
Delirious Representations Enhancing Predictive
Systems with Flexible Numeric and Symbolic

Domain Integration
Improving Algorithms Using Gradients

Bernhard Gstrein, Armin Biere

1/23

mailto:gstrein@cs.uni-freiburg.de
mailto:biere@cs.uni-freiburg.de


Optimization Algorithms

▶ You want to synthesize a circuit
▶ You have a good idea of your system’s architecture
▶ In order to make it optimal, you set its parameters

▶ Number (int, float)
▶ LUT entries
▶ Shut parts of your system on or off
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Search Difficult

▶ Complex systems render search difficult
▶ Solution: Local search + heuristics

▶ Are those heuristics really good?
▶ Inflexible (heuristics might not work anymore if you change too

many things)
▶ Have to handle huge search space
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Example for Difficult Search: Lookup-Table

▶ Consider lookup-tables
▶ 2-LUT: 222 = 16 possible

truth tables
▶ 4-LUT: 224 = 65536

possible truth tables
▶ Imagine you have lots of

LUTs in your system

x y out
0 0 a
0 1 b
1 0 c
1 1 d
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Our Proposal

▶ We propose enhancement
of algorithms

▶ Idea: Itentify differentiable
parts and optimize them
using gradients

▶ The gradients give a good
direction of where to go in
parameter space

▶ System with parameters
f (c, x)

▶ Metric g
▶ x ← x − η ∂g(f (c,x))

∂x
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Making Logic Differentiable

▶ Boolean values 0, 1, and operations: NOT, AND, and OR
▶ Make differentiable

▶ Express boolean values in the range [0, 1]
▶ NOT(x) becomes 1− x
▶ AND(x , y) becomes xy
▶ OR(x , y) becomes x + y − xy

▶ We can chain arithmetic NOT, AND, and OR arbitrarily many
times and still stay in the range [0, 1]
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Example: Lookup-Table

x y out
0 0 a
0 1 b
1 0 c
1 1 d

(x ∧ y ∧ a) ∨ (x ∧ y ∧ b) ∨ (x ∧ y ∧ c) ∨ (x ∧ y ∧ d)
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Making Lookup-Tables Differentiable

x y out
0 0 a
0 1 b
1 0 c
1 1 d

(x ∧ y ∧ a) ∨ (x ∧ y ∧ b) ∨ (x ∧ y ∧ c) ∨ (x ∧ y ∧ d)

OR(OR(OR(AND(AND(NOT(x), NOT(y)), a),
AND(AND(NOT(x), y), b)),

AND(AND(x , NOT(y)), c)), AND(AND(x , y), d))
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Enhanced Optimization Algorithm

Algorithm Original: Optimize g(f (c, x))
for iter do

Optimize c
Optimize x
Do other things

end for

Algorithm Our Proposal: Optimize g(f (c, x))
Initialize x ∈ [0, 1] randomly
for iter do

Optimize c
x ← x − η ∂g(f (c,x))

∂x
clip(x , [0, 1])
Do other things

end for
Round x
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The WiSARD classification system

▶ Wilkie, Stonham, and
Aleksander’s Recognition
Device [1]

▶ Image classification system
developed in the 1980s
▶ Input: Black-and-white

image
▶ Output: Class k

▶ Interesting because
▶ Is a circuit
▶ Is based on lookup-tables
▶ Comes with symbolic

learning algorithm
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WiSARD Inference

11/23



WiSARD Symbolic Training Algorithm

▶ LUT entries that are indexed by the training set are set to 1
▶ Memorize patterns from the training set

▶ For details, we refer to our paper
▶ Performs well

▶ Has been used for industrial deployment in the 1980s
▶ Still getting attention nowadays [2]
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Differentiable WiSARD
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Training WiSARD using our scheme

Algorithm WiSARD training using gradients
Initialize c: k discriminators, n LUTs per discriminator, random
LUT connections
Initialize params: random LUT parameters
for each image and label do

Forward pass image
Loss ← Difference between actual label and prediction
params← params− η ∂L(f (c,params))

∂params
Clip LUT parameters to range [0, 1]

end for
Round params
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Results: Cybersecurity Dataset

▶ 593 input features, 2 classes
▶ Baseline neural network: 86.87%
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Results: CIFAR-10 Dataset

▶ 32× 32 color images, 10 classes
▶ 32× 32× 3× 4 = 12288 input features
▶ Baseline neural network: 61.25%
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Summary

▶ We propose improving algorithms using gradients
▶ Identify components that can be made differentiable
▶ For those components, let gradients do the search

▶ We have seen example where gradients vastly outperform
purely symbolic algorithm

▶ Next step: Apply this method somewhere else
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Tseiting Encoding for Lookup-Tables

v0 = NOT(x),
v1 = NOT(y),

v2 = AND(AND(v0, v1), a),
v3 = AND(AND(v0, y), b),
v4 = AND(AND(x , v1), c),

v5 = OR(OR(v2, v3), v4),
LUT2(x , y) = OR(v5, AND(AND(x , y), d)). (1)
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WiSARD Symbolic Training Algorithm
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