
UPEC-PN: Exhaustive constant time verification of low-level

software using property checking

Philipp Schmitz, Johannes Müller, Christian Bartsch, Dominik Stoffel, Wolfgang Kunz
Dept. of Electrical & Computer Engineering

RPTU Kaiserslautern-Landau

MBMV, Mar. 24, 2023

1

2

Motivation

Security of low-level software
 Prevalence of timing-based side-channel attacks

 Constant time programming as countermeasure

 How do we know whether the code is constant time?

→Wanted: Formal method to provide guarantees

 Is looking at the software enough?

→ Take necessary hardware detail into account

3

Goals

Goals:
 A scalable formal verification method to provide security guarantees for low-level

constant time software

 A modular computational model that

 provides the necessary detail and

 is abstract enough to scale well.

4

Constant time

Our notion:
 Secret-independence of:

 Control flow

 Memory access targets

 Execution time of individual instructions

 Conservative view → not all violations lead to exploits

 Exhaustive view → detects all possible vulnerabilities

5

Background

Unique Program Execution Checking (UPEC) – DATE’19
 Originally: Formal approach for detecting Transient Execution Attacks

 Uses property checking on a bounded model with a symbolic initial state

 Exhaustive and scalable

 2-safety miter model

 Checks whether some protected secret data can influence the architectural state
of the system

6

Background

Computational model

7

Background

Program Netlist (PN) – ASPDAC’13

 Formal representation of the ISA behavior for specific software

 Abstract sequential processor

 Compact computational model

 Merge execution paths

 Prune unreachable paths

 Result: Combinational circuit representing all possible executions

8

Background

a

b

d e

c

f

9

Methodology

UPEC-PN
 Verification method for constant time programming

 Apply UPEC approach to PNs

 Divide PN inputs:

 Ψ𝑖: initial program state

 Π𝑝: public program inputs

 Π𝑐: confidential program inputs

 Abstract security function 𝜔(Ψ𝑖 , Π𝑝, Π𝑐) models security targets

∀Π𝑐
1, Π𝑐

2: 𝜔(Ψ𝑖 , Π𝑝, Π𝑐
1) = 𝜔(Ψ𝑖 , Π𝑝, Π𝑐

2)

10

Methodology

PN 2

PN 1

Π𝑐
2

Ψ𝑖 , Π𝑝

Π𝑐
1

𝜔(Ψ𝑖 , Π𝑝, Π𝑐
2)

𝜔(Ψ𝑖 , Π𝑝, Π𝑐
1)

11

Methodology

Constant time security targets
 Refine abstract security function 𝜔 to formalize security target

 Control flow

 Memory access

 Individual instruction execution time

 Remember:

Conservative view → not all violations lead to exploits

Exhaustive view → detects all possible vulnerabilities

12

Methodology

Microarchitectural detail
 Observation: Conservative view may lead to a lot of false alerts

 ISA-level model does not contain enough detail to judge if it is a real vulnerability

 Solution: add microarchitectural detail to the PN

 Cache model

 Architecture-specific instruction times

14

Trade-off

Conservative proofs Enhanced proofs

Globally valid

Fast More complex

Architecture-specific

→ Find the sweet spot for least complexity and conservatism

15

Verification Flow

16

Case Study

RSA
 Loop-based implementation using fast exponentiation

 UPEC-PN detects secret-dependent control flow

17

Case Study

RSA
 Software fix for control flow dependencies

18

Case Study

AES

 Substitution-box-based implementation

 Key-dependent look-ups
b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b3,0 b3,1 b3,2 b3,3

b2,0 b2,1 b2,2 b2,3

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a3,0 a3,1 a3,2 a3,3

a2,0 a2,1 a2,2 a2,3

S(a3,2)

19

Case Study

AES

 UPEC-PN detects secret-dependent memory targets

 Counterexamples pinpoint the address range

 Exploitability depends on the system

 Possible countermeasure:

 Load the substitution box into the cache to ensure cache hits

 Add abstract cache model to the computational model

20

Case Study

Summary:

Proof of concept – UPEC-PN detects the expected vulnerabilities

Software
Control Flow

Time (s) Mem (MB) SI
Memory Access

Time (s) Mem (MB) SI
#ICs

RSA 43 8585 53 8568 964

Fixed RSA 39 8605 53 8726 1093

AES <1 700 409 3056 7444

21

Conclusion

 UPEC-PN

 Provides architecture-independent security guarantees

 Detects ISA-level-visible constant time violations

 Enables the consideration of necessary microarchitectural detail

 Is independent of a specific toolchain

 Future Work

 Conduct experiments on more low-level programs

 Support for other ISAs

22

Thank you for your attention!

Many thanks to many collaborators!

Jörg Bormann, Lucas Deutschmann, Anna Lena Duque Antón,
Mohammad Rahmani Fadiheh, Wolfgang Ecker, Jason Fung,

Tobias Jauch, Dino Mehmedagić, Subhasish Mitra,
Sayak Ray, Stian Gerlach Sørensen, Alex Wezel

	Folie 1
	Folie 2: Motivation
	Folie 3: Goals
	Folie 4: Constant time
	Folie 5: Background
	Folie 6: Background
	Folie 7: Background
	Folie 8: Background
	Folie 9: Methodology
	Folie 10: Methodology
	Folie 11: Methodology
	Folie 12: Methodology
	Folie 14: Trade-off
	Folie 15: Verification Flow
	Folie 16: Case Study
	Folie 17: Case Study
	Folie 18: Case Study
	Folie 19: Case Study
	Folie 20: Case Study
	Folie 21: Conclusion
	Folie 22

