test environment is typically set up to
test the normal behavior of a program. While it is possible totemporarily disable the
required resources by software, such as shell scripts, suchactions often affect the entire
system running, not just the current application. Furthermore, it is difficult and error-
prone to coordinate such system-wide changes with a test harness. The same applies to
certain other types of I/O failures, such as running out of disk space, packet loss on a
UDP connection, or communication timeout. While the presence of key actions such as
resource deallocations can be checked statically [6,26], static analysis is imprecise in
the presence of complex data structures. Testing can analyze the exact behavior.

The second goal is to cover potential failures of external programs. It is always
possible that a system call fails due to insufficient resources or for other reasons. Testing
such failures when interacting with a program through inter-process communication
such as pipes is difficult and results in much testing-specific code.

Our tool, Enforcer, is written in Java and geared towards failures which are sig-
nalled by Java exceptions. Some operations showing a similar behavior are not avail-
able in Java: In C programs, pointer arithmetic can be used. The exact address returned
by memory allocation cannot be predicted by the application, causing portability and
testing problems for low-level operations such as sorting data by their physical address.
Other low-level operations such as floating point calculations may also have different
outcomes on different platforms.

The idea of using program steering to simulate rare outcomesmay even be expanded
further. Previous work has made initial steps towards verifying the contract required by
hashing and comparison functions, which states that equal data must result in equal
hash codes, but equal hash codes do not necessarily imply data equality [2,12]. The
latter case is known as a hash code collision, where two objects containing different
data have the same hash code. This case cannot be tested effectively since hash keys
may vary on different platforms and test cases to provoke such a collision are hard to
write for non-trivial hash functions, and practically impossible for hash functions that
are cryptographically secure. Other mathematical algorithms have similar properties,
and are subject of future work.



3 Implementation

Java-based applications using JUnit [16] for unit testing have been chosen as the tar-
get for this study. Java bytecode is easy to understand and well-documented. JUnit is
widely used for unit testing. In terms of programming constructs, the target consists
of any unthrown exceptions, i.e., checked method calls where a correspondingcatch
statement exists and thatcatch statement was not reached from an exception origi-
nating from said method call. Only checked exceptions were considered because other
exceptions can be triggered through conventional testing [4,10]. Artificially generated
exceptions are initialized with a special string denoting that this exception was triggered
by Enforcer.

A key goal of the tool is not to have to re-execute the entire test suite after coverage
measurement. Therefore the project executes in three stages:

1. Code instrumentation, at compile time or at class load time. This includes injecting
code for coverage measurement and for execution of the repeated test suite.

2. Execution of unit tests. Coverage information is now gathered.
3. Re-execution of certain tests, forcing execution to takenew paths. This has to be

taken into account by coverage measurement code, in order torequire only a single
instrumentation step.

As a consequence of treating each checked method call ratherthan just each unit test
individually, a more fine-grained behavior is achieved. Each unit test may execute sev-
eral checked method calls. Our approach allows for re-executing individual unit tests
several times within the repeated test suite, injecting a different exception each time.
This achieves better control of application behavior, as the remaining execution path
after an exception is thrown likely no longer coincides withthe original test execution.
Furthermore, it simplifies debugging, since the behavior ofthe application is generally
changed in only one location for each repeated test execution. Unit tests themselves are
excluded from coverage measurement and fault injection, asexception handlers within
unit tests serve for diagnostics and are not part of the actual application. We did not
consider random fault injection [8], as our goal is to achieve high coverage in a reli-
able way, and to take advantage of the structure of unit testsfor making fault injection
scalable. Simply injecting exceptions at random would require re-running the entire test
suite, and does not necessarily guarantee high coverage.

The intent behind the creation of the Enforcer tool is to use technologies that can be
combined with other approaches, such that the system under test (SUT) can be tested
in a way that is as close to the original test setup as possible, while still allowing for
full automation of the process. Code instrumentation fulfills this requirement perfectly,
since the code generated can be executed on the same platformas the original SUT.
Instrumentation is performed directly on Java bytecode [27]. This has the advantage
that the source code of libraries is not required.

3.1 Re-execution of test cases

After execution of the original test suite, coverage information is evaluted. For each
exception that was not thrown, the test case that covered thecorresponding checked



method call is added to the repeated test suite. Execution ofthe repeated test suite
follows directly after coverage evaluation. Instrumentedcode handling test execution
re-executes the repeated test suite as long as uncovered exceptions exist, and progress
is being made w.r.t. coverage (for nestedtry/catch blocks, see below). Each time, a
new repeated test suite is constructed on the fly by the Enforcer run-time library, and
then executed.

3.2 Injecting exceptions

The final change to the application by instrumentation will force tests to go through a
different path when re-executing. Two points have to be taken into consideration: Where
the exception should be thrown, and how.

In our implementation, exceptions are triggered just before checked method calls.
A try block may include several checked method calls. By generating an exception
before each corresponding checked method call, steering simulates actions that were
successful up to the last critical operation. If the programis deterministic, it can be
assumed that thetry block will not fail before that point in repeated test execution, as
all inputs leading up to that point are equal.

try {

    /* fault injection code */
    if (enforcer.rt.Eval.reRunID == __ID__) { // __ID__ = static
        throw new ...Exception();
        // Exception type depends on catch block argument.
    }
    curr_id = __ID__; /* to register exception coverage */

    /* checked method call in the original code */
    call_method_that_declares_checked_exceptions();

    /* coverage code */
    enforcer.rt.Coverage.recordMethodCoverage(__ID__);

    // same instrumentation for each checked method call

} catch(...Exception e) {
    enforcer.rt.Coverage.recordCatchCoverage[curr_id] = true;
    // one instrumentation for each catch block

    /* original catch block follows */
}

Fig. 2. Instrumented code intry/finally blocks.

Generating exceptions when running the repeated test suiteis achieved by inserting
code before and after checked method calls. It is possible that the same test case calls
several such methods, but only a single exception should be artificially triggered for



each test execution. Achieving this is difficult because thechecked method call ID is
not known by the test suite or the test case at run time. Due to this, a test wrapper is used
to wrap each test and set the necessary steering informationprior to each individual test
execution. Figure 2 shows the resulting code to be added to each try/catch block,
which records coverage in the initial test execution and applies program steering when
executing the repeated test suite. At each checked method call, code is inserted before
and after that method call. Note that the value of__ID__ is determined statically and
replaced by a unique constant each time when instrumentation takes place.

The inserted code before each checked method call injects faults. It compares its
static ID to the index of the exception to be generated. This index,reRunID, is set by
the test wrapper. Due to the uniqueness of the ID, it is therefore possible to instrument
many checked method calls, but still only inject a fault in a single such method call. If
the IDs match, an exception of the appropriate type is constructed and thrown. A num-
ber of possible constructors for exception instances are supported, covering all com-
monly used exception constructors where reasonable default arguments can be applied.
Sometimes the signature of a called method cannot be determined at compile time. In
such cases it is conservatively assumed that the method may throw an exception of the
type declared in thecatch clause.3

3.3 Coverage measurement

Coverage of exceptions thrown is recorded by instrumented code inside eachtry block,
and at the beginning of eachcatch block. Coverage withintry blocks is recorded
as follows: Whenever a checked method call that may throw an exception returned
successfully, the test case further up in the calling chain is recorded, such that this test
case can be re-run later. This is performed by a call to the Enforcer run-time library
with the static ID of the checked method call as argument (seeFigure 2). The run-time
library evaluates the stack trace in order to find the class and method name of the current
unit test.

Coverage information about executed exception handlers isrecorded by inserting
code at the beginning of eachcatch block. Before each checked method call, the ID of
that method is stored in local variablecurr_id. This allows the coverage measurement
code within the exception handler to know which checked method caused an exception.
A try block may contain several checked method calls, each one requiring instrumen-
tation; the correspondingcatch block, however, only requires a single instrumenta-
tion, because the usage ofcurr_id allows for registering coverage of several checked
method calls.

3.4 Extension to nested exception handlers

Nested exceptions can be responsible for program behavior that only occurs in ex-
tremely rare circumstances, such as when both a disk and a network failure are present.

3 This assumption has to be made if the type of the method cannotbe determined due to incom-
pleteness of alias analysis, or usage of dynamic class loading. It may introduce false positives.



A graceful recovery from such failures is difficult to implement, and therefore we found
it very important to support combined failures by injectionof tuples of faults.

Nestedtry statements cause no additional problems for the algorithm described
above. Figure 3 shows an example with two nestedtry blocks. There are three possi-
ble final values fori in this program: 2, when no exception occurs; 3, when the inner
exceptione2 occurs; and 4, if the outer exceptione1 is thrown. Bothtry statements are
reachable when exceptions are absent. Therefore, if eithere1 or e2 are not covered by
the normal test suite, our algorithm either forcese1 after i has been set to 1, ore2 when
i equals 2.

int i = 0;
try {                        // try 1
    call_method_throwing_exceptions();
    i = 1;
    try {                    // try 2
        call_method_throwing_exceptions();
        i = 2;
    } catch (Exception e2) { // catch 2
        i = 3;
    }
} catch (Exception e1) {     // catch 1
    i = 4;
}

Fig. 3. Nestedtry statements.

However, the design described so far is limited totry blocks which do not occur
inside other exception handlers. Fortunately, even this case of nesting can be covered
quite elegantly. In nestedtry blocks, execution of the innertry block may depend on
the outercatch block being executed. Suppose the outercatch block is not executed
by initial tests, but only by the repeated test suite. The repeated test suite may again not
cover the innercatch block. Figure 4 illustrates such difficulties arising with nested
try/catch statements. The compiler generates two exception handlersfor this code.

When no exceptions occur in this example, the final value ofi equals 1. Let us
call that scenario run 0, the default test execution withoutsteering. Subsequent re-runs
of this test will try to force execution through eachcatch block. The outercatch
blocks can be triggered with the algorithm described so far.Repeated test execution 1
thus forces correspondingcatch clause 1 to be executed, settingi to 2. Furthermore,
coverage measurement will now register the repeated test asa candidate for covering
catch block 2. This will constitute the new repeated test suite containing run 2, which
has the goal of forcingcatch block 2 to be reached. However, injecting exception
e2 requires reachingcatch block 1. This is only the case in run 1; run 2 therefore
would never reach the fault injection code if onlye2 was injected. In order to solve
this problem, one has to injectsetsof faults, not just single faults. In the example of
Figure 4,e1 has to be injected for both runs 1 and 2. Coverage measurementin run 1
registers that run 1 has executedtry block 2; therefore bothe1 ande2 are injected in



int i = 0;
try {                        // try 1
    call_method_throwing_exceptions();
    i = 1;
} catch (Exception e1) {     // catch 1
    try {                    // try 2
        call_method_throwing_exceptions();
        i = 2;
    } catch (Exception e2) { // catch 2
        i = 3;
    }
}

Fig. 4. A try block inside an exception handler.

run 2. In our implementation, we restricted the nesting depth of exception handlers to
one, as this does not require nested dynamic data structuresfor the run-time library. In
practice, a nesting depth greater than two is rare, and can besupported by using vectors
of sets.

Because of such initially uncoveredtry blocks, coverage of nested exceptions may
require the construction of several repeated test suites. The first one includes a unit
test for each uncovered checked method call. Execution of this repeated test suite may
cover other previously unreachedtry blocks, which are target of the next iteration.
The iteration of repeated test suites terminates when no progress is made for coverage.
Hence, certain unit tests may be executed several times within the same iteration (for
different exceptions) and across iterations.

3.5 Complexity

The complexity incurred by our approach can be divided into two parts: Coverage mea-
surement, and construction and execution of repeated test suites. Coverage is measured
for each checked method call. The code which updates run-time data structures runs in
constant time. This overhead is of coverage measurement is proportional to the number
checked method calls executed at run-time.

Execution of repeated test suites may incur a larger overhead. For each uncovered
exception, a unit test has to be re-executed. However, each uncovered exception incurs
at most one repeated test. Nested exceptions may require multiple injected faults for a
repeated test. The key to a good performance is that only one unit test, which is known
to execute the checked method call in question, is repeated.Large projects contain hun-
dreds or thousands of unit tests; previous approaches [4,10,11] would re-execute them
all for each possible failure, while our tool only re-executes one unit test for each fail-
ure. This improves performance by several orders of magnitude and allows our tool
to scale up to large test suites. Moreoever, the situation iseven more favorable when
comparing repeated tests with an ideal test suite featuringfull coverage of exceptions
in checked method calls. Automatic repeated execution of test cases does not require
significantly more time than such an ideal test suite, because the only minor overhead



that could be eliminated lies in the instrumented code. Compared to manual approaches,
our approach finds faults without incurring a significant overhead, with the additional
capability of covering outcomes that are not directly testable.

4 Experiments

To ensure solid quality of the implementation, 30 test classes were written to test dif-
ferent aspects and problem cases for code instrumentation,coverage measurement, and
test execution. Due to rigorous testing, the tool is mature enough to be applicable to
large and complex programs. Therefore, several real-worldapplications and libraries
were used to demonstrate the usefulness of the approach. Unfortunately, realistic Java
programs using JUnit-based test suites are hard to come by. Aweb search for Java ap-
plications and JUnit returns tools and libraries enhancingJUnit, but not applications
using it. Therefore a different approach was chosen: Based on the listing of all Java
program on freshmeat.net [9], 1647 direct links to downloadable archives could be ex-
tracted. These resulted in 926 successful automatic downloads, where no registration or
manual redirection was used. Out of these applications, 100used JUnit test suites and
also employed at least some networking functionality. Further criteria, such as the use
of multiple threads and the absence of a GUI, were used to narrow down the selection
to 29 applications. Out of these, nine could be compiled and run on Java 1.5 with no or
minor modifications, and no installations of third-party libraries or tools that were not
shipped with the original archives.

Application Description # Size # test Test code
or library classes[LOC] classessize [LOC]
Echomine Communication services API 144 14331 46 3550
Informa News channel API 150 20682 48 6855
jConfig Configuration library 77 9611 39 2974
jZonic-cacheCaching library 26 2142 14 737
SFUtils Sourceforge utilities 21 6222 9 1041
SixBS Java beans persistency 34 4666 9 1072
Slimdog Web application testing framework 30 1959 11 616
STUN Extensible programming system 27 1706 3 229
XTC Napster search tool 455 77114 57 8070

Table 1.Applications of which the unit tests were used in the experiments.

The main reason for this low number is the fact that the entirepool of applications
included many projects that have been abandoned or not yet been completed. Table 1
shows an overview of the applications used. The first two columns briefly describe
each appliation, while the other columns give an indicationof the size of each project,
showing the number of classes and the lines of code used for them. This information is
shown separately for unit test code. The presence of helper classes was responsible for
a rather large number of test classes in some cases.



Enforcer was then used on these example applications. Table2 gives an overview
of the test results. Tests were executed on a dual-processor2.7 GHz PowerPC G5 with
8 GB of RAM and 512 KB of L2 cache per CPU running Mac OS 10.4.5. The ta-
ble is devided into three parts. The first part shows the test results when running the
given test suite. A test failure in JUnit corresponds to an incorrect value of a property,
while uncaught exceptions are shown as errors. Note that failures or errors can either
be caused due to incorrect code or missing components in the installation. Although it
was attempted to fix any installation-related errors, not all cases could be covered.

Application # # # Time Time, Time, # instr.# exec.# unex. Cov. # unr. Cov.
or library testsfail. err. [s] instr. [s] re-ex. [s] calls calls catch(orig.) catch(instr.)
Echomine 170 2 0 6.3 6.3 1.7 165 61 54 8 % 0 100 %
Informa 119 15 32 33.2 34.4 132.2 306 139 136 2 % 28 80 %
jConfig 97 3 0 2.3 4.7 n/a 299 169 162 3 % 65 61 %
jZonic-c. 16 2 0 0.4 0.7 0.02 22 8 6 25 % 0 100 %
SFUtils 11 1 3 76.3 81.6 0.001 112 6 2 67 % 0 100 %
SixBS 30 0 0 34.6 55.6 38.7 56 31 28 10 % 2 94 %
Slimdog 10 4 0 228.6 233.6 n/a 41 15 14 7 % n/a n/a
STUN 14 0 0 0.06 0.7 0 2 0 0 0 % 0 0 %
XTC 294 0 0 28.8 30.6 4.9 168 112 112 0 % 9 92 %

Table 2.Results of unit tests and injected exception coverage.

Part two of the table shows the overhead of the instrumentation code for measuring
test coverage. Original and instrumented execution time ofthe normal test suite are
shown first.4 The final execution time measurement shows the time needed toexecute
repeated test suites. This figure depends much on the coverage of the test suite and the
nature of exception handlers, and is given for completeness; it cannot be used to draw
conclusions about the quality of the test suite or the Enforcer tool. A better measure
is actual coverage of exceptions in checked method calls, asshown by part three of
Table 2.

Part three shows details about code instrumentation and coverage. The number of
instrumented checked method calls is given first, followed by the number of checked
method calls executed by unit tests. Usually a large number of checked method calls
never triggered an exception, as shown by the next column, “unexec. catch”. The fol-
lowing column indicates the percentage of executed checkedmethod calls that did gen-
erate an exception. As can be seen, that percentage is typically very low. These untested
exception cases may each cause previously undiscovered failures and were targetted by
the Enforcer tool. In most cases, Enforcer could successfully force inject exceptions;
in some cases, deeply nested exceptions or the lack of a fullydeterministic test setup
prevented full coverage. The rightmost two columns show thenumber of such uncov-
ered checked method calls, and the final exception coverage after Enforcer was used.

4 The time required for code instrumentation itself was negligible.



As can be easily seen, Enforcer could often change a nearly nonexistent coverage to a
nearly full coverage. However, it depends on a test suite that is able to execute checked
method calls in the first place. This criterion is fulfilled iffull statement coverage is
achieved, which is often the case for larger projects [1] butwas not the case for the
given programs.

In some cases, injected exceptions affected background threads that were assumed
to be running throughout multiple test cases. When these threads failed to terminate
properly, or to restart, the test suite would wait indefinitely for them. This was the
case for applications jConfig and Slimdog. In jConfig, such problems prevented higher
coverage. For Slimdog, two tests had to be disabled even whenrunning without instru-
mentation, because the multi-threaded test code was too fragile to execute reliably. In
test setup, the background thread may allocate a port but then fail to complete initial-
ization, throwing an exception. JUnit does not release any resources allocated in such
a failed setup. This problem has been discussed in the mailing list and is going to be
addressed in the future. Stopping and restarting the background thread before each test
run is expected to fix this problem, at the cost of slowing downtest execution.

The overhead caused by coverage measurement was usually negligible, as can be
seen by comparing columns one and two of part two of Table 2. SixBS is an exception,
where coverage measurement caused a resulting overhead of factor two. The reason for
this is that instrumentation significantly increased the run time of the thread controlling
the XML parser. This thread contains several exception handlers but relatively little
other code, hence amplifying the usual effect of instrumentation on run-time. Reducing
the overhead is going to entail the use of additional data structures in order to avoid
expensive calls to the Java reflection API at run time.

Our tool generated a total number of 352 exceptions for checked method calls in
all applications. The majority of these exceptions (200 instances) concerned I/O, either
on a network or a file. 56 exceptions were generated as parse exceptions, while 69 ex-
ceptions were of generic typejava.lang.Exception and could not be classified more
closely. Finally, 27 exceptions were of other types, such asIllegalAccessException.
Exceptions that do not concern I/O were not originally the target of our tool. Nonethe-
less, the fact that these were also triggered frequently shows that our tool may partially
replace test case generation when no tests exist for certainexceptional scenarios.

In most of the 352 cases where an exception was injected, the application ultimately
rethrows the exception in question, usually in a slightly different form. It was not possi-
ble for us to tell whether this simple behavior was adequate.Because these exceptions
were encountered within unit tests, it is possible that the main application front end
performs some kind of cleanup before shutting down. However, in general, a call to a
low-level library should take exceptions into account. Otherwise, an I/O exception can
lead to the termination of the entire thread, and usually theentire program. If untested
parts of the application catch such exceptions where unit tests do not, then the unit
tests are incomplete since they do not reflect the behavior ofthe application, failing to
account for exceptional behavior. However, considering the fact that some benchmark
programs were libraries to be used by an application, rethrowing exceptions may be ac-
ceptable in some cases. Therefore we did not analyze these 352 cases in detail. Many of
them were redundant, as triggering the same exception handlers from different places in



the sametry block often produces equivalent results. Some cases were false positives
arising from incomplete type information at instrumentation time.

Much more interesting than rethrown exceptions were exceptions that were trig-
gered by failed error handling. These exceptions were not just rethrown, but caused
by another part of the program that tried to deal with the initial exceptions.5 A few of
these cases resulted in rethrown exceptions, which were notcounted for the reasons
stated above. Table 3 shows the failures resulting from incorrect error handlers. Each
unique program location was only counted once. We found 12 faults in the nine given
applications this way. As can be seen, the lack of testing in error handlers caused typ-
ical programming errors to appear (null pointers, illegal arguments, failed class casts).
In applications jConfig and Slimdog, the error handling codetried to re-open a socket
that was already in use, which resulted in termination of theentire test suite. That de-
fect therefore masked other potential failures. Informa contained various problems in
its fallback code concerning I/O (file not found, generic I/Oexception, feed manager
failure). These problems could perhaps be solved by a different configuration; we used
the configuration that came with the default installation. Certainly, it is clear that for
some of the given applications, our tool did not only significantly improve coverage of
exceptions, but also found several defects in the code.

App./lib. FileNotFoundNullPointerIO FeedManagerIllegalArgumentBind ClassCastTotal
Echomine 1 1 2
Informa 1 4 2 1 1 9
jConfig 1 1
Slimdog 1 1

Total 1 5 2 1 1 1 1 12

Table 3.Failures resulting from incorrect error handling.

To summarize, our tool was very successful in improving the exception coverage of
realistic test suites in a variety of projects. Coverage measurement usually only caused
a minor overhead. Without writing any additional code, extra faults were found, where
error handlers for exceptions contained defects. With the exception of certain multi-
threading problems, normal operation of the application tests was not affected by steer-
ing. Some of the triggered exceptions should be tested by conventional means. It can
be expected that a higher-quality test suite will not have any such uncovered exceptions
left, so our tool would likely produce even better results for thoroughly tested code.

5 Related work

Test cases are typically written as additional program codefor the system under test.
White-box testing tries to execute as much program code as possible [19]. In traditional

5 Distinguishing these “secondary” exceptions was trivial as the injected exceptions were all
marked as such by having a special message string.



software testing,coveragemetrics such as statement coverage [7,21] have been used to
determine the effectiveness of a test suite. The key problemwith software testing is that
it cannot guarantee execution of parts of the system where the outcome of a decision
is non-deterministic. In multi-threading, the thread schedule affects determinism. For
external operations, the small possibility of failure makes testing that case extremely
difficult. Traditional testing and test case generation methods are ineffective to solve
this problem.

Static analysis investigates properties “at compile time”, without executing the ac-
tual program. Non-deterministic decisions are explored exhaustively by verifying all
possible outcomes. For analyzing whether resources allocated are deallocated correctly,
there exist static analysis tools which consider each possible exception location [26].
However, static analysis can only cover a part of the programbehavior, such as re-
source handling. For a more detailed analysis of program behavior, code execution (by
testing) is often unavoidable.

Model Checking explores the entire behavior of a system by investigating each
reachable state. Model checkers treat non-determinism exhaustively. Results of system-
level operations have been successfully modeled this way todetect failures in applica-
tions [5] and device drivers [3]. However, model checking suffers from the state space
explosion problem: The size of the state space is exponential in the size of the system.

Therefore approaches that directly tackle testing are verypromising, as potential
failures of library calls are independent of non-deterministic thread scheduling. Such
failures can be simulated by fault injection [13]. Random fault injection is a black-box
technique and useful on an application level [8]. Our goal was to achieve a high test
coverage, and therefore we target white-box testing techniques.

Java is a popular target for measuring and improving error handling, as error han-
dling locations are relatively well defined [4,10,11]. Our approach of measuring excep-
tion handler coverage corresponds to theall-e-deactscriterion [22]. The static analysis
used to determine whether checked method calls may generateexceptions have some
similarity with a previous implementation of such a coverage metric [11]. However, our
implementation does not aim at a precise instrumentation for the coverage metric. We
only target checked exceptions, within the method where they occur. As the generated
exceptions are created at the caller site, not in the librarymethod, an interprocedural
analysis is not required. Unreachable statements will be reported as instrumented, but
uncovered checked method calls. Such uncovered calls neverincur an unnecessary test
run and are therefore benign, but hint at poor coverage of thetest suite. Furthermore,
unlike some previous work [11], our tool has a run-time component that registers which
unit test may cause an exception. This allows us to re-execute only a particular unit test,
which is orders of magnitude more efficient than running the entire test suite for each
exception site. Furthermore, our tool can dynamically discover the need for combined
occurrences of failures when error handling code should be reached. Such a dynamic
analysis is comparable to another fault injection approach[4], but the aim of that project
is totally different: It analyzes failure dependencies, while our project targets code exe-
cution and improves coverage of error handling code.

Similar code injection techniques are involved in program steering [15], which al-
lows overriding the normal execution flow. However, such steering is usually very prob-



lematic because correct execution of certain basic blocks depends on a semantically
consistent program state. Thus program steering has so far only been applied using
application-specific properties [15], or as schedule perturbation [23], which only covers
non-determinism in thread schedules. Our work is application-independent and target-
ted to fault injection.

6 Conclusions and future work

In software, non-deterministic decisions are not only taken by the thread scheduler, but
also by the environment. Calls to system libraries may fail.Such failures can be nearly
impossible to test. Our work uses fault injection to achievecoverage of such untestable
properties. During test execution, coverage information is gathered. This information
is used in a repeated test execution to execute previously untested exception handlers.
The process can be fully automated and still leads to meaningful execution of excep-
tion handlers. Unlike previous approaches, we take advantage of the structure of unit
tests in order to avoid re-execution an entire application.This makes our approach or-
ders of magnitude faster for large test suites. The Enforcertool which implements this
approach has been successfully applied to several complex Java applications. It has exe-
cuted previously untested error handlers and uncovered several faults. Furthermore, our
approach may even partially replace test case generation.

The area of such generic program steering likely has furtherapplications that have
not yet been covered. Future work includes elimination of false positives by including
run-time information for method calls whose signature is unknown. Another improve-
ment is analysis of test case execution time, in order to select the fastest test case for
re-execution. The treatment of difficult-to-test outcomescan be expanded to other prop-
erties mentioned in this paper. Finally, we are very interested in applying our Enforcer
tool to high-quality commercial test suites. It can be expected that exception coverage
will be incomplete but already quite high, unlike in cases tested so far. This will make
evaluation of test results more interesting.
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