universitatfreiburg

Refinement To Code

Mathias Fleury

January 16, 2024

Refinement and Specification
A new Language
Refining toward a Specification
Refining
Exercise

Code Generation
A New Monad
Imperative Representation
Sepref

universitatfreiburg

Refinement To Code

2/34

theory Refinement
imports Refine_Imperative_HOL.IICF
begin

universitatfreiburg Refinement To Code 3/34

Now you need to install the AFP isa-afp.org.
Then you need to pick the IICF as base session.

universitatfreiburg Refinement To Code 3/34

isa-afp.org

universitatfreiburg Refinement To Code 4/34

What do we want?

« Express abstract algorithm

Refine them to go from abstract to less abstract with algo changes and type changes
* Generate code

universitatfreiburg Refinement To Code 4/34

universitatfreiburg

WARNING

e Proofs are absolutely horrible

* And you will give up Isar

Understanding goals is even worse than normal goals

universitatfreiburg Refinement To Code 6/34

universitatfreiburg

Use the non-determinism exception monad. The result is FAIL or RES S where S is the set
of all outcomes.

Beware: RES {} is bot. It is the non-refinable term.

The type is 'a nres.

universitatfreiburg Refinement To Code 8/34

universitatfreiburg Refinement To Code 9/34

There is a nice do notation:

term <do {
x +— f S;
y ¢ SPEC (\y. y = x+1);
if x = 1 then RETURN (x + y)

else RETURN (2*x)
3>

universitatfreiburg Refinement To Code 9/34

universitatfreiburg Refinement To Code 10/34

WARNING: type errors are absolutely horrible, because the do-monad is overloaded.

universitatfreiburg Refinement To Code 10/34

universitatfreiburg Refinement To Code 11/34

And we have loops:

definition my_sum_list :: <nat list =- nat nres> where
<my_sum_list xs = (do {
(x, _) + WHILEp A 1. True (y(y i), i < length xs)
A\ (x, i). do {
ASSERT (i < length xs);
let a = xs ! i;
RETURN (x+a, Suc i)
»
0, 0);
RETURN x
»>

1. The invariant part is optional

2. ASSERT are optional currently but necessary to generate code

3. What happens if the return type becomes nat list nres?

universitatfreiburg Refinement To Code 11/34

universitatfreiburg

lemma <my_sum_list xs < SPEC(Aa. a = sum_list xs)>
proof -
have wf: <wf (measure (A(_, i). length xs - i))>
by auto
show 7thesis
unfolding my_sum_list_def
apply (refine_vcg)
— First: what does the goal even mean
sorry
qed

The relation has to terminate

universitatfreiburg Refinement To Code

13/34

universitatfreiburg Refinement To Code 14/34

Solution:

definition my_sum_list2 :: <nat list = nat nres> where
<my_sum_list2 xs = (do {
(x,) < WHILEp A(x, i). i <length xs A x = (sum_list (take i xs)) O(x, i). i <
length xs)
A\ (x, i). do {
ASSERT (i < length xs);
let a = xs ! i;
RETURN (x+a, Suc i)
»
0, 0);
RETURN x
>
lemma <my_sum_list2 xs < SPEC(\a. a = sum_list xs)>
proof -
have wf: <wf (measure (A(_, i). length xs - i))>
by auto
show ?thesis
unfolding my_sum_list2_def

uniVeI’@iMib rgeflne— VCg) Refinement To Code 14/34
irioTder LT ~ e)

universitatfreiburg

Let’s do the most stupid refinement possible, int instead of nat:

definition my_sum_list3 :: <int list = int nres> where
<my_sum_list3 xs = (do {

(x,) « WHILEp A(x, i). i <length xs A x = (sum_list (take i xs)) O (x, i).

length xs)
A(x, i). do {
ASSERT (i < length xs);
let a = xs ! i;
RETURN (x+a, Suc i)
»
0, 0);
RETURN x
>

universitatfreiburg Refinement To Code

i

<

16/34

universitatfreiburg Refinement To Code 17/34

lemma
assumes <(xs, ys) € ({(a,b). a = int b}) list_rel>
shows
<my_sum_list3 xs < |{(a,b). a = int b} (my_sum_list2 ys)>
proof -
show ?thesis
unfolding my_sum_list3_def my_sum_list2 def
apply refine_vcg
00ps

Remark that

e names are not lost by refinement

e everything is eagerly split

universitatfreiburg Refinement To Code 17/34

universitatfreiburg Refinement To Code 18/34

The hard-learned lessons:

e always put the invariants as a definition, never inline them

e put as many invariants as possible

¢ keep all properties through the invariants, do not drop them.

» refine as locally as possible

universitatfreiburg Refinement To Code 18/34

universitatfreiburg

Refine the LRAT where you express clauses as lists.

universitatfreiburg Refinement To Code 20/34

universitatfreiburg Refinement To Code 20/34

universitatfreiburg

Let’s have a look at an example:

sepref definition my_sum_list3_impl
is <my_sum_list3>
<(array_assn int_assn)® —, int_assn>
unfolding my_sum_list3_def
by sepref

export_ code my_sum_list3_impl in SML_imp module name Code

What happens without the assertion?

universitatfreiburg Refinement To Code 22/34

Code Generation
A New Monad

universitatfreiburg

Does this seem familiar?

term <do {
a + return (1::int);
if a = 0 then return 0
else return (a + 1)

3>

universitatfreiburg Refinement To Code

24/34

universitatfreiburg Refinement To Code 25/34

Automatic translation with Sepref:

e translates all instruction

¢ must be deterministic (no SPEC/RES)
e no translation of success

e drops assertion

universitatfreiburg Refinement To Code 25/34

universitatfreiburg

Relies on separation logic
term <h = P * (Q :: assn) * true>
where:

e his the heap mapping addresses to values

e P * * trueis an assertion over the heap

universitatfreiburg Refinement To Code

27/34

universitatfreiburg Refinement To Code 28/34

Let’s have a look at:

term list_assn

universitatfreiburg Refinement To Code 28/34

universitatfreiburg Refinement To Code 29/34

Then we can get to Hoare triples:

term <<P> f <@>;>

universitatfreiburg Refinement To Code 29/34

universitatfreiburg Refinement To Code 30/34

Separation logic is a pain when for owning structures on the heap (like arrays of arrays).

universitatfreiburg Refinement To Code 30/34

universitatfreiburg

Sepref automatically translates constants according to the rules declared in

thm sepref_fr_rules

universitatfreiburg Refinement To Code 32/34

universitatfreiburg Refinement To Code 33/34

The hard-learned lessons:
» Sepref is slow (Sepref/SML faster than Sepref/LLVM IR) for large states

e The hard part: refining different components at the same time where the abstract
version does not work

¢ The usual performance bugs remain around (allocating inside a loop instead of
outside), but are harder to see

» For Sepref/SML: default is GMP integer

universitatfreiburg Refinement To Code 33/34

universitatfreiburg Refinement To Code 34/34

universitatfreiburg Refinement To Code 34/34

end

universitatfreiburg Refinement To Code 34/34

	Refinement and Specification
	A new Language
	Refining toward a Specification
	Refining
	Exercise

	Code Generation
	A New Monad
	Imperative Representation
	Sepref

