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theory Refinement
imports Refine_Imperative_HOL.IICF
begin
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Now you need to install the AFP isa-afp.org.
Then you need to pick the IICF as base session.
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isa-afp.org
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What do we want?

« Express abstract algorithm

Refine them to go from abstract to less abstract with algo changes and type changes
* Generate code
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WARNING

e Proofs are absolutely horrible

* And you will give up Isar

Understanding goals is even worse than normal goals
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Use the non-determinism exception monad. The result is FAIL or RES S where S is the set
of all outcomes.

Beware: RES {} is bot. It is the non-refinable term.

The type is 'a nres.
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There is a nice do notation:

term <do {
x +— f S;
y ¢ SPEC (\y. y = x+1);
if x = 1 then RETURN (x + y)

else RETURN (2*x)
3>
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WARNING: type errors are absolutely horrible, because the do-monad is overloaded.

universitatfreiburg Refinement To Code 10/34



universitatfreiburg Refinement To Code 11/34



And we have loops:

definition my_sum_list :: <nat list =- nat nres> where
<my_sum_list xs = (do {
(x, _) + WHILEp A 1. True (y(y i), i < length xs)
A\ (x, i). do {
ASSERT (i < length xs);
let a = xs ! i;
RETURN (x+a, Suc i)
»
0, 0);
RETURN x
»>

1. The invariant part is optional

2. ASSERT are optional currently but necessary to generate code

3. What happens if the return type becomes nat list nres?
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lemma <my_sum_list xs < SPEC(Aa. a = sum_list xs)>
proof -
have wf: <wf (measure (A(_, i). length xs - i))>
by auto
show 7thesis
unfolding my_sum_list_def
apply (refine_vcg)
— First: what does the goal even mean
sorry
qed

The relation has to terminate
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Solution:

definition my_sum_list2 :: <nat list = nat nres> where
<my_sum_list2 xs = (do {
(x, ) < WHILEp A(x, i). i <length xs A x = (sum_list (take i xs)) O(x, i). i <
length xs)
A\ (x, i). do {
ASSERT (i < length xs);
let a = xs ! i;
RETURN (x+a, Suc i)
»
0, 0);
RETURN x
>
lemma <my_sum_list2 xs < SPEC(\a. a = sum_list xs)>
proof -
have wf: <wf (measure (A(_, i). length xs - i))>
by auto
show ?thesis
unfolding my_sum_list2_def
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Let’s do the most stupid refinement possible, int instead of nat:

definition my_sum_list3 :: <int list = int nres> where
<my_sum_list3 xs = (do {

(x, ) « WHILEp A(x, i). i <length xs A x = (sum_list (take i xs)) O (x, i).

length xs)
A(x, i). do {
ASSERT (i < length xs);
let a = xs ! i;
RETURN (x+a, Suc i)
»
0, 0);
RETURN x
>
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lemma
assumes <(xs, ys) € ({(a,b). a = int b}) list_rel>
shows
<my_sum_list3 xs < |{(a,b). a = int b} (my_sum_list2 ys)>
proof -
show ?thesis
unfolding my_sum_list3_def my_sum_list2 def
apply refine_vcg
00ps

Remark that

e names are not lost by refinement

e everything is eagerly split
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The hard-learned lessons:

e always put the invariants as a definition, never inline them

e put as many invariants as possible

¢ keep all properties through the invariants, do not drop them.

» refine as locally as possible
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Refine the LRAT where you express clauses as lists.
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Let’s have a look at an example:

sepref definition my_sum_list3_impl
is <my_sum_list3>
<(array_assn int_assn)® —, int_assn>
unfolding my_sum_list3_def
by sepref

export_ code my_sum_list3_impl in SML_imp module name Code

What happens without the assertion?
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Does this seem familiar?

term <do {
a + return (1::int);
if a = 0 then return 0
else return (a + 1)

3>
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Automatic translation with Sepref:

e translates all instruction

¢ must be deterministic (no SPEC/RES)
e no translation of success

e drops assertion
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Relies on separation logic
term <h = P * (Q :: assn) * true>
where:

e his the heap mapping addresses to values

e P *  * trueis an assertion over the heap
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Let’s have a look at:

term list_assn
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Then we can get to Hoare triples:

term <<P> f <@>;>
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Separation logic is a pain when for owning structures on the heap (like arrays of arrays).
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Sepref automatically translates constants according to the rules declared in

thm sepref_fr_rules
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The hard-learned lessons:
» Sepref is slow (Sepref/SML faster than Sepref/LLVM IR) for large states

e The hard part: refining different components at the same time where the abstract
version does not work

¢ The usual performance bugs remain around (allocating inside a loop instead of
outside), but are harder to see

» For Sepref/SML: default is GMP integer
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end
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