Data-Driven Test

Generation for Black-Box

Systems From Learned
Decision Tree Models

TUHH

~

Technische
Universitat

Hamburg

24.03.2023

— T
]

A T S
(| it 10 nnjnl 11
AT TTIT |
L (NN L Vo e
RN E R T
LTI o HIHHITTHE 0

Swantje Plambeck, Gérschwin Fey




Agenda:

. Motivation

. Model-Based Testing

. Testing with Decision Trees
. Coverage Metric

. Automatic Test Generation
. Example

. Conclusion

TUHH

24.03.2023




TUHH

Motivation
* Testing is an important step in design, operation, and maintenance of systems - We propose a new MBT
LI approach using decision tree
models

innnnn
- Decision trees allow to learn

from bounded history

* Asolution is model-based testing (MBT) with learned models 3

E o mm)

Test Cases

%

24.03.2023




. TUHH
Model-Based Testing

Test
Generation

®
—_— Test Cases
= )

Tests

System Learning Model

+[-
X+

_+_
& =

* MBT consists of a model learning and a test generation step. Often, finite automaton models are considered and state,

transition, or other coverage criteria are used for test generation [1,2,3]
24.03.2023




_ _ o TUHH
Testing with Decision Trees

I;: input symbol

* Decision Tree Models represent the sequential behaviour of a system 0¢: output symbol
* Feature vectors show N previous time steps and predict the output of the next time step t:discrete time step
e POk Rlk+1 Ok+1 | lk+2 Ok+2 IS
Feature Vector Class Label

* In the following, we assume systems with a Mealy machine representation

Label Input Output
A X a
B y a 5
C X b
D y b
E X o
F y C
24.03.2023

S. Plambeck, L. Schammer, and G. Fey, “On the viability of decision trees for learning models of systems,” in Asia and South Pacific Design Automation Conference (ASP-DAC), 2022, pp. 696—701.




_ _ o TUHH
Testing with Decision Trees

The decision tree is learned from observations of bounded history

* Enables model learning without knowledge of an initial state or possibility to return to the initial state
—testing without reset to an initial state

* We call this Ad-hoc Testing

* Knowing the current history, we want to find future inputs to cover a maximum amount of system behaviour
- How to define coverage on a decision tree model?

24.03.2023




: TUHH
Coverage Metric

* Most relevant system behaviour is encoded in the paths from root to leaf nodes

e Adiscrete time step corresponds to an update of the current history...

k. Ok dlk+1 Ok+1 | lk+2 Ok+2

[E, C,x] 7} 7

24.03.2023




: TUHH
Coverage Metric

* Most relevant system behaviour is encoded in the paths from root to leaf nodes

e Adiscrete time step corresponds to an update of the current history...

lk+1 Ok+1 | lk+3 Ok+3 Bl lk+N Ck+N

* and, thus to a transition between two leaves.

- The coverage metric is leaf coverage — this is a state coverage in the decision tree‘s state machine
24.03.2023




. . TUHH
Automatic Test Generation

* |dea:

. Aut t .
Decision Tree HEGHISEOH Find a path that Test Case

Model visits all states

Representation of
Leaf Transitions

24.03.2023




. . TUHH
Automatic Test Generation

* |dea:

o Automaton . Test Case
Decision Tree Find a (shortest)

Representation of

" Hamilton Path
Leaf Transitions SIAHEOIES

Model

* The Hamilton path problem is NP-hard = high computational complexity

10

24.03.2023




. . TUHH
Automatic Test Generation

* |dea:

o Automaton .
Decision Tree Find a (shortest) Test Case

Representation of

Leaf Transitions Hamilton Path

Model

* The Hamilton path problem is NP-hard = high computational complexity

* Greedy Approach:

Automaton Iteratively visit Test Case
Representation of (closest) unreached 11
Leaf Transitions states

Decision Tree

Model

* Might end-up in dead-end states early

24.03.2023




. . TUHH
Automatic Test Generation

* |dea:

o Automaton . Test Case
Decision Tree Find a (shortest)

Representation of

" Hamilton Path
Leaf Transitions SIAHEOIES

Model

* The Hamilton path problem is NP-hard = high computational complexity

* Greedy Approach:

o Automaton JierEidiiely V's't_ Test Case
Decision Tree (closest) states with 12

Model most reachable
unreached states

Representation of
Leaf Transitions

24.03.2023




Example

TUHH

t—1:
n {Clean/ok, Pod/ok, Water /ok}

BUTTON / error
in:
{Button} t—1

{Button/cof fee}

t—2:
{Button /cof fee, Clean/ok}

BUTTON
/ error

BUTTON
/ error

coffee
[/ error

Assumption: current history is [Clean/ok, Pod /ok, Water]
- we are in state 2 and go to state 4 of the automaton

error

Coffee Machine Example from: B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,” in Formal Methods for Eternal Networked Software Systems, 2011, pp. 256-296.

13

24.03.2023




Example

TUHH

UTTON / error

BUTTON
/ error

BUTTON
/ error

/ coffee

I/ error

Assumption: current history is [Clean/ok, Pod /ok, W ater]
- we are in state 2 and go to state 4 of the automaton
- The next output is ok

{Button /cof fee, Clean/ok}

t—1:
{Clean/ok, Pod/ok, Water /ok}

in:
{Button}

t—1:
{Button/cof fee}

t—2:

error

coffee

We choose a next input Button
—> The next history is [Pod /ok, Water /ok, Button|

Coffee Machine Example from: B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,”

in Formal Methods for Eternal Networked Software Systems, 2011, pp. 256-296.

14

24.03.2023




Example

TUHH

UTTON / error

BUTTON
/ error

BUTTON
/ error

/ coffee

I/ error

Assumption: current history is [Pod /ok, Water ok, Button]
—> we are in state 4 and go to state 5 of the automaton
= The next outputis cof fee

{Button /cof fee, Clean/ok}

t—1:
{Clean/ok, Pod/ok, Water /ok}

in:
{Button}

t—1:
{Button/cof fee}

t—2:

coffee

15

We choose a next input Clean
—> The next history is [Water/ok, Button/cof fee, Clean]

24.03.2023

Coffee Machine Example from: B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,”

in Formal Methods for Eternal Networked Software Systems, 2011, pp. 256-296.




Example

TUHH

UTTON / error

WATER / ok

BUTTON
/ error

BUTTON
/ error

/ coffee

I/ error

Assumption: current history is [Water /ok, Button/cof fee, Clean]

- we are in state 5 and go to state 1 of the automaton
- The next output is ok

{Button /cof fee, Clean/ok}

t—1:
{Clean/ok, Pod/ok, Water /ok}

in:
{Button}

t—1:
{Button/cof fee}

t—2:

coffee

We choose a next input Water, Button
—> The next history is [Clean/ok, W ater /ok, Button|]

16

24.03.2023

Coffee Machine Example from: B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,” in Formal Methods for Eternal Networked Software Systems, 2011, pp. 256-296.




Example

TUHH

UTTON / error

WATER / ok

BUTTON
/ error

BUTTON
/ error

/ coffee

I/ error

Assumption: current history is [Clean/ok, W ater ok, Button]

- we are in state 3 and go to state 6 of the automaton
- The next output is error

{Button /cof fee, Clean/ok}

t—1:
{Clean/ok, Pod/ok, Water /ok}

in:
{Button}

t—1:
{Button/cof fee}

t—2:

coffee

We choose a next input Pod
—> The next history is [Water/ok, Button/error, Pod]

17

24.03.2023

Coffee Machine Example from: B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,” in Formal Methods for Eternal Networked Software Systems, 2011, pp. 256-296.




Example

TUHH

UTTON / error

WATER / ok

BUTTON
/ error

BUTTON
/ error

/ coffee

I/ error

t—1:
{Clean/ok, Pod/ok,Water ok}

in:
{Button}

t—1:
{Button/cof fee}

t—2:
{Button /cof fee, Clean/ok}

coffee

- A leaf coverage of - s reached while a full state coverage on the original automaton representation is achieved

Coffee Machine Example from: B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,” in Formal Methods for Eternal Networked Software Systems, 2011, pp. 256-296.

18

24.03.2023




. TUHH
Conclusion

We introduced a new strategy for Model-Based Testing (MBT) using decision tree models

The advantage is the learnability and, thus testability from bounded history (ad-hoc testing)

* We proposed multiple strategies to apply automatic test generation

Future work considers
* Comparison to existing MBT approaches

* Evaluation of complexity and scalability 19

24.03.2023




TUHH

References

[1]

[2]

[3]

Footnotes:

[4]

[5}

K. I. Eder, W. ling Huang, and J. Peleska, “Complete agent-driven model-based system testing for autonomous
systems,” in Workshop on Formal Methods for Autonomous Systems (FMAS), 2021.

K. A. El-Fakih, R. Dorofeeva, N. V. Yevtushenko, and G. V. Bochmann, “Fsm-based testing from user defined
faults adapted to incremental and mutation testing,” Programming and Computer Software, vol. 38, no. 4,
2012.

J. Peleska, E. Vorobeyv, and F. Lapschies, “Automated test case generation with smt-solving and abstract

interpretation,” in NASA Formal Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 298-312.

20
S. Plambeck, L. Schammer, and G. Fey, “On the viability of decision trees for learning models of

systems,” in Asia and South Pacific Design Automation Conference (ASP-DAC), 2022, pp. 696—701.
B. Steffen, F. Howar, and M. Merten, “Introduction to active automata learning from a practical perspective,”

in Formal Methods for Eternal Networked Software Systems, 2011, pp. 256—-296. 24.03.9023




Thank You

Technische Universitat Hamburg (TUHH)
Swantje Plambeck

Institut fir Eingebettete Systeme

Am Schwarzenberg-Campus 3

21073 Hamburg

E-Mail: swantje.plambeck@tuhh.de
Tel.: +49 40 42878-3867

www.tuhh.de

tuhh.de

TUHH

Technische
Universitat
Hamburg




