
The Rules of the Game

Mathias Fleury

January 12, 2024

Finding Theorems

Applying Theorems

Rewriting

Combining theorems

Conclusion

The Rules of the Game 2/22

Low-Level Proofs

There is a divide here:
• Coq is typically taught with the low level approach first. So after 2 hours you can

prove that

lemma
assumes P and ‹P =⇒ Q›
shows Q
using assms by auto

• Isabelle is typically taught with automation in mind.

lemma
fixes n :: nat
shows ‹(

∑
i=0..n. i*i) = n * (n+1) * (2*n+1) div 6›

by (induction n) (auto simp: algebra_simps)

The Rules of the Game 3/22

Low-Level Proofs

There is a divide here:
• Coq is typically taught with the low level approach first. So after 2 hours you can

prove that

lemma
assumes P and ‹P =⇒ Q›
shows Q
using assms by auto

• Isabelle is typically taught with automation in mind.

lemma
fixes n :: nat
shows ‹(

∑
i=0..n. i*i) = n * (n+1) * (2*n+1) div 6›

by (induction n) (auto simp: algebra_simps)

The Rules of the Game 3/22

Low-Level Proofs

There is a divide here:
• Old people (like me) explore in apply style
• Young people go for Isar directly

The Rules of the Game 4/22

Low-Level Proofs

But: there is a change going on, because students do no know induction anymore or
proper logic.

The Rules of the Game 5/22

Finding Theorems

What is My Theorem Named?

Search in the panel. You can use
• _ to write a term
• ”name:” to restrict the names.

Alternative: find_theorems (with the same option).
Or: Use sledgehammer

The Rules of the Game 7/22

Applying Theorems

Known Facts

They are applied by rule and HO unification is done: lemma ‹P =⇒ Q =⇒ P ∧ (Q ∧
P)›

apply (rule conjI)
oops

The Rules of the Game 9/22

Known Facts

definition P where ‹P _ = True›
lemma a: ‹P (a :: 'a :: plus)›

sorry
lemma shows ‹P a›

supply [[unify_trace_failure, show_sorts]]

rule a does not apply, why?
oops

The Rules of the Game 10/22

Natural Deduction Rules

We distinguish between
• introduction rules to infer a symbol like (?P =⇒ ?Q) =⇒ ?P −→ ?Q
• elimination rule for the consequences of a symbol

This is often a matter of point of view from the user.

The Rules of the Game 11/22

Introduction Rule

lemma ‹P =⇒ Q =⇒ P ∧ (Q ∧ P)›

The Rules of the Game 12/22

Elimination rule

lemma ‹P ∨ Q=⇒ Q ∨ P›

This is neither an intro rule nor a dest rule.

The Rules of the Game 13/22

Dest rules

thm conjunct1 conjunct2

The Rules of the Game 14/22

Tactics

The tactics are:
• frule = unify with first assumption and add the assumptions
• drule = frule + remove assumption
• intro = rule repeated until fix-point

lemma "∀ P Q. ((P −→ Q) −→ P ∧ Q)"
apply (intro allI conjI impI)
oops

The tactics are:
• rotate_tac = rotate assumption

The Rules of the Game 15/22

Rewriting

Rewriting

The tactics are:
• unfolding = unfolding until fix-point (command, not a tactic)
• unfold = substitute (that is the tactic)
• subst = substitute
• hypsubst = subsitute assumptions until fix-point, then remove the assumption

The Rules of the Game 17/22

Exercise

Prove that in a low-level way:
lemma fixes n :: nat

shows ‹(
∑

i=0..n. i) = n * (n+1) div 2›
by (induction n) auto

The Rules of the Game 18/22

Combining theorems

You can instantiate variable with of impI [of "2 = 2"]: ((2::?'a1) = (2::?'a1) =⇒
?Q) =⇒ (2::?'a1) = (2::?'a1) −→ ?Q
And theorems with OF or THEN, impI [OF TrueI], TrueI [THEN impI]: ?P −→
True, ?P −→ True

The Rules of the Game 20/22

Conclusion

It is possible to go purely low-level... but I do not recommend it.
But it is useful for debugging sometimes (why does simp not apply my theorem?)

The Rules of the Game 22/22

	Finding Theorems
	Applying Theorems
	Rewriting
	Combining theorems
	Conclusion

