universitatfreiburg

[sar Proofs

Mathias Fleury

January 12, 2024



Statements

Case distinction

Let’s Write everything
Let

Organizing Proofs

Conclusion

universitatfreiburg Isar Proofs

2/27



Aim

Isar (based on MizAr) tries to produce readable proofs forward proofs, while apply is
backwards.

But remember: readable does not mean easy to write.

universitatfreiburg Isar Proofs 3/27



Not Isar (I)

theorem
fixes f :: bool = bool
shows f (f (fb)) =fb
proof (cases b)
case True
note b = True
show ?thesis
proof (cases f True)
case True
assume T : f True
then show f(f(f(b))) = f b using {T b by simp
next case False
assume fF: = f True
then show 7thesis
proof (cases f False)
case True
then show ?7thesis using b fF' by simp

universitatfreiburg Isar Proofs
next case False

4/27



Not Isar (II)

theorem Kaminski-theorem:
fixes f :: bool = bool
shows f (f (fb)) =fDb
apply (cases b)
apply (cases «f True))

apply (cases «f Falsey) — indentation indicates how many goals are left

apply auto[] — to force auto to work on first goal only
apply autol]
apply (cases «f False»)
apply autol]
apply auto|]

apply (cases «f True))
apply (cases f False»)
apply autol]

apply autol]
apply (cases «f Falsey)

g/ auto
unlverilt t'frelbu Isar Proofs

5/27



Not Isar (II)

Apply-style is:
¢ hard to understand

¢ hard to maintain

But there is a trade-off: typically refinement proofs are easy but very big, making it
unclear whether Isar is a good idea or not.

universitatfreiburg Isar Proofs 6/27



%




using
unfolding

universitatfreiburg

theorem
proof
prove | have
show
have then
show
Isar Proofs

note

let

state

qed

00U

{}

next
fix

assume

qed

8/27



In general: use the suggested completion. If there is none, it is

proof —
show ?thesis
sorry
qed

universitatfreiburg Isar Proofs 9/27



notepad begin
have name-P: P and name-Q: Q if A; and A, for x y and z
proof —

short for Ax y z. [A1; Ag] = P and Axy z. [A1; As] = Q.

The assumptions are called Aq
Ag

show P
sorry
show Q
sorry
qed
Here the steps are name [A1; As] = P and [A;; As] = Q.

end

universitatfreiburg Isar Proofs

10/27



lemma
obtains P where
<P x» and
x — P (—x)
proof —
obtain z where
zZ
by blast
let 7P = «A-. True)
show thesis
using that[of 7P]
by auto
qed

¢ In lemmas: the version with ’s’

» Within a proof block, the version without ’s’

universitatfreiburg Isar Proofs

11/27



lemma
obtains P where
<P x) and
«x — P (—x)»
proof —
let 7P = «\-. True»
obtain P where
<P x» and
x — P (—x)»
by auto
show thesis
using that <P x» x — P (—x)»
by fast
qed

e Within a proof block, the version without ’s’

universitatfreiburg Isar Proofs

12/27



lemma
obtains P where
<P x» and
x — P (—x)»
proof —
let 7P = «\-. True»
obtain P where
<P x» and
x — P (—x)
by auto
then show thesis
using that
by auto
qed

¢ Use 'then’ to thread a context

universitatfreiburg

Isar Proofs

13/27



%




lemma
obtains P where
<P x» and
«x — P (—x)»
proof —
consider
(C1) < |
(C2) (—x
by blast
then show 7thesis
proof cases
— Isabelle suggest the cases to insert!
o0ops

universitatfreiburg Isar Proofs

15/27



%




case + show 7thesis is the same as write assume and explicitely naming the goal

lemma
fixes n :: nat
assumes (P n»
shows «f n»
using assms
proof (induction n)
assume <P 0»
show «f 0»
sorry
next
fix n :: nat
assume <P n = f n» and <P (Suc n)»
show «f (Suc n)»
sorry
qed

Be careful: if the show is not correct, error only

universitatfreiburg Isar Proofs

17/27



Be careful: if the show is not correct, error only in the show, not in the assume

lemma
fixes n :: nat
assumes <P n»
shows «f n»
using assms
proof (induction n)
assume <P 0»
show «f 0»
sorry
00ps

universitatfreiburg Isar Proofs 18/27



%




let 7Q = «True»
let 7P = <term 7Q)

Remark that abbreviation are not folded:
term 7P

same as

term <term True ay

universitatfreiburg Isar Proofs

20/27



%




At the most basic level there is context.
Allows to share assumptions and fixed variables.

universitatfreiburg Isar Proofs 22/27



Locales

Basically named version of context

With inheritance.

See locale tutorial.

Typically, equivalent to ”"from now we assume that”.

locale mylocale =
fixes zero :: </a :: {plush
assumes <Aa b :’a.a+b=D>b+ a and
«Na. a + zero = a
interpretation mylocale (0::nat»
by unfold-locales auto

universitatfreiburg Isar Proofs 23/27



Locales

Or classes with usual limits:
e only type per class

 only one instantiation per type (no (Z, divide) and (Z, +) as monoids).

universitatfreiburg Isar Proofs 24/27



Higher-Level

Isabelle mimics LaTeX in order to produce HTML and PDFs, so:
* there are sessions with ROOT files
* you can split the development over multiple files

¢ section / subsection / ... all exist

universitatfreiburg Isar Proofs 25/27



%




There is lot more in Isar.
Reading the Isar-ref documentation is not a good idea.

universitatfreiburg Isar Proofs 27/27



	Statements
	Case distinction
	Let's Write everything
	Let
	Organizing Proofs
	Conclusion

