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Goals and Motivation

Problem: Complexity of hybrid systems lead to many unforeseen
errors!

Approach: Checking against the expected modeled behaviour
instead of an potential incomplete list of failure modes.

State of the Art: STL properties used to define monitors to check
for failure modes

State of the Art: ModelPlex generates monitors using Hybrid
Programs and Theorem Prover (KeYmaera)

Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals.

Stefan Mitsch and André Platzer. Modelplex: Verified runtime validation of verified cyber-physical system models.

March 2023 3 / 23



General Structure

Development
Process

Symbolic
Execution

Runtime
Verification

Running
System

Model

Monitor Measurement
Sequence

March 2023 4 / 23



Solution Sketch

Symbolic execution of the model with Affine Arithmetic Decision
Diagrams results in a compact over-approximation of the possible
trajectories.

We use the information represented in Affine Arithmetic Decision
Diagrams to show that the measured trajectories are contained in
the results of the symbolic execution.

This is achieved by translating the Affine Arithmetic Decision
Diagrams together with the measured trajectories into a system
of linear inequalities.
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Affine Forms

Definition (Affine Form)

x̃ = c +
∑
i

aiϵi

c ∈ R being called the center value.

ai ∈ R are called the partial deviations.

Unknown real variables ϵi ∈ [−1, 1] called noise symbols.

Marcus Vinicius Alvim Andrade, Joao Luiz Dihl Comba, and Jorge Stolfi. Affine arithmetic.

March 2023 6 / 23



Affine Arithmetic Decision Diagrams

Definition (AADD)

An AADD x̂ is a DAG with internal nodes Q, leaves T , edges E ,
conditions X, and it holds:

Internal nodes v ∈ Q have two leaving edges e0, e1 ∈ E that lead to
child nodes 0(v), 1(v) ∈ T ∪ Q and are labeled with index(v) ∈ N.

AADD are ordered: For (vi , vj) ∈ E from vi to vj :
index(vi ) < index(vj).

Leaves v ∈ T are labeled with an affine form ṽ .

Conditions χi ∈ X are of type x̃ ≥ 0, where x̃ is an affine form. Each
index(v) = i , v ∈ Q refers to a unique condition χi ∈ X with the
same index. The conditions X are the same in all AADD.

Carna Zivkovic et al., Hierarchical verification of AMS systems with Affine Arithmetic Decision Diagrams.
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Affine Arithmetic Decision Diagrams
Example

AADDs are created during the control flow execution of programs.

¬
0 0

0 = ( 0 0)

3 + 0, [2, 3) 4 + 0, [4, 5]

x̂ ← 3 + ϵ0
if x̂ ≥ 3 then

x̂ ← x̂ + 1
end if
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Affine Arithmetic Decision Diagrams
We implemented arithmetic operations over AADDs that also take the
control flow into consideration (analogous to the Apply Operation for
BDD).

+ =
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Symbolic Execution

Input:

▶ Parameters p⃗ modeled by affine forms, unknown parameters.

▶ Variables x⃗ modeled initially as AADD leafs, unknown starting states.

Run Symbolic Execution for the desired simulated time.

Output:

▶ For every variable in x⃗ we get a Signal Set
Si,T = ⟨ŝ0, ŝ1, ŝ2, . . .⟩,i ∈ 1 . . . n.

▶ All ŝj from Si,T are AADDs.
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Symbolic Execution

We use the Signal Sets Si ,T = ⟨ŝ0, ŝ1, ŝ2, . . .⟩, i ∈ 1 . . . n in our
runtime verification approach as a monitor due to the following
properties:

▶ The leafs of the AADDs model the potential value ranges of the
corresponding variable at the specific point in time.

▶ The constraints of the internal nodes are modelling the control
flow that is required to reach the specific leaf.
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Verification Algorithm

Input for Verification Algorithm

1 Signal Sets (Monitor): Si ,T = ⟨ŝ0, ŝ1, ŝ2, . . .⟩,i ∈ 1 . . . n

2 Measurement Sequence: Mi ,T = ⟨m0,m1,m2, . . .⟩,mj ∈ R

3 Error Tolerance: ∆ ∈ R
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Verification Algorithm

Let E be the set of all noise symbols that are used in the AADDs of
the Signal set as well as from the affine forms of p⃗.

Goal: The goal of the verification algorithm is to show that there
exists an assignment of all ϵ ∈ E such that all the AADDs in Si ,T
evaluate to their corresponding values in Mi ,T , +-∆.

Idea: Transform the question of the existence of such an assignment
into a linear inequality equation system and try to find a solution
using a Linear Programming solver.
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Verification Algorithm

The linear inequality equation system that we are creating in the
algorithm consists of:

1 Inequality equations of the control flow path (Internal Nodes).

2 Inequality equations that are a result of checking if the measurement
value is contained in the value range of the variable (Leaf Nodes).

3 Inequality equations of the noise symbols constraining them to the
range [−1, 1] (Affine Arithmetic).

We don’t need to consider every control flow path!

If one of the linear inequality systems of the potential control flow
paths has a solution, then there exists an assignment of E under
which the Si ,T evaluate to our Mi ,T .
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Verification Algorithm

t = 0                   t = 1
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Verification Algorithm

Measurement Sequence M = ⟨3.5, 4.5⟩, Error Tolerance ∆ = 0.1

Two possible control flow paths lead to two inequality equation
systems:

1

ϵ0 ≥ 0,

3 + ϵ0 ≥ 3.5−∆, 3 + ϵ0 ≤ 3.5 + ∆,

4 + ϵ0 ≥ 4.5−∆, 4 + ϵ0 ≤ 4.5 + ∆ ,

ϵ0 ≥ −1, ϵ0 ≤ 1

2

ϵ0 < 0,

3 + ϵ0 ≥ 3.5−∆, 3 + ϵ0 ≤ 3.5 + ∆,

3 + ϵ0 ≥ 4.5−∆, 3 + ϵ0 ≤ 4.5−∆ ,

ϵ0 ≥ −1, ϵ0 ≤ 1
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Verification Algorithm

Since the signal sets are an over-approximation of the behaviour,
false positives can result.

If we can’t find an assignment for any possible control path then
we can be certain that the measured behaviour does not
correspond to the modeled behaviour.
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Results: Water Tank

Water tank with two pumps.

Water can be pumped in or out of the tank.

Parameters: Flow rate ([0.043, 0.051] cm
3

s modelled by
0.047 + 0.004ϵ0).

State variables: Water height (initial [12.0, 13.0] cm modelled by
AADD Leaf 12.5 + 0.5ϵ1).

∆ = 0.4

Measurement sequence from experiment on a real system.
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Results: Water Tank
Positive Verification Result
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Results: Σ-∆-Modulator
Parametric Error Detection
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Outlook

Change of the simulation framework used for the symbolic execution
to SystemC AMS.

Adding of further constraints into the signal sets.

Implementation and evaluation for real time use.
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