# Cavity QED with cold particles

Bernhard Gstrein

### Introduction

- $\blacktriangleright$  Complex solid-state phenomena which we want to study  $\rightarrow$  difficult
  - ► Fast, lattice spacing small, structural defects, lattice vibrations
- Make crystal ourselves
  - Much slower, bigger lattice spacing, free of defects, fully controlable
- How do we make atoms self-organize?

### Introduction

Our goal:

- $\blacktriangleright$  Establish a theoretical model arranging atoms in a lattice  $\rightarrow$  Hamiltonian
- Investigate ground state of Hamiltonian with simulations

Introduction / Motivation

Setting up our model

Setting up the simulation

Results and Discussion

Recap / Conclusion

Special Thanks

References

Introduction / Motivation

Setting up our model

Setting up the simulation

Results and Discussion

Recap / Conclusion

Special Thanks

References

## Creating an artificial solid

How do we make atoms arrange in a lattice pattern?

- Two counter-propagating laser beams
- ► Force to low potential points if  $\omega_{\rm I} << \omega_{\rm a}$
- Optical cavities: Atom-light field interaction
- Light and atoms: Composite system



Figure 1: Counter-propagating lasers.



Figure 2: Optical cavity.

### Cold atoms in cavities

Transversal pumping: Atoms create their own trapping potential
 Paper: Collective Cooling and Self-Organization of Atoms in a
 Cavity [1]





Figure 3: Longitudinal pump.

Figure 4: Transversal pump.

### The Hamiltonians

#### Longitudinal pump ( $\lambda/2$ -periodic):



Transversal pump ( $\lambda$ -periodic):



## Scattering of light

- Light is scattered differently when we pump longitudinally or transversally
  - Longitudinal pump:  $p = 2n\hbar k$
  - ▶ Transversal pump:  $p = n\hbar k$





#### Figure 5: Longitudinal pump.

Figure 6: Transversal pump.

### Transversal pump: Superposition

When we do simulations we obtain a superposition of two symmetric states





Figure 8: Wave function densities.

### Transversal pump: Superposition

When we do simulations we obtain a superposition of two symmetric states





Figure 10: Wave function densities.

### Transversal pump: Phase transition

# Paper: Self-organization of a Bose-Einstein condensate in an optical cavity [2]



#### Figure 11: Order parameter.

#### Figure 12: Lattice potential.

### Our expectations

- Atoms are localized in "valleys" of optical potential
- Longitudinal pumping:
  - Atoms can have momenta of  $2n\hbar k$
  - The more we pump, the more photons we will get
- Transversal pumping:
  - Atoms can have momenta of  $n\hbar k$
  - Abrupt self-organization with transversal pumping

Introduction / Motivation

Setting up our model

Setting up the simulation

Results and Discussion

Recap / Conclusion

Special Thanks

References

### The Julia language and QuantumOptics.jl

- High-performance languages like C, Fortran cumbersome to program
- ► Julia: promises high level convenience, low-level performance [3]
- How to program it into computer?
  - Starting from scratch: redundant
  - More convenient: QuantumOptics.jl: Quantum optics simulation framework [4]

### Code snippet: Longitudinal pump

#### Here: Calculate longitudinal pump Hamiltonian ground state

```
using QuantumOptics
k = 2\pi; \omega r = 1
n = 10\omega r: \omega c = -10\omega r: U0 = -1\omega r
b_position = PositionBasis(0, 1, 32)
b fock = FockBasis(16)
p = momentum(b_position)
a = destroy(b_fock) \otimes one(b_position)
ad = dagger(a)
potential = x \rightarrow U0*\cos(k*x)^2
H_int = (one(b_fock) \otimes potentialoperator(b_position, potential))*ad*a
H_{kin} = (one(b_{fock}) \otimes p^2) / k^2
H cavity = -\omega c * ad * a
H pump = \eta * (a + ad)
H = H \text{ kin} + \text{dense}(H \text{ int}) + H \text{ cavity} + H \text{ pump}
E, \psi_{\text{states}} = \text{eigenstates}((\text{H} + \text{dagger}(\text{H}))/2, 3)
```

Introduction / Motivation

Setting up our model

Setting up the simulation

Results and Discussion

Recap / Conclusion

Special Thanks

References

### Position probability densities



Figure 13: Longitudinal pump,  $\eta = 30 \,\omega_r$ .



Components of the wave function  

$$\psi(k) = \frac{1}{N} \sum_{l} c_l \exp(likx) =$$

$$= \frac{1}{N} \Big( c_0 + c_{\pm 1} \exp(ikx) + c_{\pm 2} \exp(2ikx) + \dots \Big)$$
(3)

| $c_l$       | wave number         | momentum   |
|-------------|---------------------|------------|
|             |                     |            |
| $c_0$       | 0                   | 0          |
| $c_{\pm 1}$ | $k \to \exp(ikx)$   | $\hbar k$  |
| $c_{\pm 2}$ | $2k \to \exp(2ikx)$ | $2\hbar k$ |
| $c_{\pm 3}$ | $3k \to \exp(3ikx)$ | $3\hbar k$ |
| :           |                     |            |

Table 1: Wave function coefficients.

### Momentum distribution



### Photon number distribution



### Husimi Q representation

Way to visualize photon state  $|\alpha\rangle$ :

$$Q(\alpha) = \frac{1}{\pi} \langle \alpha | \rho | \alpha \rangle, \tag{4}$$

where  $\rho$  is the density operator

$$\rho = |\psi\rangle\langle\psi|. \tag{5}$$

### Husimi Q representation





### Phase transition and symmetry breaking



Figure 21: Longitudinal pump.

Figure 22: Transversal pump.

Introduction / Motivation

Setting up our model

Setting up the simulation

Results and Discussion

Recap / Conclusion

Special Thanks

References

### Recap

What we discussed in this presentation...

Set up model to arrange atoms in a lattice

- Use light field
- Atom-light field interaction in cavity
- Different ways to pump: longitudinally, transversally
- Obtained Hamiltonians, discussed Properties
- Simulation: Ground state of Hamiltonians

Introduction / Motivation

Setting up our model

Setting up the simulation

Results and Discussion

Recap / Conclusion

Special Thanks

References

### Special Thanks

### Helmut Ritsch for Opportunity, Subject

### Stefan Ostermann for Guidance, Discussion

# Thank You!

- Introduction / Motivation
- Setting up our model
- Setting up the simulation
- Results and Discussion
- Recap / Conclusion
- Special Thanks
- References

### Peter Domokos and Helmut Ritsch. Collective cooling and self-organization of atoms in a cavity. *Physical review letters*, 89(25):253003, 2002.

D. Nagy, G. Szirmai, and P. Domokos.
 Self-organization of a bose-einstein condensate in an optical cavity.
 The European Physical Journal D, 48(1):127–137, Jun 2008.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah.

Julia: A fresh approach to numerical computing. *SIAM Review*, 59(1):65–98, January 2017.

Sebastian Krämer, David Plankensteiner, Laurin Ostermann, and Helmut Ritsch. Quantumoptics.jl: A julia framework for simulating open quantum systems. Computer Physics Communications, 227:109 – 116, 2018.