
Formal Verification of Data-Obliviousness in Hardware

MBMV’23 – March 24, 2023
Technische Fakultät, Universität Freiburg

Lucas Deutschmann, Johannes Müller, Mo Fadiheh, Dominik Stoffel, Wolfgang Kunz
Dept. of Electrical & Computer Engineering, RPTU Kaiserslautern-Landau

 “Cambrian explosion” of confidential computing technologies
 Cryptographic methods, fully homomorphic encryption
 Trusted execution environments, secure enclaves
 Microarchitectural security defenses
 …

 All of these target confidentiality, for different threat models

2

Motivation

They all fail unless data-oblivious computing is supported
throughout all levels of the system stack

Data-Oblivious Computing:

 Runtime,

 resource usage and

 memory access patterns

of the program are independent of confidential data.

3

Definition

4

Example

def check_key(user_input):
 if user_input != SECRET_KEY:
 raise Exception(“Wrong key provided!”)

Problem:
String comparison operator compares one byte at a time, stops as soon as a
mismatch is found

 Not data-oblivious!

 Attacker can deduce the secret byte by byte, by measuring the runtime

⚠️

 “Constant-Time” Programming
 Writing programs such that their runtime and resource

usage is independent of confidential information

 Contributions from the SW community
 Open-source libraries [BearSSL, https://bearssl.org/]

 DSLs [Cauligi’17]

 Verification Tools [Almeida’18]

→ Can SW (alone) fix the problem?

5

A challenge across the system stack

 “Opening Pandora’s Box” [Vicarte’21]

 7 microarchitectural optimizations that undermine the
constant-time paradigm

 Threat is real!
 Data memory-dependent prefetchers recently found

in Apple A14, M1 and M1 Max devices

 Security breach found [https://prefetchers.info/]

→ How can we restore the trust in HW?

6

SW fixes are insufficient!

 Verification of “constant-time” SW [e.g., Cauligi’20]

 Guarantees regarding HW/SW relationship
 Data-Oblivious ISA Extension [Yu’20]

 HW/SW Contracts [Guarneri’20]

 RISC-V Cryptography Extension [https://github.com/riscv/riscv-crypto]

 Almost no formal verification for data-oblivious HW in RTL
 Clepsydra [Ardeshiricham’17]

 XENON [Gleissenthall’21]

7

Related work

 Data-obliviousness of transient instruction execution
(resilience against Spectre, Meltdown, …)
 Our previous work: Unique Program Execution Checking (UPEC)

[DATE’19, DAC’20, DAC’21, TC’22]

 Exhaustive and scalable approach ✔

 HW primitives for data-oblivious operations:
Operation execution is independent of timing and resource usage
 Open problem !

 This work: UPEC for data-independent timing (UPEC-DIT) [DAC’22]

8

HW Root-of-Trust: Requirements

UPEC-DIT:
Formal approach for detecting data-dependent timing in RTL designs

 Qualifies a microarchitectural ISA implementation
 Determines the data-oblivious ISA subset of a given CPU
 Provides guarantees for “constant-time” programming

 Leverages state-of-the-art commercial property checking

 Scalable to realistic designs (~700k state bits)

9

UPEC for Data-Independent Timing

Found violations of data-obliviousness in security-conscious designs

 Interval Property Checking (IPC) on 2-safety computational model

 Major extension of UPEC
 Previously: Verifies confidentiality of data-at-rest
 UPEC-DIT: Verifies confidentiality of data-in-transit

 Tolerates legal propagations of secret data

 Detects data-dependent variations of the control behavior

→ Create an implicit representation of the HW’s control behavior
 In terms of semi-automatically determined set of control signals

10

Approach

EncryptionKey
Start

Plain Cipher
Valid
Ready

EncryptionKey
Start

Plain Cipher
Valid
Ready

FUs can be treated as black boxes: control signals are given by I/O spec

11

Easy case: UPEC-DIT for Functional Units

 Separate control and data
 Generate 2-safety model
 Formulate property

EncryptionKey
Plain Cipher

Valid
Ready

assume:
at t: State_Equivalence();

prove:
during t..t+k: Control_Output_Eq();

12

UPEC-DIT for Functional Units

Design Data-Ind. Timing #States Proof Time (s) Max. Mem (MB)

BasicRSA-T100 X 532 < 1 589

SHA1 ✔ 911 < 1 306

SHA256 ✔ 1103 < 1 296

SHA512 ✔ 2162 < 1 329

AES1 ✔ 2472 4 994

AES2 ✔ 554 < 1 819

FWRISCV MDS-Unit (!) 331 < 1 596

ZipCPU Div-Unit X 142 11 1347

CVA6 Div-Unit X 209 < 1 580

 Distinguish between legal and illegal timing variabilities
w.r.t. “constant-time” programming
 ISA-visible timing variations are legal

(e.g., stalls due to dependencies between instructions)
 ISA-invisible, operand value-dependent timing variations are illegal

 Global analysis of I/O behavior of HW is not tractable
 White-box approach necessary:
 Control flow must be represented in terms of internal control signals

 Must consider instructions under any pipeline context

13

Hard Case: UPEC-DIT for Processors

Solution:

 Security-critical timing behavior is determined by a small set of control signals

 Which control signals must be considered?
 Iterative procedure

 Starts with all state-holding signals

 Refines property by analyzing propagation alerts

 2-safety computational model with symbolic starting state, by construction,
excludes legal timing variations, e.g., RAW hazards

14

Hard Case: UPEC-DIT for Processors

15

UPEC-DIT for Processors

 State_Equivalence():
 Constrains state bits to be equal

in the two instances
 Except for the operand sources

 usually, the register file and
forwarded operands

 twb denotes time point when
instruction under verification (IUV)
finishes execution

assume:
at t: State_Equivalence();
at t: IUV_in_ID_Stage(type);

prove:
during t..twb: Control_Equality();

Symbolic Memory

Core1
operand_src1

other_state1

Core2
operand_src2

other_state2

Property Constraint:
other_state1 = other_state2

16

UPEC-DIT for Processors

17

UPEC-DIT for Processors
FWRISCV IBEX IBEX (+DIT) SCARV CVA6

I-Type Arith. ✔ ✔ ✔ ✔ ✔

R-Type Arith. ✔|X ✔|✔ ✔|✔ ✔|✔ ✔|✔

Multiplication ✔|✔ ✔|X ✔|✔ ✔|✔ ✔|✔

Division ✔|✔ ✔|X ✔|✔ ✔|✔ X|X

Load (!) (!) (!) X X

Store (!)|✔ (!)|✔ (!)|✔ X|X X|✔

Jump (!) ✔ ✔ (!) X

Branch X|X X|X ✔|✔ X|X X|X

#State Bits 3086 1019 1021 2334 682849

Average Time 3s 2min 4min 3min 1h 36min

Worst-Case Time 4s 5min 7min 8min 3h 7min

Max. Mem (GB) 1.7 4.5 4.3 2.1 11.9

 Superscalar RISC-V processor with FP support, a deep 10-
stage pipeline and out-of-order execution

 Results:
 Proved data-obliviousness for I-type arithmetic, R-type arithmetic,

multiplication (and FP arithmetic)
 Data-dependent timing in Int. Division, FP Division and FP Sqrt
 Properties take up to 20 hours

 Current work: Develop an inductive property for better
scalability

18

Berkeley Out-of-Order Machine (BOOM)

19

Conclusion

 UPEC-DIT detected several unknown violations
of data-obliviousness

 Scalable and largely automated for RTL designs
 Instruction-level granularity: Well-defined interface with

security guarantees for the entire system stack
 Current work: Extend to and inductive property to ensure

scalability even for complex systems

 Closes important gap in making HW a root-of-trust
for entire system stack

20

Thank you for your attention!

Many thanks to many collaborators!
Jörg Bormann, Anna Lena Duque-Antón, Wolfgang Ecker, Mohammad Rahmani Fadiheh,

Jason Fung, Tobias Jauch, Wolfgang Kunz, Johannes Müller, Dino Mehmedagić, Subhasish Mitra,
Sayak Ray, Philipp Schmitz, Stian Gerlach Sørensen, Dominik Stoffel, Alex Wezel

The reported research was partly supported by BMBF ZuSE (Scale4Edge), 16ME0122K-16ME0124,
by DFG SPP Nano Security, KU 1051/11-1, and by Intel (Scalable Assurance).

21

Papers

 Mohammad R. Fadiheh, Dominik Stoffel, Clark Barrett, Subhasish Mitra, Wolfgang Kunz: “Processor Hardware
Security Vulnerabilities and their Detection by Unique Program Execution Checking”, Design Automation and
Test in Europe (DATE), 2019.

 M. R. Fadiheh, J. Müller, R. Brinkmann, S. Mitra, D. Stoffel, and W. Kunz: “A formal approach for detecting
vulnerabilities to transient execution attacks in out-of-order processors,” 57th IEEE/ACM Design Automation
Conf. (DAC’20), 2020.

 J. Müller, Mo Fadiheh, A. Duque Anton, T. Eisenbarth, D. Stoffel and W. Kunz: “A Formal Approach
to Confidentiality Verification in SoCs at the Register Transfer Level“, 58th IEEE/ACM Design Automation Conf.
(DAC’21), Dec. 2021.

 L. Deutschmann, J. Müller, Mo Fadiheh, D. Stoffel and W. Kunz: “Towards a Formally Verified Hardware Root-
of-Trust for Data-Oblivious Computing “ , 59th IEEE/ACM Design Automation Conf. (DAC’22), July 2022.

 Mohammad R. Fadiheh, Alex Wezel, Johannes Müller, Jörg Bormann, Sayak Ray, Jason M. Fung, Subhasish
Mitra, Dominik Stoffel, Wolfgang Kunz: “An Exhaustive Approach to Detecting Transient Execution Side
Channels in RTL Designs of Processors”, IEEE Transactions on Computers, 2022 (in preview).

Github: https://github.com/mofadiheh/upec-boom-verification-suite

https://github.com/mofadiheh/upec-boom-verification-suite

	Standardabschnitt
	Slide 1: Formal Verification of Data-Obliviousness in Hardware
	Slide 2: Motivation
	Slide 3: Definition
	Slide 4: Example
	Slide 5: A challenge across the system stack
	Slide 6: SW fixes are insufficient!
	Slide 7: Related work
	Slide 8: HW Root-of-Trust: Requirements
	Slide 9: UPEC for Data-Independent Timing
	Slide 10: Approach
	Slide 11: Easy case: UPEC-DIT for Functional Units
	Slide 12: UPEC-DIT for Functional Units
	Slide 13: Hard Case: UPEC-DIT for Processors
	Slide 14: Hard Case: UPEC-DIT for Processors
	Slide 15: UPEC-DIT for Processors
	Slide 16: UPEC-DIT for Processors
	Slide 17: UPEC-DIT for Processors
	Slide 18: Berkeley Out-of-Order Machine (BOOM)
	Slide 19: Conclusion
	Slide 20
	Slide 21: Papers

