Runtime Verification of Hybrid Systems with Affine Arithmetic Decision Diagrams

Hagen Heermann and Christoph Grimm

Technical University of Kaiserslautern (RPTU)

March 2023
Table of Contents

1 Goals and Motivation
2 Preliminaries
3 Symbolic Execution
4 Verification Algorithm
5 Results
6 Outlook
Goals and Motivation

- **Problem:** Complexity of hybrid systems lead to many **unforeseen** errors!

- **Approach:** Checking against the **expected modeled behaviour** instead of an potential **incomplete** list of **failure modes**.

- **State of the Art:** STL properties used to define **monitors** to check for **failure modes**

- **State of the Art:** ModelPlex generates monitors using **Hybrid Programs** and **Theorem Prover** (KeYmaera)

Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals.

Stefan Mitsch and André Platzer. Modelplex: Verified runtime validation of verified cyber-physical system models.
General Structure

Development Process → Model → Symbolic Execution → Runtime Verification → Running System

- Monitor
- Measurement Sequence
Solution Sketch

- **Symbolic execution** of the model with **Affine Arithmetic Decision Diagrams** results in a compact over-approximation of the possible trajectories.

- We use the information represented in **Affine Arithmetic Decision Diagrams** to show that the measured trajectories are contained in the results of the **symbolic execution**.

- This is achieved by **translating** the **Affine Arithmetic Decision Diagrams** together with the measured trajectories into a system of linear inequalities.
Affine Forms

Definition (Affine Form)

\[\tilde{x} = c + \sum_{i} a_i \epsilon_i \]

- \(c \in \mathbb{R} \) being called the **center value**.
- \(a_i \in \mathbb{R} \) are called the **partial deviations**.
- Unknown real variables \(\epsilon_i \in [-1, 1] \) called **noise symbols**.
Affine Arithmetic Decision Diagrams

Definition (AADD)

An AADD \hat{x} is a DAG with internal nodes Q, leaves T, edges E, conditions \mathbb{X}, and it holds:

- Internal nodes $v \in Q$ have two leaving edges $e_0, e_1 \in E$ that lead to child nodes $0(v), 1(v) \in T \cup Q$ and are labeled with $\text{index}(v) \in \mathbb{N}$.

- AADD are ordered: For $(v_i, v_j) \in E$ from v_i to v_j: $\text{index}(v_i) < \text{index}(v_j)$.

- Leaves $v \in T$ are labeled with an affine form \tilde{v}.

- Conditions $\chi_i \in \mathbb{X}$ are of type $\hat{x} \geq 0$, where \hat{x} is an affine form. Each $\text{index}(v) = i, v \in Q$ refers to a unique condition $\chi_i \in \mathbb{X}$ with the same index. The conditions \mathbb{X} are the same in all AADD.
Affine Arithmetic Decision Diagrams

Example

AADDs are created during the control flow execution of programs.

\[
\hat{x} \leftarrow 3 + \epsilon_0 \\
\text{if } \hat{x} \geq 3 \text{ then} \\
\hat{x} \leftarrow \hat{x} + 1 \\
\text{end if}
\]
Affine Arithmetic Decision Diagrams

We implemented arithmetic operations over AADDs that also take the control flow into consideration (analogous to the Apply Operation for BDD).

\[
\begin{align*}
\tilde{x}_0 & \chi_0 \\
\tilde{x}_1 & \chi_0 \\
\tilde{x}_2 & \chi_0 \\
\tilde{x}_3 & \chi_0 \\
\end{align*}
\]

\[+ \quad = \quad \]

\[
\begin{align*}
\tilde{x}_1 & \chi_0 \\
\tilde{x}_3 & \chi_0 \\
\tilde{x}_0 + \tilde{x}_2 & \chi_0 \\
\tilde{x}_1 + \tilde{x}_3 & \chi_0 \\
\end{align*}
\]
Symbolic Execution

Development Process → Model → Symbolic Execution → Runtime Verification → Running System

- Model
- Monitor
- Measurement Sequence
- Runtime Verification
Symbolic Execution

- **Input:**
 - Parameters \vec{p} modeled by affine forms, **unknown parameters**.
 - Variables \vec{x} modeled initially as AADD leafs, **unknown starting states**.

- Run Symbolic Execution for the desired simulated time.

- **Output:**
 - For every variable in \vec{x} we get a Signal Set $S_{i,T} = \langle \hat{s}_0, \hat{s}_1, \hat{s}_2, \ldots \rangle, i \in 1 \ldots n$.
 - All \hat{s}_j from $S_{i,T}$ are AADDs.
Symbolic Execution

- We use the Signal Sets $S_{i,T} = \langle \hat{s}_0, \hat{s}_1, \hat{s}_2, \ldots \rangle$, $i \in 1 \ldots n$ in our runtime verification approach as a monitor due to the following properties:

 ▶ The leafs of the AADDs model the potential value ranges of the corresponding variable at the specific point in time.

 ▶ The constraints of the internal nodes are modelling the control flow that is required to reach the specific leaf.
Verification Algorithm

- Development Process
 - Model
- Symbolic Execution
 - Monitor
- Running System
 - Measurement Sequence
 - Runtime Verification
Verification Algorithm

Input for Verification Algorithm

1. **Signal Sets (Monitor):** $S_{i,T} = \langle \hat{s}_0, \hat{s}_1, \hat{s}_2, \ldots \rangle, i \in 1 \ldots n$

2. **Measurement Sequence:** $M_{i,T} = \langle m_0, m_1, m_2, \ldots \rangle, m_j \in \mathbb{R}$

3. **Error Tolerance:** $\Delta \in \mathbb{R}$
Let E be the set of all noise symbols that are used in the AADDs of the Signal set as well as from the affine forms of \vec{p}.

Goal: The goal of the verification algorithm is to show that there exists an assignment of all $\epsilon \in E$ such that all the AADDs in $S_{i,T}$ evaluate to their corresponding values in $M_{i,T}, +\Delta$.

Idea: Transform the question of the existence of such an assignment into a linear inequality equation system and try to find a solution using a Linear Programming solver.
Verification Algorithm

- The linear inequality equation system that we are creating in the algorithm consists of:
 1. Inequality equations of the control flow path (Internal Nodes).
 2. Inequality equations that are a result of checking if the measurement value is contained in the value range of the variable (Leaf Nodes).
 3. Inequality equations of the noise symbols constraining them to the range $[-1, 1]$ (Affine Arithmetic).

- We don’t need to consider every control flow path!

- If one of the linear inequality systems of the potential control flow paths has a solution, then there exists an assignment of E under which the $S_{i,T}$ evaluate to our $M_{i,T}$.
Verification Algorithm

\[\chi_0 = (\epsilon_0 \geq 0) \]

- \(t = 0 \)
 - \(x = 3 + \epsilon_0, [2, 4) \)
 - \(x = 3 + \epsilon_0, [2, 3) \)

- \(t = 1 \)
 - \(x = 4 + \epsilon_0, [4, 5] \)
Verification Algorithm

- Measurement Sequence $M = \langle 3.5, 4.5 \rangle$, Error Tolerance $\Delta = 0.1$
- Two possible control flow paths lead to two inequality equation systems:

 1. $\epsilon_0 \geq 0,$

 $3 + \epsilon_0 \geq 3.5 - \Delta, 3 + \epsilon_0 \leq 3.5 + \Delta,$

 $4 + \epsilon_0 \geq 4.5 - \Delta, 4 + \epsilon_0 \leq 4.5 + \Delta,$

 $\epsilon_0 \geq -1, \epsilon_0 \leq 1$

 2. $\epsilon_0 < 0,$

 $3 + \epsilon_0 \geq 3.5 - \Delta, 3 + \epsilon_0 \leq 3.5 + \Delta,$

 $3 + \epsilon_0 \geq 4.5 - \Delta, 3 + \epsilon_0 \leq 4.5 - \Delta,$

 $\epsilon_0 \geq -1, \epsilon_0 \leq 1$
Verification Algorithm

- Since the signal sets are an \textit{over-approximation} of the behaviour, false positives can result.

- If we \textit{can’t find an assignment for any possible control path} then we can be certain that the measured behaviour does not correspond to the modeled behaviour.
Results: Water Tank

- Water tank with two pumps.

- Water can be pumped in or out of the tank.

- Parameters: Flow rate ([0.043, 0.051] cm³/s modelled by 0.047 + 0.004ε₀).

- State variables: Water height (initial [12.0, 13.0] cm modelled by AADD Leaf 12.5 + 0.5ε₁).

- Δ = 0.4

- Measurement sequence from experiment on a real system.
Results: Water Tank

Positive Verification Result
Results: Σ-Δ-Modulator

Parametric Error Detection
Outlook

- Change of the simulation framework used for the symbolic execution to SystemC AMS.
- Adding of further constraints into the signal sets.
- Implementation and evaluation for real time use.