
Data-Driven Test
Generation for Black-Box
Systems From Learned
Decision Tree Models

Swantje Plambeck, Görschwin Fey

24.03.2023

Agenda:

24.03.2023

2

1. Motivation

2. Model-Based Testing

3. Testing with Decision Trees

4. Coverage Metric

5. Automatic Test Generation

6. Example

7. Conclusion

Motivation

• Testing is an important step in design, operation, and maintenance of systems

• For complex, black-box systems deriving test cases is particularly difficult

• A solution is model-based testing (MBT) with learned models

24.03.2023

3

Test Cases
✓ --------
✓ -------
✓ ---

Test Cases
✓ --------
✓ -------
✓ ---

Test Cases
✓ --------
✓ -------
✓ ---

→ We propose a new MBT
approach using decision tree
models

→ Decision trees allow to learn
from bounded history

Model-Based Testing

• MBT consists of a model learning and a test generation step. Often, finite automaton models are considered and state,

transition, or other coverage criteria are used for test generation [1,2,3]

Test Cases
✓ --------
✓ -------
✓ ---

System Learning Model
Test

Generation
Tests

24.03.2023

4

Testing with Decision Trees

• Decision Tree Models represent the sequential behaviour of a system

• Feature vectors show 𝑁 previous time steps and predict the output of the next time step

• In the following, we assume systems with a Mealy machine representation

S. Plambeck, L. Schammer, and G. Fey, “On the viability of decision trees for learning models of systems,” in Asia and South Pacific Design Automatio n Conference (ASP-DAC), 2022, pp. 696–701.

𝑖𝑘 𝑜𝑘 𝑖𝑘+1 𝑜𝑘+1 𝑖𝑘+2 𝑜𝑘+2 𝑖𝑘+𝑁 𝑜𝑘+𝑁…

Feature Vector Class Label

Label Input Output

A x a

B y a

C x b

D y b

E x c

F y c

b b

𝑖𝑛: 𝑥 𝑖𝑛: 𝑦

𝑡 − 2:
{𝐴, 𝐵, 𝐶, 𝐷, 𝐹}

𝑡 − 2:
{𝐶, 𝐹}

aac

ca

𝑡 − 2:
{𝐸}

𝑡 − 1:
{𝐶, 𝐹}

𝑡 − 1:
{𝐸}

B
D

C
A

D

E

B
C

F

E

24.03.2023

5

𝑖𝑡: 𝑖𝑛𝑝𝑢𝑡 𝑠𝑦𝑚𝑏𝑜𝑙
𝑜𝑡: 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑦𝑚𝑏𝑜𝑙

𝑡: 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝

Testing with Decision Trees

• The decision tree is learned from observations of bounded history

• Enables model learning without knowledge of an initial state or possibility to return to the initial state

→testing without reset to an initial state

• We call this Ad-hoc Testing

• Knowing the current history, we want to find future inputs to cover a maximum amount of system behaviour

→ How to define coverage on a decision tree model?

24.03.2023

6

B
D

C
A

D

E

B
C

F

E

Coverage Metric

• Most relevant system behaviour is encoded in the paths from root to leaf nodes

• A discrete time step corresponds to an update of the current history…

b b

𝑖𝑛: 𝑥 𝑖𝑛: 𝑦

𝑡 − 2:
{𝐴, 𝐵, 𝐶, 𝐷, 𝐹}

𝑡 − 2:
{𝐶, 𝐹}

aac

ca

𝑡 − 2:
{𝐸}

𝑡 − 1:
{𝐶, 𝐹}

𝑡 − 1:
{𝐸}

𝑜𝑘+𝑁𝑖𝑘 𝑜𝑘 𝑖𝑘+1 𝑜𝑘+1 𝑖𝑘+2 𝑜𝑘+2 𝑖𝑘+𝑁…

24.03.2023

7[𝐸, 𝐶, 𝑥] c

Coverage Metric

• Most relevant system behaviour is encoded in the paths from root to leaf nodes

• A discrete time step corresponds to an update of the current history…

• and, thus to a transition between two leaves.
b b

𝑖𝑛: 𝑥 𝑖𝑛: 𝑦

𝑡 − 2:
{𝐴, 𝐵, 𝐶, 𝐷, 𝐹}

𝑡 − 2:
{𝐶, 𝐹}

aac

ca

𝑡 − 2:
{𝐸}

𝑡 − 1:
{𝐶, 𝐹}

𝑡 − 1:
{𝐸}

𝑖𝑘+1 𝑜𝑘+1 𝑖𝑘+3 𝑜𝑘+3 𝑖𝑘+𝑁 𝑜𝑘+𝑁… 𝑖𝑘+𝑁 𝑖𝑛𝑒𝑤 𝑜𝑛𝑒𝑤

[𝐸, 𝐶, 𝑥] c

24.03.2023

8

→ The coverage metric is leaf coverage – this is a state coverage in the decision tree‘s state machine

Automatic Test Generation

• Idea:

Automaton
Representation of

Leaf Transitions

Decision Tree
Model

Find a path that
visits all states

Test Case
✓ --------
✓ -------
✓ ---

24.03.2023

9

Automatic Test Generation

• Idea:

• The Hamilton path problem is NP-hard → high computational complexity

Automaton
Representation of

Leaf Transitions

Decision Tree
Model

Find a (shortest)
Hamilton Path

Test Case
✓ --------
✓ -------
✓ ---

24.03.2023

10

Automatic Test Generation

• Idea:

• The Hamilton path problem is NP-hard → high computational complexity

• Greedy Approach:

• Might end-up in dead-end states early

Automaton
Representation of

Leaf Transitions

Decision Tree
Model

Find a (shortest)
Hamilton Path

Test Case
✓ --------
✓ -------
✓ ---

24.03.2023

11
Automaton

Representation of
Leaf Transitions

Decision Tree
Model

Iteratively visit
(closest) unreached

states

Test Case
✓ --------
✓ -------
✓ ---

Automatic Test Generation

• Idea:

• The Hamilton path problem is NP-hard → high computational complexity

• Greedy Approach:

Automaton
Representation of

Leaf Transitions

Decision Tree
Model

Find a (shortest)
Hamilton Path

Test Case
✓ --------
✓ -------
✓ ---

24.03.2023

12
Automaton

Representation of
Leaf Transitions

Decision Tree
Model

Iteratively visit
(closest) states with

most reachable
unreached states

Test Case
✓ --------
✓ -------
✓ ---

Example

Coffee Machine Example from: B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,” in Formal Methods for Eternal Networked Software S ystems, 2011, pp. 256–296.

Assumption: current history is [𝐶𝑙𝑒𝑎𝑛/𝑜𝑘,𝑃𝑜𝑑/𝑜𝑘,𝑊𝑎𝑡𝑒𝑟]
→ we are in state 2 and go to state 4 of the automaton

24.03.2023

13

ok error

𝑡 − 1:
{𝐶𝑙𝑒𝑎𝑛/𝑜𝑘, 𝑃𝑜𝑑/𝑜𝑘,𝑊𝑎𝑡𝑒𝑟/𝑜𝑘}

𝑡 − 1:
{𝐵𝑢𝑡𝑡𝑜𝑛/𝑐𝑜𝑓𝑓𝑒𝑒}

errorokerror

coffeeerror

𝑖𝑛:
{𝐶𝑙𝑒𝑎𝑛}

𝑡 − 1:
{𝐶𝑙𝑒𝑎𝑛|𝑜𝑘}

𝑡 − 2:
{𝐵𝑢𝑡𝑡𝑜𝑛 /𝑐𝑜𝑓𝑓𝑒𝑒, 𝐶𝑙𝑒𝑎𝑛/𝑜𝑘}

𝑖𝑛:
{𝐵𝑢𝑡𝑡𝑜𝑛}

Example

Coffee Machine Example from: B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,” in Formal Methods for Eternal Networked Software S ystems, 2011, pp. 256–296.

Assumption: current history is [𝐶𝑙𝑒𝑎𝑛/𝑜𝑘, 𝑃𝑜𝑑/𝑜𝑘,𝑊𝑎𝑡𝑒𝑟]
→ we are in state 2 and go to state 4 of the automaton
→ The next output is 𝑜𝑘

We choose a next input 𝐵𝑢𝑡𝑡𝑜𝑛
→ The next history is [𝑃𝑜𝑑/𝑜𝑘,𝑊𝑎𝑡𝑒𝑟/𝑜𝑘, 𝐵𝑢𝑡𝑡𝑜𝑛]

24.03.2023

14

ok error

𝑡 − 1:
{𝐶𝑙𝑒𝑎𝑛/𝑜𝑘, 𝑃𝑜𝑑/𝑜𝑘,𝑊𝑎𝑡𝑒𝑟/𝑜𝑘}

𝑡 − 1:
{𝐵𝑢𝑡𝑡𝑜𝑛/𝑐𝑜𝑓𝑓𝑒𝑒}

errorokerror

coffeeerror

𝑖𝑛:
{𝐶𝑙𝑒𝑎𝑛}

𝑡 − 1:
{𝐶𝑙𝑒𝑎𝑛|𝑜𝑘}

𝑡 − 2:
{𝐵𝑢𝑡𝑡𝑜𝑛 /𝑐𝑜𝑓𝑓𝑒𝑒, 𝐶𝑙𝑒𝑎𝑛/𝑜𝑘}

𝑖𝑛:
{𝐵𝑢𝑡𝑡𝑜𝑛}

Example

Coffee Machine Example from: B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,” in Formal Methods for Eternal Networked Software S ystems, 2011, pp. 256–296.

Assumption: current history is [𝑃𝑜𝑑/𝑜𝑘,𝑊𝑎𝑡𝑒𝑟/𝑜𝑘, 𝐵𝑢𝑡𝑡𝑜𝑛]
→ we are in state 4 and go to state 5 of the automaton
→ The next output is 𝑐𝑜𝑓𝑓𝑒𝑒

We choose a next input 𝐶𝑙𝑒𝑎𝑛
→ The next history is [𝑊𝑎𝑡𝑒𝑟/𝑜𝑘, 𝐵𝑢𝑡𝑡𝑜𝑛/𝑐𝑜𝑓𝑓𝑒𝑒, 𝐶𝑙𝑒𝑎𝑛]

24.03.2023

15

ok error

𝑡 − 1:
{𝐶𝑙𝑒𝑎𝑛/𝑜𝑘, 𝑃𝑜𝑑/𝑜𝑘,𝑊𝑎𝑡𝑒𝑟/𝑜𝑘}

𝑡 − 1:
{𝐵𝑢𝑡𝑡𝑜𝑛/𝑐𝑜𝑓𝑓𝑒𝑒}

errorokerror

coffeeerror

𝑖𝑛:
{𝐶𝑙𝑒𝑎𝑛}

𝑡 − 1:
{𝐶𝑙𝑒𝑎𝑛|𝑜𝑘}

𝑡 − 2:
{𝐵𝑢𝑡𝑡𝑜𝑛 /𝑐𝑜𝑓𝑓𝑒𝑒, 𝐶𝑙𝑒𝑎𝑛/𝑜𝑘}

𝑖𝑛:
{𝐵𝑢𝑡𝑡𝑜𝑛}

Example

Coffee Machine Example from: B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,” in Formal Methods for Eternal Networked Software S ystems, 2011, pp. 256–296.

Assumption: current history is [𝑊𝑎𝑡𝑒𝑟/𝑜𝑘, 𝐵𝑢𝑡𝑡𝑜𝑛/𝑐𝑜𝑓𝑓𝑒𝑒, 𝐶𝑙𝑒𝑎𝑛]
→ we are in state 5 and go to state 1 of the automaton
→ The next output is 𝑜𝑘

We choose a next input 𝑊𝑎𝑡𝑒𝑟, 𝐵𝑢𝑡𝑡𝑜𝑛
→ The next history is [𝐶𝑙𝑒𝑎𝑛/𝑜𝑘,𝑊𝑎𝑡𝑒𝑟/𝑜𝑘, 𝐵𝑢𝑡𝑡𝑜𝑛]

24.03.2023

16

ok error

𝑡 − 1:
{𝐶𝑙𝑒𝑎𝑛/𝑜𝑘, 𝑃𝑜𝑑/𝑜𝑘,𝑊𝑎𝑡𝑒𝑟/𝑜𝑘}

𝑡 − 1:
{𝐵𝑢𝑡𝑡𝑜𝑛/𝑐𝑜𝑓𝑓𝑒𝑒}

errorokerror

coffeeerror

𝑖𝑛:
{𝐶𝑙𝑒𝑎𝑛}

𝑡 − 1:
{𝐶𝑙𝑒𝑎𝑛|𝑜𝑘}

𝑡 − 2:
{𝐵𝑢𝑡𝑡𝑜𝑛 /𝑐𝑜𝑓𝑓𝑒𝑒, 𝐶𝑙𝑒𝑎𝑛/𝑜𝑘}

𝑖𝑛:
{𝐵𝑢𝑡𝑡𝑜𝑛}

Example

Coffee Machine Example from: B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,” in Formal Methods for Eternal Networked Software S ystems, 2011, pp. 256–296.

Assumption: current history is [𝐶𝑙𝑒𝑎𝑛/𝑜𝑘,𝑊𝑎𝑡𝑒𝑟/𝑜𝑘, 𝐵𝑢𝑡𝑡𝑜𝑛]
→ we are in state 3 and go to state 6 of the automaton
→ The next output is 𝑒𝑟𝑟𝑜𝑟

We choose a next input 𝑃𝑜𝑑
→ The next history is [𝑊𝑎𝑡𝑒𝑟/𝑜𝑘, 𝐵𝑢𝑡𝑡𝑜𝑛/𝑒𝑟𝑟𝑜𝑟, 𝑃𝑜𝑑]

24.03.2023

17

ok error

𝑡 − 1:
{𝐶𝑙𝑒𝑎𝑛/𝑜𝑘, 𝑃𝑜𝑑/𝑜𝑘,𝑊𝑎𝑡𝑒𝑟/𝑜𝑘}

𝑡 − 1:
{𝐵𝑢𝑡𝑡𝑜𝑛/𝑐𝑜𝑓𝑓𝑒𝑒}

errorokerror

coffeeerror

𝑖𝑛:
{𝐶𝑙𝑒𝑎𝑛}

𝑡 − 1:
{𝐶𝑙𝑒𝑎𝑛|𝑜𝑘}

𝑡 − 2:
{𝐵𝑢𝑡𝑡𝑜𝑛 /𝑐𝑜𝑓𝑓𝑒𝑒, 𝐶𝑙𝑒𝑎𝑛/𝑜𝑘}

𝑖𝑛:
{𝐵𝑢𝑡𝑡𝑜𝑛}

Example

Coffee Machine Example from: B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,” in Formal Methods for Eternal Networked Software S ystems, 2011, pp. 256–296.

→ A leaf coverage of
5

7
is reached while a full state coverage on the original automaton representation is achieved

24.03.2023

18

ok error

𝑡 − 1:
{𝐶𝑙𝑒𝑎𝑛/𝑜𝑘, 𝑃𝑜𝑑/𝑜𝑘,𝑊𝑎𝑡𝑒𝑟/𝑜𝑘}

𝑡 − 1:
{𝐵𝑢𝑡𝑡𝑜𝑛/𝑐𝑜𝑓𝑓𝑒𝑒}

errorokerror

coffeeerror

𝑖𝑛:
{𝐶𝑙𝑒𝑎𝑛}

𝑡 − 1:
{𝐶𝑙𝑒𝑎𝑛|𝑜𝑘}

𝑡 − 2:
{𝐵𝑢𝑡𝑡𝑜𝑛 /𝑐𝑜𝑓𝑓𝑒𝑒, 𝐶𝑙𝑒𝑎𝑛/𝑜𝑘}

𝑖𝑛:
{𝐵𝑢𝑡𝑡𝑜𝑛}

Conclusion

• We introduced a new strategy for Model-Based Testing (MBT) using decision tree models

• The advantage is the learnability and, thus testability from bounded history (ad-hoc testing)

• We proposed multiple strategies to apply automatic test generation

• Future work considers

• Comparison to existing MBT approaches

• Evaluation of complexity and scalability

24.03.2023

19

References

[1] K. I. Eder, W. ling Huang, and J. Peleska, “Complete agent-driven model-based system testing for autonomous

systems,” in Workshop on Formal Methods for Autonomous Systems (FMAS), 2021.

[2] K. A. El-Fakih, R. Dorofeeva, N. V. Yevtushenko, and G. V. Bochmann, “Fsm-based testing from user defined

faults adapted to incremental and mutation testing,” Programming and Computer Software, vol. 38, no. 4,

2012.

[3] J. Peleska, E. Vorobev, and F. Lapschies, “Automated test case generation with smt-solving and abstract

interpretation,” in NASA Formal Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 298–312.

Footnotes:

[4] S. Plambeck, L. Schammer, and G. Fey, “On the viability of decision trees for learning models of

systems,” in Asia and South Pacific Design Automation Conference (ASP-DAC), 2022, pp. 696–701.

[5} B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,”

in Formal Methods for Eternal Networked Software Systems, 2011, pp. 256–296.
24.03.2023

20

tuhh.de

Thank You

Technische Universität Hamburg (TUHH)

Swantje Plambeck

Institut für Eingebettete Systeme

Am Schwarzenberg-Campus 3

21073 Hamburg

E-Mail: swantje.plambeck@tuhh.de

Tel.: +49 40 42878-3867

www.tuhh.de

