
Delirious Representations: Enhancing Predictive
Systems with Flexible Numeric and Symbolic

Domain Integration
Bernhard Gstrein
University of Freiburg

Freiburg, Germany
gstrein@cs.uni-freiburg.de

Armin Biere
University of Freiburg

Freiburg, Germany
biere@cs.uni-freiburg.de

Abstract—Predictive systems for low-spec devices are crucial
in the expanding IoT market. Gradient-based optimization algo-
rithms excel in predictive performance, while logical reduction
algorithms offer computational efficiency. Traditional conversion
of numeric classifiers to symbolic structures is irreversible,
preventing further optimization through gradient-based methods.
We introduce a flexible “delirious” representation framework,
allowing seamless switching between symbolic and numeric
domains. Our approach employs lookup tables with additional
flexibility compared to previous methods. We write lookup tables
as logic formulas and relax the logical values from binary to the
range [0, 1], enabling gradients to traverse the lookup table - a
well-defined symbolic structure. We demonstrate the usefulness of
a delirious representation on the WiSARD classification system,
which incorporates lookup tables at its core, and conduct ad-
ditional experiments. This originally symbolic-only architecture
can now be trained using numeric methods like backpropagation
and optimized with logical algorithms post-training. Our results
reveal that learning via backpropagation outperforms the original
algorithm, which does not utilize backpropagation. We conclude
by discussing other possible use cases of delirious representations.

I. INTRODUCTION

Compute-efficient implementations of predictive systems
are of great interest today. There is an emerging paradigm,
edge computing, where deployment on low-spec devices is
the task [1]. The usual workflow is to conceptualize particular
architectures that are very small and train them using gradient
descent. They are often converted to symbolic structures to
make these even smaller and more compute-efficient, and
logic reduction algorithms optimize them even more. Once
converted, however, the models live in a symbolic domain and
thus are out of reach for gradient-based optimization.

We introduce a “delirious” classifier framework, simulta-
neously symbolic and sub-symbolic, benefiting from gradient
optimization and logic reduction. We use lookup tables (LUTs)
as candidates for such representation. By writing a lookup
table as a logic formula and then relaxing the binary values to
the floating point range [0, 1], we can pass gradients through
a lookup table while still being a well-defined symbolic
structure. Figure 1 visualizes a delirious representation of a
formula.

x0

w0

x1

w1

Symbolic

xi, wi ∈ {0, 1}

(x0 ∧ w0) ∨ (x1 ∧ w1)

Delirious
xi, wi ∈ [0, 1]

1− (
x0w0 + x1w1 -
(x0w0)(x1w1)

)

Fig. 1. We introduce a “delirious” framework, where formulas exist in
numeric and boolean spaces at the same time.

Recently there has been surging interest in combining
machine learning with symbolic methods to develop optimized
classifiers [2, 3, 4]. The lookup operation ignited an interest in
replacing the floating-point computation as a computationally
cheap alternative [5, 6]. A neural network uses floating-point
operations at its core, which are costly. A lookup table does not
need any floating-point computation. A significant challenge
remained the learning; having no access to gradient-based
optimization proved searching for a good model difficult. We
seek to alleviate this by the use of a delirious framework.

The architecture that we start with is WiSARD (Wilkie,
Stonham & Aleksander’s Recognition Device) [7]. It is a
sparse weightless neural network with just one hidden layer.
It operates on binary values, so there is no floating-point
computation, and each neuron is a lookup table. We choose
this architecture because the baseline performance is quite
good, which is a good starting point. In this work, we show that
training by backpropagation [8, 9] vastly outperforms training
by the traditional algorithm.

https://orcid.org/0000-0002-2129-8817
https://orcid.org/0000-0001-7170-9242


Our contributions are thus as follows:
• We identify delirious operations, i.e., operations suitable

for numeric and symbolic computation simultaneously,
• demonstrate the effectiveness of a delirious representation

on the WiSARD classifier system and
• discuss possible use cases of a delirious representation.
Section II overviews similar approaches, especially concern-

ing lookup tables. Our core idea is in Section III, where we
introduce our delirious framework. We explain in detail how
WiSARD works and how it can be made differentiable in
Section IV. In Section V, we benchmark our scheme on several
datasets. Lastly, we identify in Section VI the main challenges
for the future.

II. RELATED WORK

Our work takes inspiration from several places. Using many
elements that are already there, we can conceptualize our
framework.

The growing IoT market ignited lots of interest in miniature
models. There have been a lot of advances in the field of binary
neural networks. A good overview is in [10]. For optimization
and deployment, the last step often involves converting these
binary networks into symbolic representations [11, 12]. Once
at a symbolic representation, the model becomes oblivious to
backpropagation.

The International Workshop on Logic & Synthesis held a
programming contest on synthesizing circuit-based classifiers
[2]. The idea was to bridge the gap between numeric and
symbolic methods. The final output should be an and-inverter
graph (AIG) representing binary classifiers. The following
year, the task was image classification, CIFAR-10. The win-
ning team obtained 57% with one million AIG nodes [13].
Although the mission was to bridge the gap between numeric
and symbolic methods, there was always a “hard” cutoff
between the two.

Concerning lookup tables, they have recently been gaining
attention as a low-cost replacement for a neuron in an artificial
neural network. An interesting idea to make a network out of
lookup tables is here [5]. The original research question was
not to excel on a dataset but to answer why neural networks
generalize. Still, the developed architecture is a lookup-table-
based classifier that somewhat generalizes and could be seen
as proof that lookup tables can replace conventional neurons.

Writing logic formulas as an arithmetic expression has
attracted interest recently [14, 15]. We can see a scheme
integrating numeric and symbolic representations of a par-
ticular type of lookup table for the first time in the paper
Deep Differentiable Logic Gate Networks [16]. That paper
demonstrates training two-sparse neural networks whose neu-
rons are lookup tables. With two-sparse, we mean that the
input size to each lookup table must be two. The method does
not allow for arbitrary input size, but only two; 2-LUTs are
made differentiable by relaxing binary variables to the range
[0, 1] and writing them as arithmetic formulas. This scheme
performs well in terms of accuracy.

The paper Deep Differentiable Logic Gate Networks does
not mention WiSARD, but the method is very similar. WiS-
ARD only uses one hidden layer, and the arity can be arbitrary,
not just two. Using several heuristics, [17] have improved
WiSARD concerning accuracy and model size. There are
multiple derivative architectures of WiSARD which we will
not mention here for the sake of brevity. Unfortunately, to our
knowledge, no benchmarking exists comparing conventional
WiSARD to derivatives to make a definitive statement on their
power. A decent overview of different WiSARD derivatives is
in [18, 19].

We identify operations that are delirious, i.e., operations that
are suitable for numeric and symbolic computation at the same
time. Good examples are the lookup operation, an argmax, or
boolean logic. Having identified what is delirious and how
the transformation works, we demonstrate the effectiveness of
using a delirious representation on WiSARD.

III. DELIRIOUS OPERATIONS

We can use two main tricks to make boolean logic dif-
ferentiable, as outlined in [14]. First, let us write the logical
functions AND, OR, and NOT as functions in the integer
domain. The boolean values True and False will thus become
0 and 1. So x0 becomes 1− x0, x0 ∧ x1 becomes x0 · x1 and
x0 ∨ x1 becomes x0 + x1 − x0 · x1.

The variables are still either 0 or 1 and thus not differen-
tiable. If we relax the range of the variables to [0, 1], we
obtain differentiability. Also note that upon input of variables
in the range [0, 1], the output will always be in [0, 1].

Having established that logic can be made differentiable, we
turn our attention to learning. Even if a circuit is differentiable,
without parameters to adjust, no learning happens. That is
why lookup tables are a great candidate. They have internal
parameters, and learning means adjusting these parameters.
Table I shows a 2-LUT.

TABLE I
LOOKUP-TABLE WITH ARITY TWO.

x0 x1 f
0 0 a
0 1 b
1 0 c
1 1 d

Let us now work towards making a lookup table differen-
tiable. To give proper credit, we will show the method from
[16] to make 2-LUTs differentiable. We will then depart from
solely LUTs with arity two and show how to make LUTs with
arbitrary arity differentiable.

A. Weighed Truth Tables Method

One approach to make a lookup table differentiable comes
from [16], which considers all truth tables a 2-LUT can
represent and calculate simultaneously. If we multiply each
truth table output with a weight, the weights become the
learnable parameters. After training, we choose the truth table



with maximum weight and throw away all other LUTs. We
call this method weighed truth tables.

Consider Table I, which represents a 2-LUT. The inputs x0

and x1 are in binary, as well as the variables a, b, c, and d. We
can consider for all LUTs in the classifier all possible truth
tables that they can represent and weigh the output of each
truth table. So for each input (x0, x1), we calculate x0 ∧ x1,
x0 ∨ x1, True, x1 corresponding to truth tables 0001, 0111,
1111, 0101 and so on. We must do this for all 16 truth tables.
According to each truth table, upon being indexed by x0 and
x1, one value is produced, either 0 or 1. We obtain 16 values
and multiply each value i with weight i. In the end, we sum
up:

a(x0, x1) =

16∑
i=1

LUTi(x0, x1)wi, (1)

where we denote a as the activation.
For completeness, see Table II for all possible truth tables

for a 2-LUT.

TABLE II
ALL POSSIBLE TRUTH TABLES FOR A 2-LUT.

Truth Table Logical Arithmetic
0000 False 0
0001 x0 ∧ x1 x0x1

0010 x0 ∧ x1 x0 − x0x1

0011 x0 x0

0100 x0 ∧ x1 x1 − x0x1

0101 x1 x1

0110 (x0 ∧ x1) ∨ (x0 ∧ x1) x0+x1−x0x1(3−x0−
x1 + x0x1)

0111 x0 ∨ x1 x0 + x1 − x0x1

1000 x0 ∧ x1 1− x0 − x1 + x0x1

1001 (x0 ∧ x1) ∨ (x0 ∧ x1) 1− x0 − x1 + x0x1(1 +
x0 + x1 − x0x1)

1010 x1 1− x1

1011 x0 ∨ x1 1− x1 + x0x1

1100 x0 1− x0

1101 x0 ∨ x1 1− x0 + x0x1

1110 x0 ∨ x1 1− x0x1

1111 True 1

One problem with this approach is that the arity must be
strictly two. The number of possible truth tables increases
double exponentially. An arity of three with 22

3

= 256 truth
tables would be feasible, albeit slow. An arity of four would
already require computing 22

4

= 65536 truth tables. We know
from [20] that the theoretical predictive strength of WiSARD
grows exponentially with increasing arity. It makes sense to
try out higher arities, so we need a new scheme to represent
lookup tables.

B. Arithmetic Lookup Method
We will now demonstrate how to turn a lookup table of

arbitrary arity into an arithmetic formula. We call our method
arithmetic lookup.

Let us demonstrate our method on lookup tables of arity
two. Consider Table I. Depending on the incoming pattern
from the dataset, a, b, c, or d is the final output from the lookup
table. We can write this lookup table as a logic formula:

(x0 ∧ x1 ∧ a)

∨ (x0 ∧ x1 ∧ b)

∨ (x0 ∧ x1 ∧ c)

∨ (x0 ∧ x1 ∧ d). (2)

To turn Formula 2 into an arithmetic one, we use two tricks
we already used. The first one is, as before, to write the logic
values as 0 and 1 - natural numbers. The logical operators thus
become

NOT(x0) = −x0, (3)
AND(x0, x1) = x0x1, (4)

OR(x0, x1) = x0 + x1 − x0x1. (5)

The second trick is to relax the values 0 and 1 to the range
[0, 1]. That way, we can take gradients. What we now can
do is instead of computing all 16 truth tables and weighing
them, we rewrite Formula 2 using the operators 3, 4 and 5.
The lookup table is now a differentiable arithmetic formula.
We resolve the operations from right to left, resulting in

OR(OR(OR(AND(AND(NOT(x0),NOT(x1)), a),

AND(AND(NOT(x0), x1), b)),

AND(AND(x0,NOT(x1)), c)),AND(AND(x0, x1), d)). (6)

We have thus reduced the number of trainable parameters from
16 to 4 for a 2-LUT which is an exponential reduction. A 4-
LUT would now have 16 parameters instead of 65536, making
it computationally feasible.

What still needs to be solved is that the formula itself
snowballs with increasing arity, i.e., there will be many nested
expressions. The Python interpreter gives up on our machine’s
formulas for arity eight and more. An easy fix is to detect
sub-expressions and introduce variables for them, similar to
a Tseitin transformation [21]. Introducing a new variable for
each NOT makes sense, so we avoid computing the same thing
multiple times. For AND and OR, we just set a fixed number
of allowed recursions, i.e., how many AND are allowed to be
in the outer-most AND. For example, if we consider Formula 6
and set the allowed recursion for AND and OR to two, then
we obtain

v0 = NOT(x0),

v1 = NOT(x1),

v2 = AND(AND(v0, v1), a),

v3 = AND(AND(v0, x1), b),

v4 = AND(AND(x0, v1), c),

v5 = OR(OR(v2, v3), v4),
LUT2(x0, x1) = OR(v5,AND(AND(x0, x1), d)). (7)



We have shown how to make logic and lookup tables of
arbitrary arity differentiable. We have considered lookup tables
because they have adjustable internal parameters.

What we need now is a classifier architecture. We will use
WiSARD [7] because it is promising since it uses lookup
tables at its core. We have already shown how to make
lookup tables differentiable, so we need minor tweaks to
make the whole architecture differentiable. WiSARD comes
with its learning algorithm, and we show that the predictive
performance improves significantly using backpropagation.

IV. WISARD

We will now introduce the WiSARD architecture and the
learning algorithm that it originally came with. We chose this
architecture to make it differentiable because lookup tables are
at the core of the classifier - perfect for us.

WiSARD is a classification system successfully commer-
cially used for image classification in the 1980s. Although
a rather obscure architecture, the relatively good predictive
performance and low computational demand of WiSARD
make it worth looking into even today.

Traditionally, WiSARD came with a learning algorithm
based on counting relevant patterns in the training dataset and
storing them in the lookup tables. Although this algorithm
works reasonably well, it must be more potent for many tasks.
Consequently, there are lots of derivative architectures and
learning schemes that were successful to a limited degree.

We present a scheme to train WiSARD using the back-
propagation algorithm. We have already seen how to make
lookup tables differentiable, and we use several tricks for the
rest of the WiSARD classifier. We go back to the symbolic
representation for inference. We show that using backpropa-
gation as a learning algorithm for WiSARD vastly improves
performance. For completeness, we also demonstrate how the
original WiSARD learning algorithm works.

A. How WiSARD Works

The input is a d-dimensional vector that has binary entries.
The corresponding label is a class, so if there are k classes,
the label can take values y ∈ {0, . . . , k − 1}. There are
k discriminators. Each discriminator’s responsibility is to
produce a signal corresponding to the confidence that its class
is present. So ideally, if an example has class 2, discriminator
2 has the most potent response to the input, resulting in class
2 being the final prediction.

Each discriminator consists of n lookup tables. Each lookup
table has a specific arity. For example, if a lookup table has an
arity of three, it takes three inputs. The output of each lookup
table is either 0 or 1. Which inputs each lookup table takes
are randomly set before training and then fixed forever.

For prediction, each lookup table produces a value, either 0
or 1. For each of the k discriminators, we sum up the values
of its lookup tables. Thus, every discriminator produces an
integer value. The discriminator with the highest value “wins”,
meaning class j is the final prediction if discriminator j won.
Figure 2 shows an illustration of WiSARD.

Input

1

0

1

1

0

1

0

1

Discriminator 2

Discriminator 1

Discriminator 0

1
0
1
1

1
0
0
1
1
0
1
0

0

0
Σ 0

1
1
0
0

0
0
0
1
1
1
0
0

1

1
Σ 2

0
0
0
1

1
1
1
1
1
0
1
1

1

0
Σ 1

argmax 1

Fig. 2. Illustration of the WiSARD classifier based on computationally
efficient lookup tables. The original learning algorithm does not use gradients
and thus has its limits. With our framework, the representation of this classifier
becomes “delirious”, and we can optimize it using sub-symbolic and symbolic
methods.

B. Classical Training Algorithm

The classical training algorithm that WiSARD comes with
performs reasonably well but has its limits. For the sake of
completeness, we briefly explain it.

At first, the lookup-table entries can take arbitrary positive
integer values and not only binary. We feed an input example
into WiSARD. Each lookup table takes inputs, and the ad-
dressed entry is incremented by 1. After providing all training
examples to WiSARD, we perform “bleaching”, i.e., select
a threshold i. We set all entries with < i to 0 and all with
≥ i to 1. We evaluate the accuracy of the classifier using
different thresholds and choose the one which performs best. A
visualization in Figure 3 demonstrates the learning algorithm.

A common problem of this algorithm is saturation. It is
possible that a lookup table sees every pattern during training,
and thus all entries will become 1. If this happens for too
many lookup tables, the classifier suffers considerably. To
alleviate saturation, we can select a higher bleaching threshold
or increase the arity of each lookup table - with the increased
cost of making the classifier bigger in memory. We will see
later that learning with backpropagation does not lead to the
saturation problem.

As we mentioned before, the number of truth tables a lookup
table can represent increases double exponentially with the
arity. The VC dimension is a measure of how powerful a
classifier can be [22]. The authors of [20] show that the
VC dimension increases exponentially with the arity, making
WiSARD very powerful theoretically.



Training Examples

2

1

0

0

0

1

0

0

1

1

0

1

1

1

1

1

1

0

1

0

1

1

1

1

1

0

0

0

1

1

0

0

1

0

1

1

1

1

1

1

0

1

1

0

0

Discriminator 2

Discriminator 0

Discriminator 1

1

1

1

1

1

0

1

1

1

0

1

1

1
2
0
0

0
1
0
0

3
0
0
0

1
0
0
0B

le
ac

h
2

Fig. 3. The WiSARD learning algorithm. Each discriminator only looks at
training examples that are relevant to it. For readability, we have left out
discriminators 0 and 2.

C. Making WiSARD Differentiable

Although [16] does not mention WiSARD explicitly, the
invented architecture is very similar to WiSARD and differen-
tiable. The difference to WiSARD is that [16] utilizes multiple
hidden layers and a fixed arity of two. We will now incorporate
key ideas from [16] to render WiSARD differentiable.

We have already shown how to make lookup tables differ-
entiable. For each discriminator, a summing node collects all
outputs of the lookup tables. The sum operation is differen-
tiable, and thus the discriminators are differentiable. We will
need a few more tricks for the rest of the classifier structure.

After the sum operation, we must divide each output value
by a normalizing temperature τ . As [16] have shown, this
parameter is crucial for good performance and has to be
found heuristically, e.g., by a grid search. Then, we pass each
value to a softmax layer. That layer transforms all values into
probabilities for each class, which will sum up to 1. That
way, the output of differentiable WiSARD is just like that of
a neural network, and we can train it. Figure 4 provides a
visualization.

After training, we replace the differentiable versions of the
discriminator with the non-differentiable ones, get rid of τ and
replace the softmax with an argmax.

When training WiSARD using backpropagation, we must
use several more tricks to ensure convergence. If we use our
scheme of arithmetic lookup, after each update of the lookup
table entries, we clip them to the range [0, 1] to prevent
them from diverging. We also use “soft labels”, i.e., instead
of providing labels of 0 and 1 to the loss function, we utilize
0.1 and 0.9. The use of soft labels facilitates convergence and
makes learning more stable.

In
pu

t
in

th
e

ra
ng

e
[0

,1
]

Differentiable
Discriminator 2

÷ τ

Differentiable
Discriminator 1

÷ τ

Differentiable
Discriminator 0

÷ τ

so
ft

m
ax

p2

p1

p0

Fig. 4. Modified WiSARD architecture to make it differentiable. Since lookup
operations and sum are differentiable, the discriminators are easy. Then we
must divide each discriminator output by τ for good convergence. Then, a
softmax transforms the values into probabilities. We obtain pi, the probability
for each class i.

V. EXPERIMENTS

We run experiments on four different datasets to show the
effectiveness of training using backpropagation made possible
by using a delirious representation of WiSARD. We perform
training using the Python package PyTorch [23]. For arity 2,
we evaluate three methods: arithmetic lookup (our), weighed
truth tables, and the classical WiSARD algorithm. For arities
above 2, we cannot use the weighed truth tables method,
so we omit it. The weighed truth tables method becomes
impractical for arity three and computationally infeasible for
the abovementioned arities. We also use the same number of
output neurons as described in [16] to use the same values of
τ .

We will also state a baseline performance of a conventional
feed-forward neural network for each dataset to get a good
overview of our performance. We choose the number of layers
and neurons in the neural networks heuristically depending
on the input size. We select the number of neurons for the
WiSARD classifier heuristically.

We binarize each dataset. The exact binarization method for
each dataset differs, and we describe it for each. As for the
architecture, i.e., the connections to the lookup tables, we fix
each configuration of arities and neurons.

A. Cybersecurity

In computer networks, a packet is a small unit of informa-
tion containing the actual data and other information, such
as source and destination. If someone tries to intrude into
the network, we would like to classify good packets from
malicious packets. The UNSW-NB15 network data set [24]
was created to benchmark classifiers that detect whether a
packet is good or evil. Each training example has multiple



types of features mixed, such as integers, floats, and strings.
We use the binarized version of the UNSW-NB15 dataset [25].

We choose a subset of 60000 training examples. There are
593 binary features and two classes. Table III shows our
results. The rows represent the arity, and the columns the
number of neurons. For arity two, we report the arithmetic
lookup method (ours), the weighed truth tables method from
[16], and WiSARD’s original learning algorithm. We report
just our method and WiSARD’s algorithm for arities above
two. The baseline neural network with 128 neurons in the
first layer and 128 in the second has an accuracy of 86.87%.

TABLE III
TESTING ACCURACIES ON THE CYBERSECURITY DATASET

a : ARITY n : NUMBER OF NEURONS

ARITHMETIC LOOKUP / WEIGHED TRUTH TABLES / WISARD LEARNING ALGORITHM

a
n 8k 64k 128k

2 89.72 / 86.84 / 75.99 90.93 / 89.41 / 82.22 90.21 / 90.00 / 82.85
4 89.00 / / 82.18 90.00 / / 84.57 89.63 / / 84.32
8 87.73 / / 84.18 87.13 / / 84.01 87.20 / / 83.88

B. MNIST

The MNIST dataset is an image classification task where
digits from 0-9 have to be distinguished [26]. There are 60000
training images and 10000 testing images. Each image is gray-
scale and has a dimension of 28x28. We binarize the images
by setting each pixel above zero to 1. Each input thus has a
size of 784. Table IV shows our results. The baseline neural
network with 256 neurons in the first layer and 128 in the
second has an accuracy of 98.00%.

Using backpropagation significantly improved training ac-
curacy.

C. CIFAR-10

The CIFAR-10 dataset is color images of ten classes [27].
Each image has a dimension of 32x32 and three channels. We
binarize the dataset by expanding the integer value of each
pixel into four bins or four bits. Each bit represents in which
range the integer is. The bins are thus 0-63, 64-127, 128-191,
and 192-255. If, for example, a pixel has a value of 100, then
the bit representation would be 0100. The input dimension to
the classifier is thus 32 · 32 · 3 · 4 = 12288. Table V shows our
results. The baseline neural network with 1024 neurons in the
first layer and 512 in the second has an accuracy of 61.25%.

Again we see a significant improvement in accuracy when
using backpropagation. The theoretical learning capacity of

TABLE IV
TESTING ACCURACIES ON THE MNIST DATASET

a : ARITY n : NUMBER OF NEURONS

ARITHMETIC LOOKUP / WEIGHED TRUTH TABLES / WISARD LEARNING ALGORITHM

a
n 8k 64k 128k

2 92.31 / 92.13 / 63.73 95.00 / 93.51 / 64.86 95.09 / 93.75 / 65.26
4 95.97 / / 77.45 97.18 / / 78.82 97.24 / / 78.51
8 97.42 / / 88.03 97.83 / / 88.81 97.23 / / 88.80

TABLE V
TESTING ACCURACIES ON THE CIFAR-10 DATASET

a : ARITY n : NUMBER OF NEURONS

ARITHMETIC LOOKUP / WEIGHED TRUTH TABLES / WISARD LEARNING ALGORITHM

a
n 8k 64k 128k

2 40.24 / 38.05 / 17.91 46.27 / 45.97 / 17.30 48.58 / 47.50 / 18.08
4 44.65 / / 22.92 52.48 / / 23.52 53.91 / / 23.83
8 48.76 / / 34.46 50.53 / / 35.48 49.86 / / 36.00

WiSARD is vast, as shown by [20]. The learning capacity
grows exponentially with increasing arity. Increasing the arity
improved our results, but we ask ourselves whether there is
room for more improvement.

VI. FUTURE WORK

To give a concrete example, we made lookup tables central
in this paper and discussed the WiSARD classifier. However,
we can use a delirious representation for all sorts of logical
expressions.

We have shown in this paper how to make a symbolic clas-
sifier into a delirious structure. However, it is also interesting
to go the other way around: convert a numeric format into
a delirious one. For example, making a conventional neural
network delirious would benefit us from efficient training and
being able to apply symbolic algorithms simultaneously.

Using delirious representations, methods from multiple do-
mains open up. For example, there is a pruning algorithm for
WiSARD that works by removing lookup tables after training
[28]. The size of the model shrinks, but with a loss in accuracy.
Using a delirious scheme, we can retrain WiSARD after being
pruned to recover some accuracy and possibly prune again. We
repeat this process until the loss of accuracy gets too high.

To follow up on the IWLS challenge 2021, turning a trained
WiSARD classifier into an and-inverter graph [29] would be
interesting. The winning team synthesized an AIG with one
million nodes with an accuracy of 57% on CIFAR-10 [13].

For image classification, the convolution operation is ideal.
An important next step would be to develop a delirious
representation of a convolution operation to open the door to
image classification in general.

VII. CONCLUSION

We proposed a “delirious” representation scheme, where
predictive models are both numeric and symbolic simul-
taneously. At the heart of our strategy lies making logic
differentiable by relaxing binary values to the range [0, 1] and
replacing the basic logical operations AND, OR and NOT by
numeric ones. We showed the effectiveness of our approach
on a traditionally symbolic-only architecture; WiSARD uses
lookup tables at its core and has its learning algorithm. We
showed how to make lookup tables differentiable, along with
the rest of WiSARD, and conducted several experiments. In
each, we could see that learning with backpropagation, a
numeric algorithm, performs better in learning. We discussed



several more use cases of a delirious scheme, especially mak-
ing numeric structures symbolic and rendering the convolution
operation delirious.

REFERENCES

[1] Keyan Cao et al. “An overview on edge computing
research”. In: IEEE access 8 (2020), pp. 85714–85728.

[2] Shubham Rai et al. “Logic synthesis meets machine
learning: Trading exactness for generalization”. In: 2021
Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE. 2021, pp. 1026–1031.

[3] Jiayuan Mao et al. “The neuro-symbolic con-
cept learner: Interpreting scenes, words, and sen-
tences from natural supervision”. In: arXiv preprint
arXiv:1904.12584 (2019).

[4] Robin Manhaeve et al. “Deepproblog: Neural prob-
abilistic logic programming”. In: advances in neural
information processing systems 31 (2018).

[5] Satrajit Chatterjee. “Learning and memorization”. In:
International Conference on Machine Learning. PMLR.
2018, pp. 755–763.

[6] Satrajit Chatterjee and Alan Mishchenko. “Circuit-
based intrinsic methods to detect overfitting”. In: In-
ternational Conference on Machine Learning. PMLR.
2020, pp. 1459–1468.

[7] Igor Aleksander, WV Thomas, and PA Bowden. “WIS-
ARD· a radical step forward in image recognition”. In:
Sensor review 4.3 (1984), pp. 120–124.

[8] Seppo Linnainmaa. “The representation of the cumula-
tive rounding error of an algorithm as a Taylor expan-
sion of the local rounding errors”. PhD thesis. Master’s
Thesis (in Finnish), Univ. Helsinki, 1970.

[9] David E Rumelhart, Geoffrey E Hinton, and Ronald
J Williams. Learning internal representations by error
propagation. Tech. rep. California Univ San Diego La
Jolla Inst for Cognitive Science, 1985.

[10] Amir Gholami et al. “A survey of quantization meth-
ods for efficient neural network inference”. In: arXiv
preprint arXiv:2103.13630 (2021).

[11] Yaman Umuroglu et al. “LogicNets: Co-designed neural
networks and circuits for extreme-throughput applica-
tions”. In: 2020 30th International Conference on Field-
Programmable Logic and Applications (FPL). IEEE.
2020, pp. 291–297.

[12] Javier Duarte et al. “Fast inference of deep neural
networks in FPGAs for particle physics”. In: Journal
of Instrumentation 13.07 (2018), P07027.

[13] IWLS. 2021 IWLS Programming Contest Slides. https:
//www.iwls.org/contest/2021/IWLS21 Contest Slides.
pdf. Accessed on March 30, 2023. 2021.

[14] Luciano Serafini and Artur d’Avila Garcez. “Logic
tensor networks: Deep learning and logical reason-
ing from data and knowledge”. In: arXiv preprint
arXiv:1606.04422 (2016).

[15] Emile van Krieken, Erman Acar, and Frank van Harme-
len. “Analyzing differentiable fuzzy logic operators”.
In: Artificial Intelligence 302 (2022), p. 103602.

[16] Felix Petersen et al. “Deep Differentiable Logic
Gate Networks”. In: arXiv preprint arXiv:2210.08277
(2022).

[17] Zachary Susskind et al. “Weightless neural networks
for efficient edge inference”. In: Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques. 2022, pp. 279–290.

[18] Teresa B Ludermir. “Weightless Neural Models: An
Overview”. In: Women in Computational Intelligence:
Key Advances and Perspectives on Emerging Topics
(2022), pp. 335–349.

[19] Igor Aleksander et al. “A brief introduction to weight-
less neural systems.” In: ESANN. Citeseer. 2009,
pp. 299–305.

[20] Hugo CC Carneiro et al. “The exact vc dimension of
the wisard n-tuple classifier”. In: Neural computation
31.1 (2019), pp. 176–207.

[21] G. S. Tseitin. “On the Complexity of Derivation in
Propositional Calculus”. In: Automation of Reasoning:
2: Classical Papers on Computational Logic 1967–
1970. Ed. by Jörg H. Siekmann and Graham Wrightson.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1983,
pp. 466–483. ISBN: 978-3-642-81955-1. DOI: 10.1007/
978-3-642-81955-1 28.

[22] Vladimir Vapnik. The nature of statistical learning
theory. Springer science & business media, 1999.

[23] Adam Paszke et al. “Pytorch: An imperative style, high-
performance deep learning library”. In: Advances in
neural information processing systems 32 (2019).

[24] Nour Moustafa and Jill Slay. “UNSW-NB15: a compre-
hensive data set for network intrusion detection systems
(UNSW-NB15 network data set)”. In: 2015 military
communications and information systems conference
(MilCIS). IEEE. 2015, pp. 1–6.

[25] Tadej Murovic and Andrej Trost. “Massively parallel
combinational binary neural networks for edge process-
ing”. In: Elektrotehniski Vestnik 86.1/2 (2019), pp. 47–
53.

[26] Yann LeCun et al. “Gradient-based learning applied to
document recognition”. In: Proceedings of the IEEE
86.11 (1998), pp. 2278–2324.

[27] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning
multiple layers of features from tiny images”. In:
(2009).

[28] Zachary Susskind et al. “Pruning weightless neural
networks”. In: ESANN 2022 proceedings (2022).

[29] Armin Biere. “The AIGER and-inverter graph (AIG)
format version 20071012”. In: (2007).

https://www.iwls.org/contest/2021/IWLS21_Contest_Slides.pdf
https://www.iwls.org/contest/2021/IWLS21_Contest_Slides.pdf
https://www.iwls.org/contest/2021/IWLS21_Contest_Slides.pdf
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28

	Introduction
	Related Work
	Delirious Operations
	Weighed Truth Tables Method
	Arithmetic Lookup Method

	WiSARD
	How WiSARD Works
	Classical Training Algorithm
	Making WiSARD Differentiable

	Experiments
	Cybersecurity
	MNIST
	CIFAR-10

	Future work
	Conclusion

