
UPEC-PN: Exhaustive constant time verification of low-level

software using property checking

Philipp Schmitz, Johannes Müller, Christian Bartsch, Dominik Stoffel, Wolfgang Kunz
Dept. of Electrical & Computer Engineering

RPTU Kaiserslautern-Landau

MBMV, Mar. 24, 2023

1

2

Motivation

Security of low-level software
 Prevalence of timing-based side-channel attacks

 Constant time programming as countermeasure

 How do we know whether the code is constant time?

→Wanted: Formal method to provide guarantees

 Is looking at the software enough?

→ Take necessary hardware detail into account

3

Goals

Goals:
 A scalable formal verification method to provide security guarantees for low-level

constant time software

 A modular computational model that

 provides the necessary detail and

 is abstract enough to scale well.

4

Constant time

Our notion:
 Secret-independence of:

 Control flow

 Memory access targets

 Execution time of individual instructions

 Conservative view → not all violations lead to exploits

 Exhaustive view → detects all possible vulnerabilities

5

Background

Unique Program Execution Checking (UPEC) – DATE’19
 Originally: Formal approach for detecting Transient Execution Attacks

 Uses property checking on a bounded model with a symbolic initial state

 Exhaustive and scalable

 2-safety miter model

 Checks whether some protected secret data can influence the architectural state
of the system

6

Background

Computational model

7

Background

Program Netlist (PN) – ASPDAC’13

 Formal representation of the ISA behavior for specific software

 Abstract sequential processor

 Compact computational model

 Merge execution paths

 Prune unreachable paths

 Result: Combinational circuit representing all possible executions

8

Background

a

b

d e

c

f

9

Methodology

UPEC-PN
 Verification method for constant time programming

 Apply UPEC approach to PNs

 Divide PN inputs:

 Ψ𝑖: initial program state

 Π𝑝: public program inputs

 Π𝑐: confidential program inputs

 Abstract security function 𝜔(Ψ𝑖 , Π𝑝, Π𝑐) models security targets

∀Π𝑐
1, Π𝑐

2: 𝜔(Ψ𝑖 , Π𝑝, Π𝑐
1) = 𝜔(Ψ𝑖 , Π𝑝, Π𝑐

2)

10

Methodology

PN 2

PN 1

Π𝑐
2

Ψ𝑖 , Π𝑝

Π𝑐
1

𝜔(Ψ𝑖 , Π𝑝, Π𝑐
2)

𝜔(Ψ𝑖 , Π𝑝, Π𝑐
1)

11

Methodology

Constant time security targets
 Refine abstract security function 𝜔 to formalize security target

 Control flow

 Memory access

 Individual instruction execution time

 Remember:

Conservative view → not all violations lead to exploits

Exhaustive view → detects all possible vulnerabilities

12

Methodology

Microarchitectural detail
 Observation: Conservative view may lead to a lot of false alerts

 ISA-level model does not contain enough detail to judge if it is a real vulnerability

 Solution: add microarchitectural detail to the PN

 Cache model

 Architecture-specific instruction times

14

Trade-off

Conservative proofs Enhanced proofs

Globally valid

Fast More complex

Architecture-specific

→ Find the sweet spot for least complexity and conservatism

15

Verification Flow

16

Case Study

RSA
 Loop-based implementation using fast exponentiation

 UPEC-PN detects secret-dependent control flow

17

Case Study

RSA
 Software fix for control flow dependencies

18

Case Study

AES

 Substitution-box-based implementation

 Key-dependent look-ups
b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b3,0 b3,1 b3,2 b3,3

b2,0 b2,1 b2,2 b2,3

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a3,0 a3,1 a3,2 a3,3

a2,0 a2,1 a2,2 a2,3

S(a3,2)

19

Case Study

AES

 UPEC-PN detects secret-dependent memory targets

 Counterexamples pinpoint the address range

 Exploitability depends on the system

 Possible countermeasure:

 Load the substitution box into the cache to ensure cache hits

 Add abstract cache model to the computational model

20

Case Study

Summary:

Proof of concept – UPEC-PN detects the expected vulnerabilities

Software
Control Flow

Time (s) Mem (MB) SI
Memory Access

Time (s) Mem (MB) SI
#ICs

RSA 43 8585 53 8568 964

Fixed RSA 39 8605 53 8726 1093

AES <1 700 409 3056 7444

21

Conclusion

 UPEC-PN

 Provides architecture-independent security guarantees

 Detects ISA-level-visible constant time violations

 Enables the consideration of necessary microarchitectural detail

 Is independent of a specific toolchain

 Future Work

 Conduct experiments on more low-level programs

 Support for other ISAs

22

Thank you for your attention!

Many thanks to many collaborators!

Jörg Bormann, Lucas Deutschmann, Anna Lena Duque Antón,
Mohammad Rahmani Fadiheh, Wolfgang Ecker, Jason Fung,

Tobias Jauch, Dino Mehmedagić, Subhasish Mitra,
Sayak Ray, Stian Gerlach Sørensen, Alex Wezel

	Folie 1
	Folie 2: Motivation
	Folie 3: Goals
	Folie 4: Constant time
	Folie 5: Background
	Folie 6: Background
	Folie 7: Background
	Folie 8: Background
	Folie 9: Methodology
	Folie 10: Methodology
	Folie 11: Methodology
	Folie 12: Methodology
	Folie 14: Trade-off
	Folie 15: Verification Flow
	Folie 16: Case Study
	Folie 17: Case Study
	Folie 18: Case Study
	Folie 19: Case Study
	Folie 20: Case Study
	Folie 21: Conclusion
	Folie 22

