Delirious Representations Enhancing Predictive Systems with Flexible Numeric and Symbolic Domain Integration Improving Algorithms Using Gradients

[Bernhard Gstrein,](mailto:gstrein@cs.uni-freiburg.de) [Armin Biere](mailto:biere@cs.uni-freiburg.de)

Optimization Algorithms

- ▶ You want to synthesize a circuit
- ▶ You have a good idea of your system's architecture
- ▶ In order to make it optimal, you set its parameters
	- ▶ Number (int, float)
	- ▶ LUT entries
	- ▶ Shut parts of your system on or off

Search Difficult

- ▶ Complex systems render search difficult
- \triangleright Solution: Local search + heuristics
	- \triangleright Are those heuristics really good?
	- ▶ Inflexible (heuristics might not work anymore if you change too many things)
	- ▶ Have to handle huge search space

Example for Difficult Search: Lookup-Table

Our Proposal

- ▶ We propose enhancement of algorithms
- \blacktriangleright Idea: Itentify differentiable parts and optimize them using gradients
- \blacktriangleright The gradients give a good direction of where to go in parameter space

▶ System with parameters $f(c,x)$

► Metric
$$
g
$$

\n▶ $x \leftarrow x - \eta \frac{\partial g(f(c,x))}{\partial x}$

Making Logic Differentiable

▶ Boolean values 0, 1, and operations: NOT, AND, and OR

 \blacktriangleright Make differentiable

 \blacktriangleright Express boolean values in the range [0, 1]

- ▶ NOT(x) becomes $1 x$
- \blacktriangleright AND (x, y) becomes xy
- **▶ OR(x, y)** becomes $x + y xy$
- ▶ We can chain arithmetic NOT, AND, and OR arbitrarily many times and still stay in the range [0, 1]

Example: Lookup-Table

 $(\overline{x} \land \overline{y} \land a) \lor (\overline{x} \land y \land b) \lor (x \land \overline{y} \land c) \lor (x \land y \land d)$

Making Lookup-Tables Differentiable

$$
(\overline{x} \wedge \overline{y} \wedge a) \vee (\overline{x} \wedge y \wedge b) \vee (x \wedge \overline{y} \wedge c) \vee (x \wedge y \wedge d)
$$

 $OR(OR(OR(AND(AND(NOT(x), NOT(y)), a)),$ AND(AND(NOT(x)*,* y)*,* b))*,* $AND(AND(x, NOT(y)), c)$, $AND(AND(x, y), d)$

Enhanced Optimization Algorithm

Algorithm Original: Optimize $g(f(c, x))$

for iter **do** Optimize c Optimize x Do other things **end for**

Algorithm Our Proposal: Optimize $g(f(c, x))$

```
Initialize x \in [0,1] randomly
for iter do
    Optimize c
     x \leftarrow x - \eta \frac{\partial g(f(c,x))}{\partial x}∂x
    clip(x, [0, 1])Do other things
end for
Round x
```
The WiSARD classification system

- ▶ **Wi**lkie, **S**tonham, and **A**leksander's **R**ecognition **D**evice [\[1\]](#page-22-0)
- ▶ Image classification system developed in the 1980s
	- ▶ Input: Black-and-white image
	- \blacktriangleright Output: Class k
- **Interesting because**
	- \blacktriangleright Is a circuit.
	- \blacktriangleright Is based on lookup-tables
	- ▶ Comes with symbolic learning algorithm

WiSARD Symbolic Training Algorithm

 \blacktriangleright LUT entries that are indexed by the training set are set to 1

 \blacktriangleright Memorize patterns from the training set

- ▶ For details, we refer to our paper
- ▶ Performs well
	- \blacktriangleright Has been used for industrial deployment in the 1980s
	- ▶ Still getting attention nowadays [\[2\]](#page-22-1)

Differentiable WiSARD

Training WiSARD using our scheme

Algorithm WiSARD training using gradients

Initialize c: k discriminators, n LUTs per discriminator, random

LUT connections

Initialize params: random LUT parameters

for each image and label **do**

Forward pass image

 $Loss \leftarrow$ Difference between actual label and prediction params ← params − *η ∂*L(f (c*,*params)) *∂*params

```
Clip LUT parameters to range [0, 1]
```
end for

Round params

Results: Cybersecurity Dataset

▶ 593 input features, 2 classes

▶ Baseline neural network: 86.87%

Results: Cybersecurity Dataset

▶ 593 input features, 2 classes

▶ Baseline neural network: 86.87%

Results: Cybersecurity Dataset

▶ 593 input features, 2 classes

▶ Baseline neural network: 86.87%

Results: CIFAR-10 Dataset

- ▶ 32 \times 32 color images, 10 classes
- ▶ 32 \times 32 \times 3 \times 4 = 12288 input features
- \blacktriangleright Baseline neural network: 61.25%

Results: CIFAR-10 Dataset

- ▶ 32 \times 32 color images, 10 classes
- ▶ 32 \times 32 \times 3 \times 4 = 12288 input features
- ▶ Baseline neural network: 61.25%

Summary

- \triangleright We propose improving algorithms using gradients
	- \blacktriangleright Identify components that can be made differentiable
	- ▶ For those components, let gradients do the search
- \triangleright We have seen example where gradients vastly outperform purely symbolic algorithm
- \blacktriangleright Next step: Apply this method somewhere else

Tseiting Encoding for Lookup-Tables

$$
v_0 = NOT(x),
$$

\n
$$
v_1 = NOT(y),
$$

\n
$$
v_2 = AND(AND(v_0, v_1), a),
$$

\n
$$
v_3 = AND(AND(v_0, y), b),
$$

\n
$$
v_4 = AND(AND(x, v_1), c),
$$

\n
$$
v_5 = OR(OR(v_2, v_3), v_4),
$$

\nLUT2(x, y) = OR(v_5, AND(AND(x, y), d)). (1)

WiSARD Symbolic Training Algorithm

References I

- [1] I. Aleksander, W. Thomas, and P. Bowden, "WISARD· a radical step forward in image recognition," Sensor review, vol. 4, no. 3, pp. 120–124, 1984.
- [2] Z. Susskind et al., "Weightless neural networks for efficient edge inference," in Proceedings of the international conference on parallel architectures and compilation techniques, 2022, pp. 279–290.