Cavity QED with cold particles

Bernhard Gstrein

Introduction

- \triangleright Complex solid-state phenomena which we want to study \rightarrow difficult
	- \blacktriangleright Fast, lattice spacing small, structural defects, lattice vibrations
- \blacktriangleright Make crystal ourselves
	- \blacktriangleright Much slower, bigger lattice spacing, free of defects, fully controlable
- \blacktriangleright How do we make atoms self-organize?

Introduction

Our goal:

- \blacktriangleright Establish a theoretical model arranging atoms in a lattice \rightarrow Hamiltonian
- \blacktriangleright Investigate ground state of Hamiltonian with simulations

[Introduction / Motivation](#page-1-0)

[Setting up our model](#page-4-0)

[Setting up the simulation](#page-13-0)

[Results and Discussion](#page-16-0)

[Recap / Conclusion](#page-24-0)

[Special Thanks](#page-26-0)

[Introduction / Motivation](#page-1-0)

[Setting up our model](#page-4-0)

[Setting up the simulation](#page-13-0)

[Results and Discussion](#page-16-0)

[Recap / Conclusion](#page-24-0)

[Special Thanks](#page-26-0)

Creating an artificial solid

How do we make atoms arrange in a lattice pattern?

- \blacktriangleright Two counter-propagating laser beams
- \blacktriangleright Force to low potential points if $\omega_1 << \omega_2$
- \triangleright Optical cavities: Atom-light field interaction
- \blacktriangleright Light and atoms: Composite system

Figure 1: Counter-propagating lasers.

Figure 2: Optical cavity.

Cold atoms in cavities

 \triangleright Transversal pumping: Atoms create their own trapping potential Paper: Collective Cooling and Self-Organization of Atoms in a Cavity [\[1\]](#page-30-0)

Figure 3: Longitudinal pump.

Figure 4: Transversal pump.

The Hamiltonians

Longitudinal pump $(\lambda/2$ -periodic):

Transversal pump (λ -periodic):

Scattering of light

- \blacktriangleright Light is scattered differently when we pump longitudinally or transversally
	- \blacktriangleright Longitudinal pump: $p = 2n\hbar k$
	- \blacktriangleright Transversal pump: $p = n\hbar k$

Figure 5: Longitudinal pump.

Figure 6: Transversal pump.

Transversal pump: Superposition

When we do simulations we obtain a superposition of two symmetric states

Transversal pump: Superposition

When we do simulations we obtain a superposition of two symmetric states

Transversal pump: Phase transition

Paper: Self-organization of a Bose-Einstein condensate in an optical cavity [\[2\]](#page-30-1)

Figure 11: Order parameter. Figure 12: Lattice potential.

Our expectations

- \triangleright Atoms are localized in "valleys" of optical potential
- \blacktriangleright Longitudinal pumping:
	- \triangleright Atoms can have momenta of $2n\hbar k$
	- \blacktriangleright The more we pump, the more photons we will get
- \blacktriangleright Transversal pumping:
	- Atoms can have momenta of $n\hbar k$
	- \triangleright Abrupt self-organization with transversal pumping

[Introduction / Motivation](#page-1-0)

[Setting up our model](#page-4-0)

[Setting up the simulation](#page-13-0)

[Results and Discussion](#page-16-0)

[Recap / Conclusion](#page-24-0)

[Special Thanks](#page-26-0)

The Julia language and QuantumOptics.jl

- \blacktriangleright High-performance languages like C, Fortran cumbersome to program
- \triangleright Julia: promises high level convenience, low-level performance [\[3\]](#page-30-2)
- \blacktriangleright How to program it into computer?
	- \triangleright Starting from scratch: redundant
	- ▶ More convenient: QuantumOptics.jl: Quantum optics simulation framework [\[4\]](#page-31-0)

Code snippet: Longitudinal pump

Here: Calculate longitudinal pump Hamiltonian ground state

```
using QuantumOptics
k = 2\pi; \omega r = 1n = 10 \omega r; \omega c = -10 \omega r; U0 = -1 \omega rb_{\text{position}} = \text{PositionBasis}(0, 1, 32)b_fock = FockBasis(16)p = momentum(b_{position})a = destroy(b fock) \otimes one(b position)
ad = dagger(a)potential = x \rightarrow U0*cos(k*x)^2
H_int = (one(b_fock) \otimes potentialoperator(b_position, potential))*ad*a
H_kin = (one(b_fock) \otimes p^2) / k^2
H_{cavity} = -\omega c * ad * aH_pump = \eta * (a + ad)H = H_k \text{in} + \text{dense}(H_k \text{int}) + H_k \text{cavity} + H_k \text{pump}E, \psi_states = eigenstates((H + dagger(H))/2, 3)
```
[Introduction / Motivation](#page-1-0)

[Setting up our model](#page-4-0)

[Setting up the simulation](#page-13-0)

[Results and Discussion](#page-16-0)

[Recap / Conclusion](#page-24-0)

[Special Thanks](#page-26-0)

Position probability densities

Figure 13: Longitudinal pump, $\eta = 30 \omega_r$.

Components of the wave function
\n
$$
\psi(k) = \frac{1}{N} \sum_{l} c_l \exp(likx) =
$$
\n
$$
= \frac{1}{N} \Big(c_0 + c_{\pm 1} \exp(ikx) + c_{\pm 2} \exp(2ikx) + ... \Big)
$$
\n(3)

Table 1: Wave function coefficients.

Momentum distribution

Photon number distribution

Husimi Q representation

Way to visualize photon state $|\alpha\rangle$:

$$
Q(\alpha) = \frac{1}{\pi} \langle \alpha | \rho | \alpha \rangle,\tag{4}
$$

where ρ is the density operator

$$
\rho = |\psi\rangle\langle\psi|.\tag{5}
$$

Husimi Q representation

Phase transition and symmetry breaking

Figure 22: Transversal pump.

[Introduction / Motivation](#page-1-0)

[Setting up our model](#page-4-0)

[Setting up the simulation](#page-13-0)

[Results and Discussion](#page-16-0)

[Recap / Conclusion](#page-24-0)

[Special Thanks](#page-26-0)

Recap

What we discussed in this presentation...

 \triangleright Set up model to arrange atoms in a lattice

- \triangleright Use light field
- \triangleright Atom-light field interaction in cavity
- \triangleright Different ways to pump: longitudinally, transversally
- \triangleright Obtained Hamiltonians, discussed Properties
- \triangleright Simulation: Ground state of Hamiltonians

- [Introduction / Motivation](#page-1-0)
- [Setting up our model](#page-4-0)
- [Setting up the simulation](#page-13-0)
- [Results and Discussion](#page-16-0)
- [Recap / Conclusion](#page-24-0)
- [Special Thanks](#page-26-0)

Helmut Ritsch for Opportunity, Subject

Stefan Ostermann for Guidance, Discussion

Thank You!

- [Introduction / Motivation](#page-1-0)
- [Setting up our model](#page-4-0)
- [Setting up the simulation](#page-13-0)
- [Results and Discussion](#page-16-0)
- [Recap / Conclusion](#page-24-0)
- [Special Thanks](#page-26-0)

Peter Domokos and Helmut Ritsch. Collective cooling and self-organization of atoms in a cavity. Physical review letters, 89(25):253003, 2002.

D. Nagy, G. Szirmai, and P. Domokos. 暈 Self-organization of a bose-einstein condensate in an optical cavity.

The European Physical Journal D, 48(1):127–137, Jun 2008.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah.

Julia: A fresh approach to numerical computing. SIAM Review, 59(1):65–98, January 2017.

■ Sebastian Krämer, David Plankensteiner, Laurin Ostermann, and Helmut Ritsch. Quantumoptics.jl: A julia framework for simulating open quantum systems. Computer Physics Communications, 227:109 – 116, 2018.