

Divider Verification Using Symbolic Computer Algebra and Delayed Don't Care Optimization (extended abstract)

<u>Alexander Konrad¹</u>, Christoph Scholl¹, Alireza Mahzoon², Daniel Große³, Rolf Drechsler²

¹University of Freiburg, Germany ²University of Bremen, Germany ³Johannes Kepler University Linz, Austria

Verification of Arithmetic Circuits, Motivation

- Circuit design containing arithmetic not only by processor vendors, but also by suppliers of special-purpose hardware
- Fully automatic formal verification of arithmetic circuits needed

- Great progress for gate-level multipliers during last years based on Symbolic Computer Algebra
- Situation for fully automatic formal verification of gate-level dividers not such beneficial.

Symbolic Computer Algebra (SCA)

- Symbolic Computer Algebra to verify integer arithmetic:
 - Exposition can be simplified by considering replacements of variables by gate polynomials ("backward rewriting")
 - Based on the fact that the polynomial for a pseudo-Boolean function $f: \{0, 1\}^n \to Z$ is unique (up to reordering of terms)
 - Illustrated by a simple example: ...

• Full-Adder with specification $2c_0 + s_0 = a_0 + b_0 + c$:

• Start with output word $2c_0 + s_0$

universitätfreiburg

• Full-Adder with specification $2c_0 + s_0 = a_0 + b_0 + c$:

• Start with output word $2c_0 + s_0$

• Full-Adder with specification $2c_0 + s_0 = a_0 + b_0 + c$:

• Start with output word $2c_0 + s_0$

$$\Rightarrow 2h_2 + 2h_3 - 2h_2h_3 + s_0$$

• Full-Adder with specification $2c_0 + s_0 = a_0 + b_0 + c$:

universitätfreiburg

• Full-Adder with specification $2c_0 + s_0 = a_0 + b_0 + c$:

universität freiburg

Integer Division

- Given:
 - Dividend $(0 r_{2n-3}^{(0)} ... r_0^0)$ with value $R^{(0)} = \sum_{i=0}^{2n-3} r_i^{(0)} 2^i$
 - Divisor $(0 d_{n-2} \dots d_0)$ with value $D = \sum_{i=0}^{n-2} d_i 2^i$
 - Input constraint $0 \leq \mathbb{R}^{(0)} < D \cdot 2^{n-1}$.
- Compute:
 - Quotient $(q_{n-1} \dots q_0)$ with value $Q = \sum_{i=0}^{n-1} q_i 2^i$
 - Remainder $(r_{n-1} \dots r_0)$ with value $R = \sum_{i=0}^{n-2} r_i 2^i r_{n-1} 2^{n-1}$
 - With
 - (vc1) $R^{(0)} = Q \cdot D + R$
 - (vc2) $0 \le R < D$.

Division algorithms

Most simple: Restoring division

- Division by "school method"
- Computing partial remainders $R^{(j)}$ and quotient bits q_{n-j} iteratively

14

Division algorithms

- Most simple: Restoring division
 - Division by "school method"
 - Computing partial remainders $R^{(j)}$ and quotient bits q_{n-j} iteratively
- Improved by: Non-restoring division
 - Combines back addition and subtraction into single addition
 - Relation of new and previous partial remainders derived from algorithm:

$$R^{(j)} = R^{(j-1)} + (1 - 2q_{n-j+1})(D \cdot 2^{n-j})$$

High-level circuit for Non-Restoring Division

universitätfreiburg

- Real gate level implementations lead to polynomials with exponential sizes on cuts between stages!
- Why?

"Clean" adder / subtractor stages

universität freiburg

"Clean" adder / subtractor stages

universitätfreiburg

Omitted overflow bits

universität freiburg

Omitted overflow bits

universitätfreiburg

Omitted leading bits

universität freiburg

- Real gate level implementations lead to polynomials with exponential sizes on cuts between stages!
- Why?
 - Real gate level implementations omit overflow bits as well as leading bits of adders / subtractors
 - Still correct due to size restrictions for partial remainders derived from input constraint $0 \le R^{(0)} < D \cdot 2^{n-1}$ and the division algorithm

- Real gate level implementations lead to polynomials with exponential sizes on cuts between stages!
- Why?
 - Real gate level implementations omit overflow bits as well as leading bits of adders / subtractors
 - Still correct due to size restrictions for partial remainders derived from input constraint $0 \le R^{(0)} < D \cdot 2^{n-1}$ and the division algorithm
 - Restrictions resulting from input constraint not visible for backward rewriting!

- Real gate level implementations lead to polynomials with exponential sizes on cuts between stages!
- Why?
 - Real gate level implementations omit overflow bits as well as leading bits of adders / subtractors
 - Still correct due to size restrictions for partial remainders derived from input constraint $0 \le R^{(0)} < D \cdot 2^{n-1}$ and the division algorithm
 - Restrictions resulting from input constraint not visible for backward rewriting!
 - Final polynomial after rewriting can even differ from 0 for correct implementation → "only needs to be 0 under the input constraint"

- "Verifying Dividers Using Symbolic Computer Algebra and Don't Care Optimization"
 - Scholl, Konrad, Mahzoon, Große & Drechsler at Design, Automation and Test in Europe Conference 2021 [Scholl et al., DATE'21]

universitätfreiburg

• Input constraint $0 \le R^{(0)} < D \cdot 2^{n-1}$ together with divider design implies *"satisfiability don't cares"* at boundaries of atomic blocks:

Example:

Input constraint implies that value combination (1, 1, 1) at the inputs of the atomic block marked in red cannot occur

 \Rightarrow satisfiablity don't care

universitätfreiburg

 Make use of satisfibility don't cares (obtained by "forward information propagation") to optimize intermediate polynomials during backward rewriting.

- Make use of satisfibility don't cares (obtained by "forward information propagation") to optimize intermediate polynomials during backward rewriting.
- $p = 1 x_1 x_2 x_3 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3 4x_1x_2x_3$
 - Satisfiability don't care cubes $\neg x_1 x_2 x_3, x_1 \neg x_2 \neg x_3$

- Make use of satisfibility don't cares (obtained by "forward information propagation") to optimize intermediate polynomials during backward rewriting.
- $p = 1 x_1 x_2 x_3 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3 4x_1x_2x_3$
 - Satisfiability don't care cubes $\neg x_1 x_2 x_3, x_1 \neg x_2 \neg x_3$
 - Choose integer variable v_1 for $\neg x_1 x_2 x_3$, add $v_1(1-x_1)x_2 x_3$

$$p = 1 - x_1 - x_2 - x_3 + 2x_1x_2 + 2x_1x_3 + (2 + v_1)x_2x_3 + (-v_1 - 4)x_1x_2x_3$$

- Make use of satisfibility don't cares (obtained by "forward information propagation") to optimize intermediate polynomials during backward rewriting.
- $p = 1 x_1 x_2 x_3 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3 4x_1x_2x_3$
 - Satisfiability don't care cubes $\neg x_1 x_2 x_3, x_1 \neg x_2 \neg x_3$
 - Choose integer variable v_2 for $x_1 \neg x_2 \neg x_3$, add $v_2 x_1 (1 x_2)(1 x_3)$

$$p = 1 + (v_2 - 1)x_1 - x_2 - x_3 + (2 - v_2)x_1x_2 + (2 - v_2)x_1x_3 + (2 + v_1)x_2x_3 + (v_2 - v_1 - 4)x_1x_2x_3$$

universität freiburg

- Make use of satisfibility don't cares (obtained by "forward information propagation") to optimize intermediate polynomials during backward rewriting.
- $p = 1 x_1 x_2 x_3 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3 4x_1x_2x_3$
 - Satisfiability don't care cubes $\neg x_1 x_2 x_3, x_1 \neg x_2 \neg x_3$
 - Choose integer variable v_2 for $x_1 \neg x_2 \neg x_3$, add $v_2 x_1 (1 x_2)(1 x_3)$
 - $p = 1 + (v_2 1)x_1 x_2 x_3 + (2 v_2)x_1x_2 + (2 v_2)x_1x_3 + (2 + v_1)x_2x_3 + (v_2 v_1 4)x_1x_2x_3$
 - Remaining task: Choose v_1 and v_2 such that the coefficient of a maximum number of terms is 0.

universität freiburg

 \Rightarrow Optimization problem

- $1 + (v_2 1)x_1 x_2 x_3 + (2 v_2)x_1x_2 + (2 v_2)x_1x_3 + (2 + v_1)x_2x_3 + (v_2 v_1 4)x_1x_2x_3$
- Equation system:
 - $v_2 1 = 0$ $2 - v_2 = 0$ $2 - v_2 = 0$ $2 + v_1 = 0$ $v_2 - v_1 - 4 = 0$
- Maximize the number of satisfied equations!
- \Rightarrow Reduced to integer linear programming (ILP).

 \Rightarrow Optimization problem

- $1 + (v_2 1)x_1 x_2 x_3 + (2 v_2)x_1x_2 + (2 v_2)x_1x_3 + (2 + v_1)x_2x_3 + (v_2 v_1 4)x_1x_2x_3$
- Equation system:
 - $v_2 1 = 0$ $2 - v_2 = 0$ $2 - v_2 = 0$ $2 + v_1 = 0$ $v_2 - v_1 - 4 = 0$
- Maximize the number of satisfied equations!
- \Rightarrow Reduced to integer linear programming (ILP).
- Here: $v_1 = -2$, $v_2 = 2$.
- $\Rightarrow \text{Result: } P(x_1, x_2, x_3) = 1 + x_1 x_2 x_3$

• Don't Care Optimization used as part of **backtracking approach**

 Successfully avoided exponential polynomials during backward rewriting for real gate level implementations shown before

- In correct dividers the remainder is non-negative, i.e. $r_{n-1} = 0$
- Computation of r_{n-1} can be omitted

universitätfreiburg

- But we lost possibilities to optimize polynomial
- Remaining don't cares not strong enough to avoid exponential polynomials ("blowup" already in last stage)

universitätfreiburg

• Shown: polynomial size after last stage has been replaced

universitätfreiburg

• Shown: polynomial size after last stage has been replaced

universitätfreiburg

New idea: Extended Atomic Blocks (EABs)

- Extend atomic blocks with remaining gates to fanout-free cones
- Purpose: find more and better don't cares

New idea: Extended Atomic Blocks (EABs)

- Extend atomic blocks with remaining gates to fanout-free cones
- Purpose: find more and better don't cares

universität freiburg

New idea: Extended Atomic Blocks (EABs)

Extend atomic blocks with remaining gates to fanout-free cones

9 DCs at extended block

• Purpose: find more and better don't cares

• Shown: polynomial size after last stage has been replaced

universitätfreiburg

- Applying Don't care optimization immediately only gives us a "local minimum" in the context of backward rewriting
- We want to apply optimizations more targeted
 - minimize future polynomial sizes during backward rewriting
 - Delay optimization to take future rewriting steps into account
 - \rightarrow Lookahead achieves optimizations in a more global context

Delayed Don't Care Optimization (DDCO)

- Polynomial $p = x_1x_2x_3x_4 x_2x_3x_4$ with DC $(x_1, x_2, x_3) = (0, 1, 1)$
- Next replacement will be $x_4 = x_2 \cdot x_3$

- Polynomial $p = x_1x_2x_3x_4 x_2x_3x_4$ with DC $(x_1, x_2, x_3) = (0, 1, 1)$
- Next replacement will be $x_4 = x_2 \cdot x_3$
- Option 1:
 - Adding DC leads to $q_1 = x_1 x_2 x_3 x_4 x_2 x_3 x_4 + v_1 x_2 x_3 v_1 x_1 x_2 x_3$
 - Optimal solution is $v_1 = 0$
 - After replacement of x_4 : $q'_1 = x_1x_2x_3 x_2x_3$

- Polynomial $p = x_1 x_2 x_3 x_4 x_2 x_3 x_4$ with DC $(x_1, x_2, x_3) = (0, 1, 1)$
- Next replacement will be $x_4 = x_2 \cdot x_3$
- Option 1:
 - Adding DC leads to $q_1 = x_1 x_2 x_3 x_4 x_2 x_3 x_4 + v_1 x_2 x_3 v_1 x_1 x_2 x_3$
 - Optimal solution is $v_1 = 0$
 - After replacement of $x_4: q'_1 = x_1x_2x_3 x_2x_3$
- Option 2:
 - Adding DC leads to $q_2 = x_1 x_2 x_3 x_4 x_2 x_3 x_4 + v_1 x_2 x_3 v_1 x_1 x_2 x_3$
 - After replacement of $x_4 : q'_2 = (1 v_1)x_1x_2x_3 + (v_1 1)x_2x_3$
 - Optimal solution is $v_1 = 1$, resulting in $q'_2 = 0$

universität freiburg

Experimental results

• Three types of divider benchmarks:

- Non-restoring dividers from [DATE'21]: non-restoring₁
- Further optimized non-restoring dividers: non-restoring₂
- Restoring dividers: restoring

Experimental results

• Three types of divider benchmarks:

- Non-restoring dividers from [DATE'21]: non-restoring₁
- Further optimized non-restoring dividers: non-restoring₂
- Restoring dividers: restoring

• Six experiments:

- SAT
- Equivalence checking of ABC
- Commercial tool
- [DATE'21]
- [DATE'21] + EABs
- Our new tool = [DATE'21] + EABs + DDCO (instead of backtracking)

Experimental Results: run times for non-restoring₁

n	#gates	SAT	ABC	Commercial	[DATE'21]	[DATE'21] + EABs	Our new tool = [DATE'21] + EABs + DDCO
4	100	0.22 s	0.01 s	1.23 s	0.15 s	0.44 s	0.23 s
8	404	68.58 s	17.65 s	1.33 s	0.39 s	1.21 s	0.94 s
16	1,588	> 1 day	> 1 day	165.87 s	1.59 s	3.26 s	1.87 s
32	6,260	> 1 day	> 1 day	> 1 day	5.06 s	12.10 s	6.78 s
64	24,820	> 1 day	> 1 day	> 1 day	21.88 s	96.15 s	28.24 s
128	98,804	> 1 day	>1 day	> 1 day	114.73 s	1,434.11 s	153.71 s
256	394,228	> 1 day	> 1 day	> 1 day	825.11 s	13,656.97 s	1,985.05 s
512	1,574,900	> 1 day	> 1 day	> 1 day	9,183.28 s	> 62 GB	27,370.60 s

Experimental Results: run times for non-restoring₂

n	#gates	SAT	ABC	Commercial	[DATE'21]	[DATE'21] + EABs	Our new tool = [DATE'21] + EABs + DDCO
4	96	0.23 s	0.01 s	1.21 s	0.17 s	0.26 s	0.23 s
8	400	31.83 s	16.78 s	1.86 s	2,486.89 s	0.99 s	0.95 s
16	1,584	> 1 day	> 1 day	108.23 s	> 62 GB	2.68 s	2.17 s
32	6,256	> 1 day	> 1 day	> 1 day	> 62 GB	9.36 s	7.25 s
64	24,816	> 1 day	>1 day	> 1 day	> 62 GB	49.41 s	26.87 s
128	98,800	> 1 day	>1 day	> 1 day	> 62 GB	340.85 s	149.75 s
256	394,224	> 1 day	> 1 day	> 1 day	> 62 GB	7,341.86 s	1,691.72 s
512	1,574,896	> 1 day	> 1 day	> 1 day	> 62 GB	> 62 GB	27,351.10 s

Experimental Results: run times for *restoring*

n	#gates	SAT	ABC	Commercial	[DATE'21]	[DATE'21] + EABs	Our new tool = [DATE'21] + EABs + DDCO
4	140	0.27 s	0.01 s	1.21 s	2.59 s	0.47 s	0.38 s
8	700	14.88 s	14.27 s	1.49 s	> 62 GB	1.77 s	1.42 s
16	3,068	> 1 day	> 1 day	16.39 s	> 62 GB	8.41 s	6.63 s
32	12,796	> 1 day	> 1 day	53,277.73 s	> 62 GB	65.99 s	29.02 s
64	52,220	> 1 day	> 1 day	> 1 day	> 62 GB	885.71 s	193.40 s
128	210,940	> 1 day	> 1 day	> 1 day	> 62 GB	> 62 GB	2,244.24 s
256	847,868	> 1 day	> 1 day	> 1 day	> 62 GB	> 62 GB	33,359.30 s
512	3,399,676	> 1 day	> 1 day	> 1 day	> 62 GB	> 62 GB	> 1 day

Conclusions and Future Work

- Forward information propagation is crucial for successful verification of real gate level dividers
- Advancing Don't Care Optimization by using Extended Atomic Blocks and Delayed Don't Care Optimization

• In the future: Verification of other divider architectures as well as other arithmetic circuits

Restoring Division

Restoring Division:

- For j = 1 to n do:
 - $R^{(j)} = R^{(j-1)} D \cdot 2^{n-j}$

•
$$q_{n-j} = \begin{cases} 0, \text{ if } \mathbb{R}^{(j)} < 0 \\ 1, \text{ if } \mathbb{R}^{(j)} \ge 0 \end{cases}$$

- If $R^{(j)} < 0$ then $R^{(j)} = R^{(j)} + D \cdot 2^{n-j} = R^{(j-1)}$
- Final remainder: $R = R^{(n)}$

Non-Restoring Division

Non-Restoring Division:

- $R^{(1)} = R^{(0)} (D \cdot 2^{n-1})$ • $q_{n-1} = \begin{cases} 0, \text{ if } R^{(1)} < 0\\ 1, \text{ if } R^{(1)} \ge 0 \end{cases}$
- For j = 2 to n do:

•
$$R^{(j)} = \begin{cases} R^{(j-1)} + D \cdot 2^{n-j}, \text{ if } q_{n-j+1} = 0 \\ R^{(j-1)} - D \cdot 2^{n-j}, \text{ if } q_{n-j+1} = 1 \end{cases}$$

• $q_{n-j} = \begin{cases} 0, \text{ if } R^{(j)} < 0 \\ 1, \text{ if } R^{(j)} \ge 0 \end{cases}$

• Final remainder: $R = R^{(n)} + (1 - q_0)D$

55

Non-Restoring Division

Non-Restoring Division:

•
$$R^{(1)} = R^{(0)} - (D \cdot 2^{n-1})$$

• $q_{n-1} = \begin{cases} 0, \text{ if } R^{(1)} < 0\\ 1, \text{ if } R^{(1)} \ge 0 \end{cases}$

• For j = 2 to n do:

•
$$R^{(j)} = \begin{cases} R^{(j-1)} + D \cdot 2^{n-j}, \text{ if } q_{n-j+1} = 0 \\ R^{(j-1)} - D \cdot 2^{n-j}, \text{ if } q_{n-j+1} = 1 \end{cases}$$

• $q_{n-j} = \begin{cases} 0, \text{ if } R^{(j)} < 0 \\ 1, \text{ if } R^{(j)} \ge 0 \end{cases}$

• Final remainder: $R = R^{(n)} + (1 - q_0)D$

universität freiburg

This implies

 $R^{(j)} =$

 $= R^{(j-1)} - q_{n-j+1} (D \cdot 2^{n-j})$

 $= \mathbf{R}^{(j-1)} + (1 - 2q_{n-i+1})(\mathbf{D} \cdot 2^{n-j})$

 $+(1-q_{n-i+1})(D\cdot 2^{n-j})$

56

• Extended Atomic Blocks lead to more occurrences of DCs

- Extended Atomic Blocks lead to more occurrences of DCs
- [Scholl et al., DATE'21] used backtracking approach
 - If during backward rewriting DC optimization is applicable, only save backtrack point and continue rewriting

- Extended Atomic Blocks lead to more occurrences of DCs
- [Scholl et al., DATE'21] used backtracking approach
 - If during backward rewriting DC optimization is applicable, only save backtrack point and continue rewriting
 - Only if polynomial exceeds pre-defined threshold, backtrack and apply DC optimization, continue rewriting process

- Extended Atomic Blocks lead to more occurrences of DCs
- [Scholl et al., DATE'21] used backtracking approach
 - If during backward rewriting DC optimization is applicable, only save backtrack point and continue rewriting
 - Only if polynomial exceeds pre-defined threshold, backtrack and apply DC optimization, continue rewriting process
 - More DCs→ more backtrack points and potentially more backtracks
 - In worst case this can lead to exponential amount of backtrackings like seen in the following example...

• Assume $(x_j, i_j) = (0, 0)$ is DC for j = 1, ..., n + 1

• Start with polynomial $SP^{init} = 2a + i_0$

universität freiburg

universitätfreiburg

universitätfreiburg

universitätfreiburg

universitätfreiburg

universitätfreiburg

 $x_{2n+1} i_{2n+1}$ Series of *n* x_{n+2} OR gates x_{n+1} i_{n+1} Series of *n* x_2 AND gates OR gate

universität freiburg

• Assume $(x_j, i_j) = (0, 0)$ is DC for j = 1, ..., n + 1• Start with polynomial $SP^{init} = 2a + i_0$ $\Rightarrow 2a + x_1 + i_1 - x_1i_1$ backtrack points Adding DC monomials: • $2a + (1 - v_1)x_1 + (1 - v_1)i_1 - (v_1 - 1)x_1i_1 + v_1$ • $v_1 = 1$ obviously best solution • Resulting polynomial: 2a + 1Here DC optimization is finally helpful! Replacing the OR by a constant 1.