Runtime Verification of Hybrid Systems with Affine Arithmetic Decision Diagrams

Hagen Heermann and Christoph Grimm

Technical University of Kaiserslautern (RPTU)

March 2023

Table of Contents

2 Preliminaries

- 3 Symbolic Execution
- 4 Verification Algorithm

Goals and Motivation

- **Problem:** Complexity of hybrid systems lead to many **unforeseen** errors!
- Approach: Checking against the expected modeled behaviour instead of an potential incomplete list of failure modes.
- State of the Art: STL properties used to define monitors to check for failure modes
- State of the Art: ModelPlex generates monitors using Hybrid Programs and Theorem Prover (KeYmaera)

Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals.

Stefan Mitsch and André Platzer. Modelplex: Verified runtime validation of verified cyber-physical system models.

General Structure

Solution Sketch

• Symbolic execution of the model with Affine Arithmetic Decision Diagrams results in a compact over-approximation of the possible trajectories.

• We use the information represented in Affine Arithmetic Decision Diagrams to show that the measured trajectories are contained in the results of the symbolic execution.

• This is achieved by translating the Affine Arithmetic Decision Diagrams together with the measured trajectories into a system of linear inequalities.

Affine Forms

Definition (Affine Form)

$$ilde{x} = c + \sum_i a_i \epsilon_i$$

- $c \in \mathbb{R}$ being called the **center value**.
- $a_i \in \mathbb{R}$ are called the **partial deviations.**
- Unknown real variables $\epsilon_i \in [-1, 1]$ called **noise symbols.**

Marcus Vinicius Alvim Andrade, Joao Luiz Dihl Comba, and Jorge Stolfi. Affine arithmetic.

Affine Arithmetic Decision Diagrams

Definition (AADD)

An AADD \hat{x} is a DAG with internal nodes Q, leaves T, edges E, conditions X, and it holds:

- Internal nodes $v \in Q$ have two leaving edges $e_0, e_1 \in E$ that lead to child nodes $0(v), 1(v) \in T \cup Q$ and are labeled with $index(v) \in \mathbb{N}$.
- AADD are ordered: For (v_i, v_j) ∈ E from v_i to v_j: index(v_i) < index(v_j).
- Leaves $v \in T$ are labeled with an affine form \tilde{v} .
- Conditions χ_i ∈ X are of type x̃ ≥ 0, where x̃ is an affine form. Each index(v) = i, v ∈ Q refers to a unique condition χ_i ∈ X with the same index. The conditions X are the same in all AADD.

Carna Zivkovic et al., Hierarchical verification of AMS systems with Affine Arithmetic Decision Diagrams.

Affine Arithmetic Decision Diagrams Example

AADDs are created during the **control flow** execution of programs.

Affine Arithmetic Decision Diagrams

We implemented arithmetic operations over AADDs that also take the control flow into consideration (analogous to the Apply Operation for BDD).

Symbolic Execution

Symbolic Execution

• Input:

- Parameters \vec{p} modeled by affine forms, **unknown parameters**.
- Variables \vec{x} modeled initially as AADD leafs, **unknown starting states**.
- Run Symbolic Execution for the desired simulated time.

• Output:

- ► For every variable in \vec{x} we get a Signal Set $S_{i,T} = \langle \hat{s_0}, \hat{s_1}, \hat{s_2}, \ldots \rangle, i \in 1 \dots n.$
- All \hat{s}_j from $S_{i,T}$ are AADDs.

Symbolic Execution

- We use the Signal Sets S_{i,T} = ⟨ŝ₀, ŝ₁, ŝ₂,...⟩, i ∈ 1...n in our runtime verification approach as a monitor due to the following properties:
 - The leafs of the AADDs model the potential value ranges of the corresponding variable at the specific point in time.
 - ► The constraints of the internal nodes are modelling the control flow that is required to reach the specific leaf.

Input for Verification Algorithm

- **9** Signal Sets (Monitor): $S_{i,T} = \langle \hat{s}_0, \hat{s}_1, \hat{s}_2, \ldots \rangle, i \in 1 \dots n$
- **2** Measurement Sequence: $M_{i,T} = \langle m_0, m_1, m_2, \ldots \rangle, m_j \in \mathbb{R}$
- **3** Error Tolerance: $\Delta \in \mathbb{R}$

- Let 𝔅 be the set of all noise symbols that are used in the AADDs of the Signal set as well as from the affine forms of p.
- **Goal**: The goal of the verification algorithm is to show that there exists an assignment of all $\epsilon \in \mathbb{E}$ such that all the AADDs in $S_{i,T}$ evaluate to their corresponding values in $M_{i,T}$, $+-\Delta$.
- Idea: Transform the question of the existence of such an assignment into a linear inequality equation system and try to find a solution using a Linear Programming solver.

- The linear inequality equation system that we are creating in the algorithm consists of:
 - **1** Inequality equations of the control flow path (**Internal Nodes**).
 - Inequality equations that are a result of checking if the measurement value is contained in the value range of the variable (Leaf Nodes).
 - Inequality equations of the noise symbols constraining them to the range [-1,1] (Affine Arithmetic).

• We don't need to consider every control flow path!

• If one of the linear inequality systems of the potential control flow paths has a solution, then there exists an assignment of \mathbb{E} under which the $S_{i,T}$ evaluate to our $M_{i,T}$.

2

- Measurement Sequence $M=\langle 3.5,4.5
 angle$, Error Tolerance $\Delta=0.1$
- Two possible control flow paths lead to two inequality equation systems:

$$egin{aligned} \epsilon_0 &\geq 0, \ 3+\epsilon_0 &\geq 3.5-\Delta, 3+\epsilon_0 \leq 3.5+\Delta, \ 4+\epsilon_0 &\geq 4.5-\Delta, 4+\epsilon_0 \leq 4.5+\Delta \ \epsilon_0 &\geq -1, \epsilon_0 \leq 1 \end{aligned}$$

$$\epsilon_0 < 0, \ 3 + \epsilon_0 \geq 3.5 - \Delta, 3 + \epsilon_0 \leq 3.5 + \Delta, \ 3 + \epsilon_0 \geq 4.5 - \Delta, 3 + \epsilon_0 \leq 4.5 - \Delta, \ \epsilon_0 \geq -1, \epsilon_0 \leq 1$$

- Since the signal sets are an **over-approximation** of the behaviour, **false positives can result**.
- If we can't find an assignment for any possible control path then we can be certain that the measured behaviour does not correspond to the modeled behaviour.

Results: Water Tank

- Water tank with two pumps.
- Water can be pumped in or out of the tank.
- Parameters: Flow rate ([0.043, 0.051] $\frac{cm^3}{s}$ modelled by 0.047 + 0.004 ϵ_0).
- State variables: Water height (initial [12.0, 13.0] *cm* modelled by AADD Leaf $12.5 + 0.5\epsilon_1$).
- Δ = 0.4
- Measurement sequence from experiment on a real system.

Results: Water Tank

Positive Verification Result

Results: Σ - Δ -Modulator

Parametric Error Detection

Outlook

- Change of the simulation framework used for the symbolic execution to SystemC AMS.
- Adding of further constraints into the signal sets.
- Implementation and evaluation for real time use.