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Abstract

We motivate and derive a theoretical model arranging atoms in a lattice to
simulate a solid. For that, we’ll make use of atom-light field interaction which
is enhanced in a cavity. After deriving the Hamiltonians for our systems,
we’ll discuss some of their properties. We’ll then conduct simulations in the
language Julia with the framework QuantumOptics.jl to see if we can observe
the properties we expect our systems to have.
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1 Introduction

The study of solid-state objects is of great interest for us, especially since some
phenomena occuring in solids have a lot of commercial potential. There are some
difficulties, however. It can be very challenging to look into a solid. Certain
phenomena might be happening very fast (e.g. on a nanosecond scale), the lattice
spacing might be very small (e.g. only several angstroms apart) and in every
naturally occuring solid there are structural defects and lattice vibrations. All these
things can obfuscate the basic workings of certain phenomena. On top of all that, we
can’t change a naturally occuring solid which is probably the biggest inconvenience.
A way to circumvent all these problems is to just make a crystal ourselves, a crystal
in which certain phenomena are happening much slower (e.g. on a second scale), in
which there’s a bigger lattice spacing (e.g. on a micrometer scale) and that is free of
defects. That crystal will be fully controllable by us and we can change its structure
as we wish.

In this thesis, we’ll ask ourselves the question how to make atoms self-organize
to create an artificial solid. For that, we’ll establish a theoretical model in which we
arrange atoms in a lattice. We’ll obtain two configurations with two Hamiltonians
whose properties we’ll discuss. Simulations in the language Julia with the framework
QuantumOptics.jl will show us if we’re able to observe the properties that we expect.

2 Explanation of the model

What we want to achieve is to arrange atoms in a lattice to simulate a solid. We
need to somehow hold them in place. For that, we’ll use laser light. Consider the
setup depicted in Figure [Ta] There are two lasers, each with the same frequency. If
we set their direction on the same axis, but counter propagating with contributions
x exp(ikz) and o exp(—ikz), a cosine pattern or standing wave of the intensity
will form. In between, we put our atoms. There’s a special trick now. We set the
frequency of the laser w; way below the excitation frequency of the atoms w, (this
is commonly called "red-detuning"). That will induce dipoles in the atoms and the
dipoles will interact with the light field. Because of the dipole-light field interaction,
there’s now a potential for the atoms which is what we needed. The atoms will
now sort of "fall" into the lowest points of the potential to minimize their energy.
The light field intensity has a cosine pattern, thus the same will be the case for the
potential (V' o« —I). Now we have an array of equally spaced atoms, already what
we could call an artificial solid. To enhance atom-light field interaction, we’ll take
our setup one step further and introduce a cavity, as depicted in Figure There
are two mirrors. The one on the left is partially transmissive to let the laser light
in. We set the distance between the two mirros to d = nA\/2 so that the light field
will be amplified inside the cavity.
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(a) Counter-propagating lasers. (b) Optical cavity.

Figure 1: Two counter-propagating lasers create a cosine-potential. In between, we put
our atoms. Red-detuning the lasers will induce dipoles in the atoms which interact with
the light field, creating a potential for the atoms. As the atoms always strive to minimize
their energy, they will position themselves at the "valleys" of the potential. We’ll take that
approach even further and put the atoms in a cavity. That way atom-light field interaction
will be enhanced.

There are different ways to get a light field inside the cavity. Figure [2al depicts what
we’'ve discussed so far. There we shoot a laser parallel to the cavity axis into the
cavity (longitudinal pump). Even if there are no atoms inside, there’s still a light
field. That is not the case if we pump transverally, as described in [I] and shown in
Figure For transversal pump, if there are no atoms inside the cavity, no light
field will exist along the cavity axis. To create a light field, here we rely on the atoms
scattering the photons into the cavity, i.e. the atoms effectively create their own
trapping potential. Pumping transversally, a couple interesting phenomena emerge
which do not happen for the longitudinal pump. We will discuss those properties
later. Now to the derivation of the Hamiltonians for those two systems.

—hk 2hk —hk hk

)

(a) Longitudinal pumping. (b) Transversal pumping.

Figure 2: Longitudinally and transversally pumped cavities. For longitudinal pumping,
even if there are no atoms inside the cavity, there’s still a light field. That is not the case
for transversal pumping. There the light field along the cavity axis is created by the atoms
scattering incoming photons, i.e. the atoms are effectively creating their own trapping
potential.



3 Derivation of the Hamiltonians

For those wishing to refresh their knowledge in quantum mechanics, the introductory
chapters of Fox’s quantum optics book will be of great help [2] (it’s a great quantum
optics book in general). In this section we’ll derive the Hamiltonians being used for
the simulation: One Hamiltonian for longitudinal pumping and one for transversal
pumping. We’ll start with the Jaynes-Cummings Hamiltonian which describes the
interaction of a two-level atom with a single mode of a cavity-field. We’ll then modify
the Hamiltonian according to our needs step by step. We’'ll tackle the crucial details
and reference parts of the derivation which are not presented here.

3.1 The Jaynes-Cummings Hamiltonian

The Jaynes-Cummings model describes the interaction of a two-level atom with a
single mode of a cavity field. The first appearance of the model was in [3]. Since
we're dealing with both an atom and a light field at the same time, we have a
composite system, i.e.

¢total = ¢light & watom' (1)

The fact that we have two levels motivates a two-dimensional basis for the atom:

0= (1) 0= (5). 2)

where |g) is the ground state and |e) is the excited state. Both states respond to

the operators
01 00
+_ - _
o _(O O)a o _<1 O)ﬂ (3)

where ot is the raising operator and o~ is the lowering operator. They have the
properties

o'lg) = le), o le) = [g). (4)

The wave function for the atoms depends on the position, while this is not the case for
the light field. Instead we will use photon number states or Fock states. A photon
number state |n) thus represents a monochromatic quantized field containing n
atoms. The ground state |0) corresponds to 0 photons. The creation and annihilation
operators al and a correspond to creating and annihilating a photon. We’ll restrict
ourselves to one dimension and start with an atom (or a Bose-Einstein condensate)
in an external potential:

p?
Hy = om + Vext (). (5)



Now we place that atom in a cavity and it will interact with the cavity mode, creating
more terms in our Hamiltonian that we have to consider. First, there’s the energy
of the field:

Hpq = —hwea'a, (6)

where w, is the resonance frequency of the cavity and a' and a are the creation and
annihilation operators. Next, we’ll add a term describing the atomic transitions:

Htransition = - hwao-z ) (7)

where w, is the resonance frequency of the atom and o, is the Pauli z-matrix which
is defined as 0. = 1/2(|e){e| + |g)(g|) or

7= (1(/)2 —?/2) | ®)

The Hamiltonian Hiansition describes the atom being in the ground state or excited
state, the transition energy is hw,. The atom-field interaction we describe with
following term:

Hinteraction = th COS(kl’) (UJra + Uﬁ@T)? (9)

where gq is the coupling strength. Finally, we’ll add the term describing the pumping:

Hpump = hn(ae™* 4 aTe’iwlt), (10)

where 7 is the pumping strength and wy is the laser frequency. We now have the full
Jaynes-Cummings Hamiltonian which is the sum of all terms above:

Hio =p*/2m+  Vig(z) —  hwao.  —hwea'a+ hnlae™? + ale™™) +
—— —— ~—— ——— N — ,,
atom external potential ~ atomic transitions field pumping

+ hgo cos(kx)(oTa + o~ al).

TV
field-atom interaction

(11)

A more detailed derivation of the Jaynes-Cummings Hamiltonian (starting from
Maxwell’s equations and quantizing the cavity mode) can be found at [4]. In order
to get rid of the explicit time-dependence, we transform the Hamiltonian to a frame
rotating with w;. The Hamiltonian now reads:

2
Hyc = ;; + Vext (z) + hA,0, — EA.ata + hn(a + aT)+
m

+hgo cos(kz)(ota + o al),

where A, = w; — w, and A, = w — w,.



3.2 Detuning

The derivation for the Hamiltonians for the following sections is taken from [5]. Now
we derive heuristically a modified Hamiltonian. Going to the Heisenberg picture,
we get:

a= %[H, a] = iAca —in — igo cos(kx)o ™. (13)

Obviously, the kinetic energy and potential term vanish under the commutator. For
the other terms:

a'a =N, [N,a] = —a, (14)
(a+aa—ala+a') =aa+a'a —aa —aa’ =1 (15)
because we know: aa’ = afa+1,
lcta+o0 alal =0T [a,a] 40" [a',a] =0, (16)
T

The creation and annihilation operators (a' and a) and the raising and lowering
operators (o™ and o) live in different Hilbert spaces and thus don’t influence each
other. A good reference for the commutator relation is [6]. The time-derivative for
the raising operator reads:

6" = “[H,0"] = —io" +igo cos(kz)al . (17)
g (%)

For (x), we'll look at the matrix representation of the operators:

01 (00 12 0
+_ _ _
? _(0 0)’ ’ —(1 0)’ "Z—(o —1/2>' (18)
We calculate the commutator relation [o,, o] explicitly:
1/2 0 01 01 1/2 0
+ _ _ J—
l0207] = ( 0 —1/2) (0 0> (0 0) ( 0 —1/2) -
(0 12\ (0 —1/2\ [0 1\
_<0 0)_(0 0)‘(0 0)_“' (19)
For (xx), we'll calculate [0, 07]:
o, 0] = 0 0\ /0 1\ (0 1) /0 O _
’ 1 0/\0 O 0 0 10
00 10 -1 0
:(0 1)‘(0 0)2(0 1):_2"Z”1' (20)



In our case, the pumping laser is far detuned from the atomic resonance frequency,
i.e. w < w,. The atom thus only stays in the ground state and we approximate
0, ~ —1/2. Since we're not interested in fast dynamics, we set 67 = 0. We get:

ot = i—i cos(kz)al, o = i—i cos(kx)a. (21)
Putting the above relation in equation [13] we get:
a = —ilAca+ 90 cos(kx)a — in. (22)
A,

We can thus make a guess of the effective Hamiltonian:

2
Hyong = v (z) — hAca'a + hn(a + a') + hU, cos(kx)?a'a, (23)

2m
where we set Uy == g3 /A,. Note that because Hiong x cos(kx)?, the Hamiltonian is
A/2-periodic. Later in the simulation program, we want to make sure all quantities
are expressed in terms of the recoil energy F, = hw,, where w, = hk? /2m is the
recoil frequency. Therefore we factor our F, to see what we have to type into the
program:

1 1 1 1
Hlong = hw'r <Wp2 + %Vvext(x) - W_TACCLTCL + QTT (CL + aT)—’_ (24)
1
+hwr Uy cos(km)QaTa) .

In the simulation program, we will set A = 1 and multiply each quantity by the
preceding factors.

3.3 Transversal Pump

Now we’ll tackle the transversal pump. Here the cavity mode will only be populated
by photons which were scattered off the atoms. The Hamiltonian now reads:

2

Hirans = 2].; + Vi () — hAcata + i cos(kx) cos(kz)(a + al)+
" Q2 (25)
+hA_ cos(kz)? 4 hU cos(kx)?a’a,

where (2 is the Rabi frequency. Here we only consider one dimension, so we set
z =0

pQ

o + Ve (7) — hAca'a + B cos(kx)(a + a')+

+hUy cos(kx)*a’a.

H transv —



Note that because Hyans o cos(kz), the Hamiltonian is A-periodic. The only
difference now to the longitudinal pump Hamiltonian is the spatial dependence in
the pump term.

4 Properties of the system

We'll now discuss some properties that the longitudinally and transversally pumped
cavities have and later tackle some further details only concerning the transversally
pumped cavity. There is a fundamental difference how atoms scatter light in the
longitudinally pumped cavity and in the transversally pumped cavity. For the
longitudinal pump, if a photon with momentum Ak in z-direction bumps into an
atom, it will recoil backward, having now a momentum —hk. Conservation of
momentum thus requires the atom to have now a momentum of 2Ak. For the
transversal pump, when a photon is incident perpendicularly to the cavity axis, the
total momentum in the z-direction will be 0. If an atom scatters now the photon
along the cavity axis, it will now have a momentum of hk and the photon —hk. The
total momentum along the x-direction will still be 0. We see that the fundamental
difference between longitudinal and transversal pump is the momenta the atoms are
able to acquire. In the longitudinal case, there will only be momenta of 2nhk, where
n € N, whereas for the transversal pump there are momenta of hk. To illustrate the
discrete momenta, take a look at the wave function representing the atoms inside
the cavity:

Y(z) = % Z c exp(likz) = %(co + cy1 exp(tkx) + cio exp(2ikx) + .. ) (27)
]

The variable N is a normalizing constant. As previously mentioned, an atom inside
the cavity cannot have any arbitrary momentum, but only multiples of Ak due to
the way momentum is acquired. If we plot the wave function as a whole, we don’t
see the discreetness of the momenta. However, if we perform a Fourier transform,
we can access the ¢;’s. For longitudinal pump, we thus only expect momenta of 0,
2hk, 4hk, ... corresponding to ¢y, cio, c+4 and so on. For transversal pump we
expect momenta of 0, hk, 2hk, 3hk, ... corresponding to ¢y, c41, C+2, c+3 and so
on. In Table [4] there are the ¢;’s with the components of the wave function.



) wave number momentum

Co 0 0
cx1 k — exp(ikx) hk
cto 2k — exp(2ikx) 2hk
cx3 3k — exp(3ikx) 3hk

Table 1: Coefficients of the wave function. If we plot the position probability density,
longitudinal and transversal pump might look quite similar. We thus perform a Fourier
transform so we can access the ¢;’s and gain further insight into the physical system. For
longitudinal pump, we only expect cg, cta, ci4, ... while for transversal pump we expect
co, C+1, C+2, C+3 and so on.

Figure[3shows two Figures from a paper that investigates a Bose-Einstein condensate
in a transversally pumped cavity [7]. On the right, we see what we’re already familiar
with: The peak of the position probability density is located at the lowest point
of the potential. That atoms localize at the potential "valleys" to minimize their
energy. On the left, there’s an illustration of the order parameter © versus the pump
strength 7. When © = 0, the atoms are uniformly distributed in the cavity. When
© = 1, the atoms are in a lattice pattern. The interesting thing about transversal
pump (which is also described in [I]) is that the atoms are initially resisting being
ordered and suddenly arrange themselves in a lattice pattern depending on the pump
strength. Initially, © stays at 0. At a critical pump strength however, suddenly the
order parameter jumps up. This is also a behavior which we expect to see in our
simulations later.

1
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(a) Order parameter. (b) Lattice potential.

Figure 3: Order parameter and lattice potential for transversal pumping. When we pump
transversally, the atoms initially don’t order themselves in a lattice. Only at a critical pump
strength ncit, self-organization takes place rapidly. The location of the atoms will be in
the potential minima. Figures taken from [7].

Notice also that in Figure [3b the wave function density and the potential are A-
periodic, as the Hamiltonian for the transversally pumped cavity is also A-periodic.

10



As such, there are two ways in which the atoms arrange themselves inside the cavity,
as depicted in Figure . In our simulations, we will observe a A/2 periodicity. That
is because we’ll be looking at the superposition of two symmetric states that are
just shifted by A/2. Measuring the system experimentally, we would obtain only
one state. That is also the case when investigating the system analytically, as in [7].
When we’re doing simulations, however, it won’t be possible for us to separate the
two states. Figure [4b|shows what we expect to see in the simulation.

h e o

[ (2)*/1/X

t t 0.0 0.5 1.0
x/A
(a) Lattice structure. (b) Densities.

Figure 4: Lattice configuration and superposition of densities. There are two ways for
the atoms to arrange themselves, as shown on the left. If we were to measure the system
experimentally, we’d only obtain one lattice pattern. In the simulation, however, we obtain

the two configurations simultaneously, thus observing a A/2-periodic position probability
density.

To summarize, the expected properties of our systems are:
e The atoms are localized in the "valleys" of the optical potential.
e Longitudinal pumping:
— The atoms can have momenta of 2nhk.
— The more we pump, the more photons we will get.
e Transversal pumping:
— The atoms can have momenta of nhk.

— There is an abrupt self-organization.

— We observe a superposition of two symmetric states.
5 Simulation
Having derived our Hamiltonians, we’ll now set out to numerically simulate the
systems (more specifically, the ground state of our Hamiltonians). In the following

sections, we’ll present the code necessary to simulate the quantum systems. However,
any code to generate graphs will not be presented.
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5.1 The Julia language and QuantumOptics.jl

Scientific computing requires high performance which low-level languages like C
or Fortran can deliver. However, writing scripts in these languages can often be
cumbersome. Julia is a programming language that promises the ease of use of high
level-languages and performance of low-level languages [8]. We won’t go into further
details whether that’s true or not. So here we use Julia for our simulations. Then
we have to ask ourselves how to represent the physical systems on the computer. We
could program everything from scratch which everybody doing numerical simulations
should probably do a couple times. However, after a while it gets redundant because
we’re doing the same things over and over again. We will thus use a framework which
is called QuantumOptics.jl [9]. With that framework, a lot of functions are executed
in the background and as such it’s more convenient for us. The architecture of the
functions of the package will not be discussed. A detailed documentation can be
found at [I0].

5.2 The Code

First, we’ll add all the packages that we need:

using QuantumOptics, LinearAlgebra

The package QuantumOptics is the quantum simulation package mentioned earlier
and LinearAlgebra is a package that comes with some useful functions like getting
the diagonal entries of a matrix diag(). We'll set k = 27, so that A = 1. The recoil

frequency we set w, =1 and A, = —10w, and Uy = —1 w;:
k = 2x
wr =1
Ac = -10 * wr
U0 = -1 * wr

For now, we’ll allow a maximum of N = 16 photon states. Setting N.uiof higher
would increase the computational time. However, it might be necessary depending
how much photons we have in the cavity which depends on the pumping strength 7.
The dangers of setting Neyioft too low will be discussed in the results. We’ll confine
the simulation spatially to z;, = 0 and z,,; = 1. Setting a wider range would be
redundant since the transversal Hamiltonian is A-periodic. Usually, the step size is
set to Ngeps = 2", where n € N. Here, we set Ngeps = 64 for a good compromise
between simulation time and the look of the graphs.

N_cutoff = 16

xmin = 0
xmax = 1
Nsteps = 32

We define the bases, as well as the raising and lowering operators:

12



b_position = PositionBasis(xmin, xmax, Nsteps)
b_fock = FockBasis(N_cutoff)

p = momentum(b_position)

a = destroy(b_fock) ® one(b_position)

ad = dagger(a)

The raising and lowering operators are a tensor product of the position and Fock
basis. Note that in Julia it’s possible to name variables with Greek symbols. In this
case, the tensor product is defined with the symbol ®. We define the Hamiltonian
and calculate the first three states with n = 30 w;:

n =30 % wr

potential = x -> UO*cos(k*x) "2

H_int = (one(b_fock) ® potentialoperator(b_position, potential))*ad*a
H_kin = (one(b_fock) ® p~2) / k"2

H_cavity = -Ac*adxa

H_pump = n*(a + ad)

H = dense(H_int) + H_kin + H_cavity + H_pump

E, iY_states = eigenstates((H + dagger(H))/2, 3)

Notice that in the last line, instead of H we use (H + dagger(H))/2) to make
the Hamiltonian truly Hermitian. Due to numerical errors, the operator p? is not
Hermitian here. If we want to plot the wave function, we’ll have to extract the
position part of the composite basis. We can do that with the command ptrace().
We thus obtain a matrix whose diagonal entries are the complex values of the wave
function:

pos_dense = ptrace(¢y_states[1], 1)
density = diag(pos_dense.data)

We need to add the suffix .data to extract the values of pos_dense. Otherwise, we’d
get an error since the function diag() cannot take objects defined by the quantum
optics framework. By changing the second argument of ptrace() to 2, we trace
out the position basis. The diagonal entries of the obtained matrix represents the
photon number distribution:

photon_dense = ptrace(y_states[1], 2)
probab = diag(photon_dense.data)

We can calculate the expected photon number as follows:

ada_exp = expect(ad*a, 1_states[1])

We can also calculate the momentum distribution which is the Fourier transform of
the position distribution. The function transform() performs a Fourier transform
in the background:

13



b_momentum = MomentumBasis(b_position)
Tpx = transform(b_momentum, b_position)

pos_dense = ptrace(y_states[1], 1)
states_p = Tpx * pos_dense
density_p = diag(states_p.data)

Now let’s tackle the transversal pump. The bases are the same as before. However,
we have to define different Hamiltonians:

n =10 * wr

potential = x -> UO*cos(k*x) "2

H_int = (one(b_fock) ® potentialoperator(b_position, potential))*ad*a
H_kin = (one(b_fock) ® p~2) / k"2

H_cavity = -Ac*adxa

pump = x -> nxcos(k*x)

H_pump = (one(b_fock) ® potentialoperator(b_position, pump)) * (a + ad)
H = H_kin + dense(H_int) + H_pump + H_cavity

E, Y_states = eigenstates((H + dagger(H))/2, 3)

To visualize the degree of self-organization, we’ll take a look at the photon state.
The Husimi Q representation is a way of visualizing a wave function. It’s defined as
follows:

1

™

Q) = —{alpla), (28)

where |o) is the state we want to visualize and p is the density operator of the
photon state:

p = [) ] (29)

In our case, |a) is a coherent state. It is represented by a dimensionless complex
number o = X 4 ¢P. The Q-Function is a quasiprobability distribution. For every
possible value of «, i.e. for every point on the X — P-plane the Q-Function will give
us the probability of that state. Figure [5| shows a coherent state in phase space.

14
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Figure 5: Coherent state |a) in phase space. The state |a) is represented by a
dimensionless complex number o = X + ¢P. To each axis, there is a quantum uncertainty
of 1/2.

In Julia with QuantumOptics.jl, we can use the command qfunc () to get the Husimi
Q representation of the photon state:

bdr = 6

xvec = [-bdr:.1:bdr;]

yvec = [-bdr:.1l:bdr;]

photon_dense = ptrace(y_states[1], 2)
grid = qfunc(photon_dense, xvec, yvec)

The variable bdr was set heuristically for plotting.

6 Results and Discussion

The position probability densities can be seen in Figure [l On the top, there’s
the longitudinal pump and on the bottom the transversal. The leftmost state is
the first eigenstate, the second eigenstate is in the middle and the third on the
right. The first eigenstate has the lowest energy. The solid blue lines represent the
position probability densities, the dashed orange lines represent the potentials. The
potential plot was created by taking the expressions of the respective Hamiltonians
that act both on the atom part and the photon part of the composite system.
For the operators the expectation values were taken. Each peak of the ground
state density being located at the potential minima is in accordance with our
expectations. Notice that the transversal position probability density is A/2-periodic
despite the Hamiltonian being A-periodic. This is because we’re actually looking at
the superposition of two symmetric states that are shifted by A\/2. There’d be
actually two potentials in Figure [6b] one for each state. However, only one was
chosen so that the graph doesn’t get too confusing. The other potential would look
the same, but shifted by A/2. The position probability densities give us an idea
where the atoms are located. There are some properties of the systems, however,
which still remain hidden to us in this representation. For that, we’ll take a look at
the momentum space.
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Figure 6: Longitudinal and transversal position probability densities. The solid blue
lines represent the position probability densities and the dashed orange lines represent
the potentials. The first eigenstate is on the left, the second in the middle and the third
on the right. The wave function densities being located at potential minima meets our
expectation. Note that the transversal position probability density appears to be A\/2-
periodic. That is because we’re actually looking at the superposition of two symmetric
states that are shifted by /2.

The momentum distribution for different values of 1 can be seen in Figure [7] At
n = 0, i.e. when the laser is off, there’s only a peak at 0, meaning the atoms have
no momentum. When we start pumping, we get other peaks than 0. Now the atoms
do have momentum. For longitudinal pumping, there’s always a gap between each
peak which is not the case for transversal pumping. Take a look again at figure
When we pump longitudinally, a photon is only able to transfer a momentum of
2hk because of momentum conservation. Thus we only observe peaks at 2nhk,
where n € N. For transversal pumping, the same processes of photons transferring
momenta of 2hk are happening, but now we also have a momentum transfer of hk
when a transversally incoming photon is being scattered into the cavity. Naturally,
the more we pump, the more outer momenta we will get.
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Figure 7: Longitudinal and transversal momentum distributions. For longitudinal pump,
there are only momenta of 2nhk because longitudinal scattering processes only allow
momenta, transfer of 2hk. For transversal pump, there is no such restriction and we have
momenta of nhk.

Having looked at the atom part of the composite system, let’s take a look at the
photon part. The photon number distribution for different values of 7 can be seen in
Figure[8] The mean and variance are the same, thus we have a Poisson distribution.

17



n =0 N =5 n =10 n =15
L0 (N) =0.00 (N) =0.28
o? =0.00 o? =0.28
=
q 0.5
0-0 T T T T T
00 25 50 75 00 25 50
N N
(a) Longitudinal.
n =0 n =5 n =10 n =15
1.0 (N) =0.00 (N) =0.18
o? =0.00 0?=0.19
=
< 05
040 T T T T T T

00 25 50 75 00 25 50 75 00 25 50 75 00 25 50 75 100

(b) Transversal.

Figure 8: Longitudinal and transversal photon distributions. Since the mean and the
variance are the same, we have a Poisson distribution.

The Humsimi QQ representation of the photon states for longitudinal and transversal
pump can be seen in Figure[9] What we can see is a two-dimentional plane. A point
on this plane represents a state the light field can be in. Remember that the state
|a) is represented by a complex number a = X + iP. We don’t only see a point,
however, we can see a blob. That is because of the quantum uncertainty. The color
represents the probability of a certain state, white is the hightest probability and
black 0. Taking a look at the longitudinal case, the blob is initially at 0 meaning
that there’s no light field. There more we pump then, the higher the blob will move
which indicates the emergence of a light field. A light field being present means of
course the atoms being arranged in a lattice. For the transversal pump, the graphs
look a little different. First of all, we can observe two blobs. That is because we're
looking at the superposition of two symmetric states that we can’t separate in the
simulation. Then notice also that initially the blob in the middle doesn’t separate
into two, but stretches with the highest probability of the state still being at 0.
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Figure 9: Husimi Q representation of photon states for longitudinal and transversal
pumping. A point in the plane represents a state |«) of the light field and the color the
probability of that state. Since there’s quantum uncertainty, we don’t observe a point but
a blob. For transversal pumping, the blob initially doesn’t move but only stretches. Only
at sufficient pump strengths, the blob will move and thus a light field build up. Observing
two blobs for transversal pumping means we’re actually looking at the superposition of
two symmetric states.

We can visualize the fact that the two blobs initially don’t separate but only stretch
by plotting the pump parameter n on the z-axis and the most likely state for one
half of the plane on the y-axis which is effectively the absolute value of a. We can
see the result at Figure [L0l For longitudinal pumping, the more we pump, the more
light field will build up, i.e. there is a direct relationship between pumping and
light field intensity. For transversal pumping we can see another picture, however.
Initially when we pump, the graph stays at 0 meaning no light field is building up.
Only at a critical pump strength, a light-field will suddenly emerge. This is what we
have discussed earlier about the sudden face transition for the transversal pumping.
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Figure 10: Most likely value of the photon state momentum looking at only the positive
side of the phase space for longitudinal and transversal pumping. For longitudinal pumping,
the momentum increases gradually. For transversal pumping, the light initially does not
gain any momentum, meaning that the atoms resist being in order. At a critical pump
strength, a light field suddenly builds up and the atoms self-order.

The more we pump, the more photons will appear. We have to take that into
account, by raising the maximum amount of allowed photon states N0 Raising
Neutor Tesults in longer simulation times which can be bothersome. However, if we
don’t do so, our results become faulty. Take a look at Figure [L1| which depicts the
photon number distributions for longitudinal pump for different values of N yion at
n = 40w,. For our parameters, 40w, is a relatively high value for n and we thus
would expect a high average photon number which we cannot possibly obtain if we
limit Neytoft to 8. To check the validity of our results, i.e. if Neyof 1S set high enough,
we can look at the standard deviation. For a Poisson distribution, the mean has to
be the same as the standard deviation which is not the case if we set the cutoff too
low.
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Figure 11: Photon number distributions for longitudinal pump for different values of
Netorr at 7 = 40w;. If we don’t set Ny on sufficiently high, we get bogus results. A quick
sanity check is to compare the mean with the variance. For a Poisson distribution, they
have to be the same.

7 Outlook / Conclusion

In this thesis, we asked ourselves the question how to arrange atoms in a lattice to
simulate a solid. The reason we might want to do that is that on top of a naturally
occurring solid being hard to look into, we can’t change it, e.g. modify the lattice
structure. Since atoms arranged in a lattice are able to represent a quantum system
under certain conditions, we can use that quantum system to simulate another.
Here we’re stepping in the rapidly expanding field of quantum simulations. For
those wishing to explore some of the recent advancements, [I1] is part of a dossier
with mini-reviews. In our case, we make use of light to trap atoms, more specifically
lasers. If two laser beams are counter-propagating, the intensity will form a cosine
pattern. Between those two lasers, there’s our atoms. The special trick is to set
the frequency of the lasers way below the excitation frequency of the atoms. That
will induce a dipole in the atoms which will interact with the light field. Now we
have a potential for the atoms and they will go to the lowest points to minimize
their energy. To enhance atom-light field interaction, we put the atoms in a cavity.
We looked at two ways to pump the cavity: longitudinally and transversally. The
transversal pump has a couple special properties, one of which is the sudden phase
transition: Initially, nothing happens when we pump and the atoms stay uniformly
distributed. Then, at a critical pump strength, a light field will suddenly build up
and the atoms be arranged in a lattice. In the programming language Julia with
the framework QuantumOptics.jl we conducted a couple simulations which fulfilled
our expectations quite neatly.
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