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 “Cambrian explosion” of confidential computing technologies
 Cryptographic methods, fully homomorphic encryption
 Trusted execution environments, secure enclaves
 Microarchitectural security defenses
 …

 All of these target confidentiality, for different threat models
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Motivation

They all fail unless data-oblivious computing is supported 
throughout all levels of the system stack



Data-Oblivious Computing:

 Runtime,

 resource usage and

 memory access patterns

of the program are independent of confidential data.
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Definition
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Example

def check_key(user_input):
  if user_input != SECRET_KEY:
    raise Exception(“Wrong key provided!”)

Problem: 
String comparison operator compares one byte at a time, stops as soon as a 
mismatch is found

 Not data-oblivious! 

 Attacker can deduce the secret byte by byte, by measuring the runtime

⚠️



 “Constant-Time” Programming
 Writing programs such that their runtime and resource 

usage is independent of confidential information

 Contributions from the SW community
 Open-source libraries [BearSSL, https://bearssl.org/]

 DSLs [Cauligi’17]

 Verification Tools [Almeida’18]

→ Can SW (alone) fix the problem?
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A challenge across the system stack



 “Opening Pandora’s Box” [Vicarte’21]

 7 microarchitectural optimizations that undermine the 
constant-time paradigm

 Threat is real!
 Data memory-dependent prefetchers recently found 

in Apple A14, M1 and M1 Max devices

 Security breach found [https://prefetchers.info/]

→ How can we restore the trust in HW?
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SW fixes are insufficient!



 Verification of “constant-time” SW [e.g., Cauligi’20]

 Guarantees regarding HW/SW relationship
 Data-Oblivious ISA Extension [Yu’20]

 HW/SW Contracts [Guarneri’20]

 RISC-V Cryptography Extension [https://github.com/riscv/riscv-crypto]

 Almost no formal verification for data-oblivious HW in RTL
 Clepsydra [Ardeshiricham’17]

 XENON [Gleissenthall’21]
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Related work



 Data-obliviousness of transient instruction execution 
(resilience against Spectre, Meltdown, …)
 Our previous work: Unique Program Execution Checking (UPEC) 

[DATE’19, DAC’20, DAC’21, TC’22]

 Exhaustive and scalable approach ✔

 HW primitives for data-oblivious operations:
Operation execution is independent of timing and resource usage
 Open problem !

 This work: UPEC for data-independent timing (UPEC-DIT) [DAC’22]

8

HW Root-of-Trust: Requirements



UPEC-DIT:
Formal approach for detecting data-dependent timing in RTL designs

 Qualifies a microarchitectural ISA implementation
 Determines the data-oblivious ISA subset of a given CPU
 Provides guarantees for “constant-time” programming

 Leverages state-of-the-art commercial property checking

 Scalable to realistic designs (~700k state bits)
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UPEC for Data-Independent Timing 

Found violations of data-obliviousness in security-conscious designs



 Interval Property Checking (IPC) on 2-safety computational model

 Major extension of UPEC
 Previously: Verifies confidentiality of data-at-rest
 UPEC-DIT: Verifies confidentiality of data-in-transit

 Tolerates legal propagations of secret data

 Detects data-dependent variations of the control behavior

→ Create an implicit representation of the HW’s control behavior
 In terms of semi-automatically determined set of control signals
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Approach



EncryptionKey
Start

Plain Cipher
Valid
Ready

EncryptionKey
Start

Plain Cipher
Valid
Ready

FUs can be treated as black boxes: control signals are given by I/O spec
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Easy case: UPEC-DIT for Functional Units

 Separate control and data
 Generate 2-safety model
 Formulate property

EncryptionKey
Plain Cipher

Valid
Ready

assume:
at t: State_Equivalence();

prove:
during t..t+k: Control_Output_Eq();
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UPEC-DIT for Functional Units

Design Data-Ind. Timing #States Proof Time (s) Max. Mem (MB)

BasicRSA-T100 X 532 < 1 589

SHA1 ✔ 911 < 1 306

SHA256 ✔ 1103 < 1 296

SHA512 ✔ 2162 < 1 329

AES1 ✔ 2472 4 994

AES2 ✔ 554 < 1 819

FWRISCV MDS-Unit (!) 331 < 1 596

ZipCPU Div-Unit X 142 11 1347

CVA6 Div-Unit X 209 < 1 580



 Distinguish between legal and illegal timing variabilities 
w.r.t. “constant-time” programming
 ISA-visible timing variations are legal 

(e.g., stalls due to dependencies between instructions)
 ISA-invisible, operand value-dependent timing variations are illegal

 Global analysis of I/O behavior of HW is not tractable
 White-box approach necessary:
 Control flow must be represented in terms of internal control signals

 Must consider instructions under any pipeline context
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Hard Case: UPEC-DIT for Processors



Solution:

 Security-critical timing behavior is determined by a small set of control signals

 Which control signals must be considered?
 Iterative procedure 

 Starts with all state-holding signals 

 Refines property by analyzing propagation alerts

 2-safety computational model with symbolic starting state, by construction, 
excludes legal timing variations, e.g., RAW hazards

14

Hard Case: UPEC-DIT for Processors
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UPEC-DIT for Processors

 State_Equivalence(): 
 Constrains state bits to be equal 

in the two instances
 Except for the operand sources

 usually, the register file and 
forwarded operands

 twb denotes time point when 
instruction under verification (IUV) 
finishes execution

assume:
at t:   State_Equivalence();
at t:   IUV_in_ID_Stage(type);

prove:
during t..twb:  Control_Equality();

Symbolic Memory

Core1
operand_src1

other_state1

Core2
operand_src2

other_state2

Property Constraint:
other_state1 = other_state2
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UPEC-DIT for Processors
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UPEC-DIT for Processors
FWRISCV IBEX IBEX (+DIT) SCARV CVA6

I-Type Arith. ✔ ✔ ✔ ✔ ✔

R-Type Arith. ✔|X ✔|✔ ✔|✔ ✔|✔ ✔|✔

Multiplication ✔|✔ ✔|X ✔|✔ ✔|✔ ✔|✔

Division ✔|✔ ✔|X ✔|✔ ✔|✔ X|X

Load (!) (!) (!) X X

Store (!)|✔ (!)|✔ (!)|✔ X|X X|✔

Jump (!) ✔ ✔ (!) X

Branch X|X X|X ✔|✔ X|X X|X

#State Bits 3086 1019 1021 2334 682849

Average Time 3s 2min 4min 3min 1h 36min

Worst-Case Time 4s 5min 7min 8min 3h   7min

Max. Mem (GB) 1.7 4.5 4.3 2.1 11.9



 Superscalar RISC-V processor with FP support, a deep 10-
stage pipeline and out-of-order execution

 Results:
 Proved data-obliviousness for I-type arithmetic, R-type arithmetic,  

multiplication (and FP arithmetic)
 Data-dependent timing in Int. Division, FP Division and FP Sqrt
 Properties take up to 20 hours

 Current work: Develop an inductive property for better 
scalability

18

Berkeley Out-of-Order Machine (BOOM)
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Conclusion

 UPEC-DIT detected several unknown violations 
of data-obliviousness

 Scalable and largely automated for RTL designs
 Instruction-level granularity: Well-defined interface with 

security guarantees for the entire system stack
 Current work: Extend to and inductive property to ensure 

scalability even for complex systems

 Closes important gap in making HW a root-of-trust 
for entire system stack
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