
Refinement To Code

Mathias Fleury

January 16, 2024



Refinement and Specification
A new Language
Refining toward a Specification
Refining
Exercise

Code Generation
A New Monad
Imperative Representation
Sepref

Refinement To Code 2/34



theory Refinement
imports Refine_Imperative_HOL.IICF

begin

Refinement To Code 3/34



Now you need to install the AFP isa-afp.org.
Then you need to pick the IICF as base session.

Refinement To Code 3/34

isa-afp.org


Refinement To Code 4/34



What do we want?
• Express abstract algorithm
• Refine them to go from abstract to less abstract with algo changes and type changes
• Generate code

Refinement To Code 4/34





Refinement and Specification



WARNING
• Proofs are absolutely horrible
• And you will give up Isar
• Understanding goals is even worse than normal goals

Refinement To Code 6/34





Refinement and Specification
A new Language



Use the non-determinism exception monad. The result is FAIL or RES S where S is the set
of all outcomes.

Beware: RES {} is bot. It is the non-refinable term.

The type is 'a nres.

Refinement To Code 8/34



Refinement To Code 9/34



There is a nice do notation:
term ‹do {
x ← f S;
y ← SPEC (λy. y = x+1);
if x = 1 then RETURN (x + y)
else RETURN (2*x)

}›

Refinement To Code 9/34



Refinement To Code 10/34



WARNING: type errors are absolutely horrible, because the do-monad is overloaded.

Refinement To Code 10/34



Refinement To Code 11/34



And we have loops:
definition my_sum_list :: ‹nat list ⇒ nat nres› where
‹my_sum_list xs = (do {
(x, _) ← WHILET

λ(x, i). True (λ(x, i). i < length xs)
(λ(x, i). do {
ASSERT (i < length xs);
let a = xs ! i;
RETURN (x+a, Suc i)

})
(0, 0);
RETURN x
})›

1. The invariant part is optional
2. ASSERT are optional currently but necessary to generate code
3. What happens if the return type becomes nat list nres?

Refinement To Code 11/34





Refinement and Specification
Refining toward a Specification



lemma ‹my_sum_list xs ≤ SPEC(λa. a = sum_list xs)›
proof -

have wf: ‹wf (measure (λ(_, i). length xs - i))›
by auto

show ?thesis
unfolding my_sum_list_def
apply (refine_vcg)
— First: what does the goal even mean
sorry

qed

The relation has to terminate

Refinement To Code 13/34



Refinement To Code 14/34



Solution:
definition my_sum_list2 :: ‹nat list ⇒ nat nres› where
‹my_sum_list2 xs = (do {
(x, _) ← WHILET

λ(x, i). i ≤length xs ∧ x = (sum_list (take i xs)) (λ(x, i). i <
length xs)

(λ(x, i). do {
ASSERT (i < length xs);
let a = xs ! i;
RETURN (x+a, Suc i)

})
(0, 0);
RETURN x

})›
lemma ‹my_sum_list2 xs ≤ SPEC(λa. a = sum_list xs)›
proof -

have wf: ‹wf (measure (λ(_, i). length xs - i))›
by auto

show ?thesis
unfolding my_sum_list2_def
apply (refine_vcg)
apply (rule wf)

precondition
subgoal by auto
subgoal by auto

invariants hold after loop
subgoal by auto
subgoal by auto
subgoal by (auto simp: take_Suc_conv_app_nth)

relation is decreasing
subgoal by auto

Loop post invariant implies spec
subgoal by auto
done

qed

Refinement To Code 14/34





Refinement and Specification
Refining



Let’s do the most stupid refinement possible, int instead of nat:
definition my_sum_list3 :: ‹int list ⇒ int nres› where
‹my_sum_list3 xs = (do {
(x, _) ← WHILET

λ(x, i). i ≤length xs ∧ x = (sum_list (take i xs)) (λ(x, i). i <
length xs)

(λ(x, i). do {
ASSERT (i < length xs);
let a = xs ! i;
RETURN (x+a, Suc i)

})
(0, 0);
RETURN x

})›

Refinement To Code 16/34



Refinement To Code 17/34



lemma
assumes ‹(xs, ys) ∈ 〈{(a,b). a = int b}〉 list_rel›
shows

‹my_sum_list3 xs ≤ ⇓{(a,b). a = int b} (my_sum_list2 ys)›
proof -

show ?thesis
unfolding my_sum_list3_def my_sum_list2_def
apply refine_vcg
oops

Remark that
• names are not lost by refinement
• everything is eagerly split

Refinement To Code 17/34



Refinement To Code 18/34



The hard-learned lessons:
• always put the invariants as a definition, never inline them
• put as many invariants as possible
• keep all properties through the invariants, do not drop them.
• refine as locally as possible

Refinement To Code 18/34





Refinement and Specification
Exercise



Refine the LRAT where you express clauses as lists.

Refinement To Code 20/34



Refinement To Code 20/34





Code Generation



Let’s have a look at an example:
sepref_definition my_sum_list3_impl

is ‹my_sum_list3›
:: ‹(array_assn int_assn)k →a int_assn›
unfolding my_sum_list3_def
by sepref

export_code my_sum_list3_impl in SML_imp module_name Code

What happens without the assertion?

Refinement To Code 22/34



Code Generation
A New Monad



Does this seem familiar?
term ‹do {

a ← return (1::int);
if a = 0 then return 0
else return (a + 1)

}›

Refinement To Code 24/34



Refinement To Code 25/34



Automatic translation with Sepref:
• translates all instruction
• must be deterministic (no SPEC/RES)
• no translation of success
• drops assertion

Refinement To Code 25/34





Code Generation
Imperative Representation



Relies on separation logic
term ‹h |= P * (Q :: assn) * true›

where:
• h is the heap mapping addresses to values
• P * Q * true is an assertion over the heap

Refinement To Code 27/34



Refinement To Code 28/34



Let’s have a look at:
term list_assn

Refinement To Code 28/34



Refinement To Code 29/34



Then we can get to Hoare triples:
term ‹<P> f <Q>t›

Refinement To Code 29/34



Refinement To Code 30/34



Separation logic is a pain when for owning structures on the heap (like arrays of arrays).

Refinement To Code 30/34





Code Generation
Sepref



Sepref automatically translates constants according to the rules declared in
thm sepref_fr_rules

Refinement To Code 32/34



Refinement To Code 33/34



The hard-learned lessons:
• Sepref is slow (Sepref/SML faster than Sepref/LLVM IR) for large states
• The hard part: refining different components at the same time where the abstract

version does not work
• The usual performance bugs remain around (allocating inside a loop instead of

outside), but are harder to see
• For Sepref/SML: default is GMP integer

Refinement To Code 33/34



Refinement To Code 34/34



Refinement To Code 34/34



end

Refinement To Code 34/34


	Refinement and Specification
	A new Language
	Refining toward a Specification
	Refining
	Exercise

	Code Generation
	A New Monad
	Imperative Representation
	Sepref


