
1 / 29

Towards Buffers as a Scalable Alternative to Registers for
Processor-Local Memory

Julius Roob, Anoop Bhagyanath, and Klaus Schneider

March 23, 2023

2 / 29

Introduction

▶ motivation: increase processor Instruction Level Parallelism (ILP)

▶ need: many processing units (PUs)
▶ but: more ports to registers⇒ O(n2)

▶ our research: develop better alternative
▶ Buffered Exposed Datapath (BED) architectures
▶ goal: O(n) for every part
▶ this paper: local memory / distributed buffers

3 / 29

Contents

Buffered Exposed Datapath (BED) Architectures

Buffer Architectures

Experiments & Analysis

Conclusions

4 / 29

Buffered Exposed Datapath (BED) Architectures

compiler is responsible for data movement through the processor.

Program
Memory

Data
Memory

Interconnection Network

PU[0] PU[1] PU[n-1] LSU CU

▶ Transport Triggered Arch.
(TTA)

▶ Synchronous Control,
Asynchronous Data (SCAD)

5 / 29

Buffered Exposed Datapath (BED) Architectures

compiler is responsible for data movement through the processor.

Program
Memory

Data
Memory

Interconnection Network

PU[0] PU[1] PU[n-1] LSU CU

. . .
1 3 : pu0@out −> pu1@in0
14 : (lesN , 1) −> pu1@opc
1 5 : $3 −> cu@in1
1 6 : pu1@out −> cu@in0
. . .

6 / 29

Buffered Exposed Datapath (BED) Architectures

compiler is responsible for data movement through the processor.

Program
Memory

Data
Memory

Interconnection Network

PU[0] PU[1] PU[n-1] LSU CU

Buffers:
▶ FIFOs
▶ Reorder
▶ Registers

7 / 29

Problem Setting (1/2)

presented last year at MBMV:
▶ virtual FIFOs/channels
▶ size reduction and bandwidth argument for reorder buffer
▶ verification

8 / 29

Problem Setting (2/2)

▶ still building full prototype
▶ hardware complexity analysis

▶ ongoing work, this paper is part of the process

▶ components not all ready for ILP analysis
▶ but: different buffer architectures have been developed.

9 / 29

Buffer Architectures

following slides will introduce

monolithic:
▶ register file

distributed:
▶ FIFO
▶ Reorder-Read
▶ Reorder-Reserve
▶ Ripple matching

they will then be evaluated in the experiment

10 / 29

Central Register File

registers
R0
R1
R2
R3demuxes

+ conflict
resolution

R7
R6
R5
R4

muxes

read port 0

read port 2

read port 4

read port 6

read port 1

read port 3

read port 5

read port 7

write port 0

write port 1

write port 2

write port 3

▶ many PUs
▶ accessing the same register
▶ hardware complexity:

quadratic for number of
ports

11 / 29

First In First Out (FIFO)

▶ well-known
▶ efficient implementations

▶ pointers or fall-through

▶ arrival order

12 / 29

Reorder Buffers

▶ program order of moves
▶ data from many PUs
▶ unknown delays

solution: reorder buffers
▶ will show different variants

13 / 29

Reorder-Read

Reading Buffer

(2, a)

4, b

5, x
_, _

Interconnect
Message

data to PU

_, _
_, _

7, y

b 4

m
atch

read tag

▶ messages have tags
▶ program determines order of tags

▶ incoming messages are stored in order of
arrival

▶ PUs request messages with specific tags
▶ reordering happens during consumption

(See our MBMV ’22 paper and presentation for
more details)

14 / 29

Reorder-Reserve (1/2)

Reserving Buffer

0, _
2, _
4, x

_, _

Unitnot
ready

_, _

1, _

Move Program

_, _

▶ different approach

▶ program reserves spaces with tags
▶ messages are matched against

reservations
(SCAD)

15 / 29

Reorder-Reserve (2/2)

Reserving Buffer

(2, a)
0, _
2, _
4, x
1, _
_, _

Interconnect
Message Unitnot

ready

_, _ ▶ different approach

▶ program reserves spaces with tags
▶ messages are matched against

reservations
(SCAD)

16 / 29

Scheduling Constraints

▶ latency-dependent: FIFO

program order:
▶ (mostly) latency-independent: reorder-read
▶ latency-independent: reorder-reserve

17 / 29

Ripple-Matching (1/3)

Ripple-Matching Buffer

0, _
2, _

Unitnot
ready

_, _

7, _
5, _
2, _

_, _
_, _
_, _
_, _
_, _
_, _

7, X

data message
7, X

▶ implements reorder-reserve
▶ local comparisons

▶ messages travel along
reserved spaces

▶ stay at first matching place

▶ starting at head
where PU reads

▶ no delay introduced
by ripple

18 / 29

Ripple-Matching (2/3)

Ripple-Matching Buffer

0, _
2, _

Unitnot
ready

_, _

7, _
5, _
2, _

_, _
_, _
_, _
_, _
_, _
_, _

data message

7, X_, _

▶ implements reorder-reserve
▶ local comparisons

▶ messages travel along
reserved spaces

▶ stay at first matching place

▶ starting at head
where PU reads

▶ no delay introduced
by ripple

19 / 29

Ripple-Matching (3/3)

Ripple-Matching Buffer

0, _
2, _

Unitready

_, _

7, _
5, _
2, _

_, _
_, _
_, _
_, _
_, _
_, _

data message

7, X
_, _

7, X
0, Y

0, Y 0, Y

Y

▶ implements reorder-reserve
▶ local comparisons

▶ messages travel along
reserved spaces

▶ stay at first matching place

▶ starting at head
where PU reads

▶ no delay introduced
by ripple

20 / 29

Mixed-Ripple

Mixed-Ripple-Matching Buffer

0, _
2, _

Unitnot
ready

_, _

7, _
5, _
2, _

_, _

_, _

7, X

7, X

_, __, _ ▶ concept to adapt ripple-matching to
different applications

▶ full ripple-matching needs more registers

▶ registers vs. critical path

21 / 29

Setup
Experiments

▶ evaluation of presented architectures
▶ implement variants for synthesis on Xilinx Ultrascale+
▶ scaling parameters for registers:

▶ number of registers
▶ number of read/write ports

▶ scaling parameters for other buffers:
▶ size
▶ (tag width)

▶ metrics: critical path, LUTs and FFs

22 / 29

Resource Usage: Registers
Experiments

0 200 400

num_registers

0.0

0.5

1.0

1.5

2.0

lu
ts

×106

regs/ports
1.0
2.0
4.0
8.0
16.0
32.0

0 50 100

write_ports

0.0

0.5

1.0

1.5

2.0

lu
ts

×106

regs/ports
1.0
2.0
4.0
8.0
16.0
32.0

LUT usage of register files with (left) increasing number
of registers and (right) increasing number of ports

23 / 29

Register Results
Experiments

0 50 100

write_ports

2

3

4

5

6

7

8

9

cr
itp

at
h.
le
ve
ls

regs/ports
1.0
2.0
4.0
8.0
16.0
32.0

Critical path lengths of registers.

▶ critical path length looks fine
▶ but size...
▶ quadratic with number of ports
▶ => quickly larger than many processors
▶ arbitration in a single cycle?

24 / 29

Resource Usage: Buffers
Experiments

20 40 60

depth

0

1000

2000

3000

4000

5000

ff
s

arch
fifo.fallthr.
fifo.ptrs
reord.read
reord.ripple

20 40 60

depth

0

1000

2000

3000

4000

lu
ts

arch
fifo.fallthr.
fifo.ptrs
reord.read
reord.ripple

(left) FF and (right) LUT usage of different buffers
with growing buffer depth

25 / 29

Distributed Buffers
Experiments

20 40 60

depth

5

10

15

20

cr
itp

at
h.
le
ve
ls

arch
fifo.fallthr.
fifo.ptrs
reord.read
reord.ripple

Critical path lengths of different
buffers.

▶ pointer FIFO is mapped to BRAM
▶ ripple-matching still linear
▶ → skid buffers in future work
▶ all buffers are (quasi-)linear size

26 / 29

Comparison (1/2)
Experiments

central register file
▶ quadratic growth with port number

distributed buffers
▶ N buffers for each PU
▶ linear growth

27 / 29

Comparison (2/2)
Experiments

example
▶ 32 PUs
▶ 16 intermediate values each

central register file
▶ 512 registers
▶ 32 write ports
▶ 64 read ports
▶ → 562624 LUTs
☹

distributed buffers
▶ two reorder buffers per PU
▶ each of depth 8

▶ reorder-reserve: 338× 32× 2 = 21632 LUTs☺
▶ reorder-read 124× 32× 2 = 7936 LUTs☺

28 / 29

Conclusion

▶ scalability analysis
▶ argument for BEDs: buffer scaling with port number linear!

Other contributions:
▶ reorder buffer architectures
▶ ripple-matching

29 / 29

Questions?

▶ any questions?

29 / 29

▶ thank you :)

	Introduction
	Buffered Exposed Datapath (BED) Architectures
	Buffer Architectures
	Experiments & Analysis
	Conclusions

