
Early Coverification of FW and

HW to Speed Up Development of

Embedded Systems
Jörg Bormann, Siemens EDA GmbH

joerg.bormann@siemens.com
funded by German Ministry of

Education and Research

Agenda

Disturbing Bugs in Verification of Embedded Systems

How to Get Rid of Disturbing Bugs

Early Removal of Functional FW/HW Integration Issues

Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems2

Disturbing Bugs in Verification of Embedded

Systems

Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems

Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems4

V-Model

High level

of detail

System

level

time

Coding

V-Model informally describes system

design process from top level

requirements to final system.

• Refinement to more and more level of

detail

• Coding (RTL, C-Code)

• Successive integration and verification

up to the full system

Qualitative description.
ld R1, R2

Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems5

Error Classes in System Verification of Embedded Systems

High level

of detail

System

level

time

SW models

of HW

UVM Seqs

abstract FW

Interesting Bugs in System Verification

Algorithmic complement of HW and FW

Bandwidth & latency

Power consumption

System Security & Functional Safety

Disturbing Bugs in System Verification

FW verification escapes

HW verification escapes

functional FW/HW integration issues

FW

Bringup

Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems6

Cost of the Disturbing Bugs in System Verification

time

Analysis

• On System Level more difficult than on lower hierarchy levels

• Larger DUT => large search space => slow

• System verification machines provide only limited visibility into the embedded system

• Involves rare and expensive system experts

• Expertise: HW, FW, intended interaction, HW accelerated system verification machines

• Experts may be blocked until a workaround or fix is found

• Delayed product rollout

Fix

• Root cause in FW: FW fix is straight forward

• Root cause in HW

• RTL fixes interfere with physical design – very expensive

• FW workaround: Development + verification effort, additional risk

• Feature cancellation

• ECOs

Total cost indicates if HW or FW flows need to change.

Number of Disturbing Bugs allows to predict benefit of HW or FW flow changes.

How to Get Rid of Disturbing Bugs

Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems

Options to Improve HW Flow

Incremental

• More effort for HW development and verification

• Process optimizations

• Tools to better support the existing flow

More powerful alternatives

• Design entry on higher level

• CoreDSL, Chisel, ...

• High Level Synthesis

• Full exploitation of the capabilities of formal

• Theorem provers (e.g., Isabelle, Coq), Lubis EDA, GapFree

Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems

High Level Synthesis

Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems

For algorithmic designs

High quality of HLS model

• ≤ 1/10 LoC of a similar handwritten RTL model

• HLS model ~ system development models.

Faster development of HLS model than RTL

Extensive design exploration => efficient circuit

Automated flow up to netlist

High level

of detail

System

level

time

HLS

model

RTL

model

Page 9

GapFree Verification

A variant of assertion based formal verification to verify all module behavior

• Assertions about transactions of the DUT

• Developed during the verification

• Until the assertions contain a transaction level model of the DUT.

• Completeness checker signs off the transaction level model.

• Clear termination criterion

KPIs (from OneSpins consulting projects)

• Progress: av. ~ 3000 LoC1 / PM

• Escape rate: 1 bug per 30 000 LoC 1Lines of handwritten RTL code

Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems10

Module

verification

HW subsystem

verification

Netlist verification

Early Removal of Functional FW/HW Integration

Issues

Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded SystemsPage 11

Functional FW / HW Integration Errors

Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems

Error Class Example

FW writes „reserved“ value into config reg DMA configured with address increment = 0.

Encoding mismatch HW and FW use different endianness

HW encoding allows gate count savings.

Synchronization issue FW forgets polling loop / HW does not block transaction / ISR

reacts wrongly on interrupt

Wrong transaction sequence FW activates a HW accelerator, then configures it.

If these bugs occured between two HW modules instead of FW & HW

• Functional bugs

• System verification is inappropriate flow phase for their detection.

Idea: Small FW wrapper (= „Low Level Driver“) around HW module

• Developed during HW module development

• Shall capture HW specifics and expose HW functionality like a SW lib.

Page 12

HW

module

Low Level

Driver

Contents of Low Level Drivers

Upper API: C/C++ funs that concisely expose the HW module functionality

Lower API: HW register access functions

Functionality

• Configures HW module (with transactions in supported order)

• Converts parameters into HW encoding, if necessary

• Synchronization with HW module

• Read result, change encoding, and return to higher FW layers

Testmode (to be removed for product version)

• Assert statements to detect wrong usage of driver functions

• E.g., checks parameters & sequence of driver calls

LL driver code is similar to logic descriptions in System Verilog.

Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems

reg_read(a) reg_write(a, d)

Special HW Module

Compiler,

Linker,

Processor

Configuration Regs

start

(cfg, d)
cont(d) get_res()

Driver Code

Testmode

Page 13

Verification of FW/HW Integration – Current Status and Convictions

Special HW

Accelerator

Cfg

Com Dev

Cfg

Sensor

Cfg

Observations:

• FW Developers must learn HW peculiarities to properly

use the configuration registers via the signal interface.

• VPs for special HW modules are custom developments,

with little ROI.

Convictions of practitioners:

• Early FW/HW coverification would require additional

system engineering resources, which are rare.

• Processor subsystem necessary, hence we can include

the whole system.

• Register descriptions like IP-XAct ensure FW/HW

integration at an early stage.

Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems

Firmware

D$

core

I$

MMU

Processor

IRAM

DRAM

Interrupt Ctrl

Interupts

Processor

Subsystem

Page 14

Early Verification of FW/HW Integration

Special HW

Accelerator

Cfg

Com Dev

Cfg

Sensor

Cfg

Differences to current process:

• FW engs need to learn less, HW functionality is exposed

like a SW library.

• HW engs need to learn LL Drv design. Only a one time

effort. Similarity with logic descriptions in System Verilog.

Contrary to the convictions of practitioners:

• HW eng can verify LLDrv + HW module.

• C/C++ semantics + timing variations can replace processor.

• LL Drv + HW module should be verified for many processors.

• Each pair of LLDrv + HW module can be verified separately.

• LLDrv complement IP-Xact to avoid functional integration issues.

Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems

Firmware

Drv

1

Drv

2

Drv

3

D$

core

I$

MMU

Processor

IRAM

DRAM

Interrupt Ctrl

Interupts

Processor

Subsystem

Page 15

Early Verification of FW/HW Integration

Accelerator

Cfg

Com Dev

Cfg

Sensor

Cfg

Differences to current process:

• FW engs need to learn less, HW functionality is exposed

like a SW library.

• HW engs need to learn LL Drv design. Only a one time

effort. Similarity with logic descriptions in System Verilog.

• For FW verification, insert LLDrv between FW and VP to check

FW with testmode.

Contrary to the convictions of practitioners:

• HW eng can verify LLDrv + HW module.

• C/C++ semantics + timing variations can replace processor.

• LL Drv + HW module should be verified for many processors.

• Each pair of LLDrv + HW module can be verified separately.

• LLDrv complement IP-Xact to avoid functional integration issues.

Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems

Drv

1

Drv

2

Drv

3

Page 16

Formal Verification of LL Drivers and HW

Verify LL Driver and HW module together

• No separate HW module verification

Model for verification: Embed LL Drv in SystemC =>

• Signals to control and examine the driver and

• Signals to interact with the Special HW Module.

• Extra inputs to create timing variants

Verification

• for each sequence of LL Drv function calls and

• for all parameter values

• assume: The testmode does not complain

• assert: LLDrv + HW provide the expected E2E functionality.

• This verification shows that testmode guarantees proper HW

configuration.

Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems

start

(cfg, d)
cont(d) get_res()

Driver Code

reg_read(a) reg_write(a, d)

Special HW Module

Testmode

Configuration Regs

SystemC Wrapper

(autogenerated)

signals for

fun_call, parameters,

busy, result

bus signals

Page 17

timing

variations

Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems18

Advantages

time

SW models

of HW

Testmode

checks FW

Many functional integration bugs avoided by design flow

• Because HW engineers are involved in LL Drv design.

Functional integration bugs are found during module development

• smaller DUT => smaller analysis effort per bug

• Less config use cases to be verified, but more timing alternatives

• RTL changes possible and cheap

• Less disturbing functional FW/HW integration problems

Low complexity of the verification problem (no processor subsystem)

• Enables Assertion based formal, GapFree, RTL sim.

Benefits for FW design

• FW engineers need not learn signal I/F of HW => faster, less buggy.

• FW deploys HW like a SW library => faster, less error prone

• Testmode checks FW early

Wrap Up

Disturbing Bugs in Verification of Embedded Systems

• Proposal to count them and measure related effort to objectivate need for change

How to Get Rid of Disturbing Bugs

• Consider GapFree or High Level Synthesis

Early Removal of Functional FW/HW Integration Issues

• Proposal for a flow change: LL Drv developed and verified in the HW module verification flow

Unestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems19

Disclaimer

© Siemens 2023

Subject to changes and errors. The information given in this document

only contains general descriptions and/or performance features which

may not always specifically reflect those described, or which may

undergo modification in the course of further development of the

products. The requested performance features are binding only when

they are expressly agreed upon in the concluded contract.

All product designations may be trademarks or other rights of

Siemens AG, its affiliated companies or other companies whose use by

third parties for their own purposes could violate the rights of the

respective owner.

Page 20 Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems

Contact
Published by Siemens EDA

Jörg Bormann

Program Manager Advanced Verification

DI SW ICS ICV OS

Nymphenburger Straße 20a

80335 Munich

Germany

Phone +49 1577 356 4108

E-mail joerg.bormann@siemens.com

Unrestricted | © Siemens 2023 | Mar 2023 | Siemens Digital Industries Software | Early co-verification of FW and HW to Speed up Development of Embedded Systems

mailto:joerg.bormann@siemens.com

	Slide 1: Early Coverification of FW and HW to Speed Up Development of Embedded Systems
	Slide 2: Agenda
	Slide 3: Disturbing Bugs in Verification of Embedded Systems
	Slide 4: V-Model
	Slide 5: Error Classes in System Verification of Embedded Systems
	Slide 6: Cost of the Disturbing Bugs in System Verification
	Slide 7: How to Get Rid of Disturbing Bugs
	Slide 8: Options to Improve HW Flow
	Slide 9: High Level Synthesis
	Slide 10: GapFree Verification
	Slide 11: Early Removal of Functional FW/HW Integration Issues
	Slide 12: Functional FW / HW Integration Errors
	Slide 13: Contents of Low Level Drivers
	Slide 14: Verification of FW/HW Integration – Current Status and Convictions
	Slide 15: Early Verification of FW/HW Integration
	Slide 16: Early Verification of FW/HW Integration
	Slide 17: Formal Verification of LL Drivers and HW
	Slide 18: Advantages
	Slide 19: Wrap Up
	Slide 20: Disclaimer
	Slide 21: Contact

