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Motivation
* Testing is an important step in design, operation, and maintenance of systems - We propose a new MBT
LI approach using decision tree
models

innnnn
- Decision trees allow to learn

from bounded history

* Asolution is model-based testing (MBT) with learned models 3
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Model-Based Testing
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* MBT consists of a model learning and a test generation step. Often, finite automaton models are considered and state,

transition, or other coverage criteria are used for test generation [1,2,3]
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Testing with Decision Trees

I;: input symbol

* Decision Tree Models represent the sequential behaviour of a system 0¢: output symbol
* Feature vectors show N previous time steps and predict the output of the next time step t:discrete time step
e POk Rlk+1 Ok+1 | lk+2 Ok+2 IS
Feature Vector Class Label

* In the following, we assume systems with a Mealy machine representation

Label Input Output
A X a
B y a 5
C X b
D y b
E X o
F y C
24.03.2023

S. Plambeck, L. Schammer, and G. Fey, “On the viability of decision trees for learning models of systems,” in Asia and South Pacific Design Automation Conference (ASP-DAC), 2022, pp. 696—701.




_ _ o TUHH
Testing with Decision Trees

The decision tree is learned from observations of bounded history

* Enables model learning without knowledge of an initial state or possibility to return to the initial state
—testing without reset to an initial state

* We call this Ad-hoc Testing

* Knowing the current history, we want to find future inputs to cover a maximum amount of system behaviour
- How to define coverage on a decision tree model?
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Coverage Metric

* Most relevant system behaviour is encoded in the paths from root to leaf nodes

e Adiscrete time step corresponds to an update of the current history...

k. Ok dlk+1 Ok+1 | lk+2 Ok+2

[E, C,x] 7} 7
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Coverage Metric

* Most relevant system behaviour is encoded in the paths from root to leaf nodes

e Adiscrete time step corresponds to an update of the current history...

lk+1 Ok+1 | lk+3 Ok+3 Bl lk+N Ck+N

* and, thus to a transition between two leaves.

- The coverage metric is leaf coverage — this is a state coverage in the decision tree‘s state machine
24.03.2023
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Automatic Test Generation

* |dea:

. Aut t .
Decision Tree HEGHISEOH Find a path that Test Case

Model visits all states

Representation of
Leaf Transitions
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Automatic Test Generation

* |dea:

o Automaton . Test Case
Decision Tree Find a (shortest)

Representation of

" Hamilton Path
Leaf Transitions SIAHEOIES

Model

* The Hamilton path problem is NP-hard = high computational complexity

10
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Automatic Test Generation

* |dea:

o Automaton .
Decision Tree Find a (shortest) Test Case

Representation of

Leaf Transitions Hamilton Path

Model

* The Hamilton path problem is NP-hard = high computational complexity

* Greedy Approach:

Automaton Iteratively visit Test Case
Representation of (closest) unreached 11
Leaf Transitions states

Decision Tree

Model

* Might end-up in dead-end states early
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Automatic Test Generation

* |dea:

o Automaton . Test Case
Decision Tree Find a (shortest)

Representation of

" Hamilton Path
Leaf Transitions SIAHEOIES

Model

* The Hamilton path problem is NP-hard = high computational complexity

* Greedy Approach:

o Automaton JierEidiiely V's't_ Test Case
Decision Tree (closest) states with 12

Model most reachable
unreached states

Representation of
Leaf Transitions
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Example
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t—1:
n {Clean/ok, Pod/ok, Water /ok}

BUTTON / error
in:
{Button} t—1

{Button/cof fee}

t—2:
{Button /cof fee, Clean/ok}

BUTTON
/ error

BUTTON
/ error

coffee
[/ error

Assumption: current history is [Clean/ok, Pod /ok, Water]
- we are in state 2 and go to state 4 of the automaton

error

Coffee Machine Example from: B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,” in Formal Methods for Eternal Networked Software Systems, 2011, pp. 256-296.
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UTTON / error

BUTTON
/ error

BUTTON
/ error

/ coffee

I/ error

Assumption: current history is [Clean/ok, Pod /ok, W ater]
- we are in state 2 and go to state 4 of the automaton
- The next output is ok

{Button /cof fee, Clean/ok}

t—1:
{Clean/ok, Pod/ok, Water /ok}

in:
{Button}

t—1:
{Button/cof fee}

t—2:

error

coffee

We choose a next input Button
—> The next history is [Pod /ok, Water /ok, Button|

Coffee Machine Example from: B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,”

in Formal Methods for Eternal Networked Software Systems, 2011, pp. 256-296.
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UTTON / error

BUTTON
/ error

BUTTON
/ error

/ coffee

I/ error

Assumption: current history is [Pod /ok, Water ok, Button]
—> we are in state 4 and go to state 5 of the automaton
= The next outputis cof fee

{Button /cof fee, Clean/ok}

t—1:
{Clean/ok, Pod/ok, Water /ok}

in:
{Button}

t—1:
{Button/cof fee}

t—2:

coffee

15

We choose a next input Clean
—> The next history is [Water/ok, Button/cof fee, Clean]

24.03.2023

Coffee Machine Example from: B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,”

in Formal Methods for Eternal Networked Software Systems, 2011, pp. 256-296.
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UTTON / error

WATER / ok

BUTTON
/ error

BUTTON
/ error

/ coffee

I/ error

Assumption: current history is [Water /ok, Button/cof fee, Clean]

- we are in state 5 and go to state 1 of the automaton
- The next output is ok

{Button /cof fee, Clean/ok}

t—1:
{Clean/ok, Pod/ok, Water /ok}

in:
{Button}

t—1:
{Button/cof fee}

t—2:

coffee

We choose a next input Water, Button
—> The next history is [Clean/ok, W ater /ok, Button|]

16
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Coffee Machine Example from: B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,” in Formal Methods for Eternal Networked Software Systems, 2011, pp. 256-296.
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UTTON / error

WATER / ok

BUTTON
/ error

BUTTON
/ error

/ coffee

I/ error

Assumption: current history is [Clean/ok, W ater ok, Button]

- we are in state 3 and go to state 6 of the automaton
- The next output is error

{Button /cof fee, Clean/ok}

t—1:
{Clean/ok, Pod/ok, Water /ok}

in:
{Button}

t—1:
{Button/cof fee}

t—2:

coffee

We choose a next input Pod
—> The next history is [Water/ok, Button/error, Pod]

17
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Coffee Machine Example from: B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,” in Formal Methods for Eternal Networked Software Systems, 2011, pp. 256-296.
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UTTON / error

WATER / ok

BUTTON
/ error

BUTTON
/ error

/ coffee

I/ error

t—1:
{Clean/ok, Pod/ok,Water ok}

in:
{Button}

t—1:
{Button/cof fee}

t—2:
{Button /cof fee, Clean/ok}

coffee

- A leaf coverage of - s reached while a full state coverage on the original automaton representation is achieved

Coffee Machine Example from: B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,” in Formal Methods for Eternal Networked Software Systems, 2011, pp. 256-296.
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Conclusion

We introduced a new strategy for Model-Based Testing (MBT) using decision tree models

The advantage is the learnability and, thus testability from bounded history (ad-hoc testing)

* We proposed multiple strategies to apply automatic test generation

Future work considers
* Comparison to existing MBT approaches

* Evaluation of complexity and scalability 19
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