
Isar Proofs

Mathias Fleury

January 12, 2024



Statements

Case distinction

Let’s Write everything

Let

Organizing Proofs

Conclusion

Isar Proofs 2/27



Aim

Isar (based on MizAr) tries to produce readable proofs forward proofs, while apply is
backwards.

But remember: readable does not mean easy to write.

Isar Proofs 3/27



Not Isar (I)

theorem
fixes f :: bool ⇒ bool
shows f (f (f b)) = f b
proof (cases b)

case True
note b = True
show ?thesis
proof (cases f True)
case True
assume fT : f True
then show f(f(f(b))) = f b using fT b by simp

next case False
assume fF: ¬ f True
then show ?thesis

proof (cases f False)
case True
then show ?thesis using b fF by simp

next case False
then show ?thesis using b fF by simp

qed
qed
next case False
assume nb: ¬ b
show ?thesis
proof (cases f False)
case True

assume fF : f False
then show ?thesis

proof (cases f True)
case True
then show ?thesis using fF nb by simp

next case False
then show ?thesis using fF nb by simp

qed
next case False
then show ?thesis using nb by simp

qed
qed

Isar Proofs 4/27



Not Isar (II)

theorem Kaminski-theorem:
fixes f :: bool ⇒ bool
shows f (f (f b)) = f b
apply (cases b)
apply (cases ‹f True›)
apply (cases ‹f False›) — indentation indicates how many goals are left
apply auto[] — to force auto to work on first goal only

apply auto[]
apply (cases ‹f False›)
apply auto[]

apply auto[]
apply (cases ‹f True›)
apply (cases ‹f False›)
apply auto[]

apply auto[]
apply (cases ‹f False›)
apply auto[]

apply auto[]
done

Isar Proofs 5/27



Not Isar (II)

Apply-style is:
• hard to understand
• hard to maintain

But there is a trade-off: typically refinement proofs are easy but very big, making it
unclear whether Isar is a good idea or not.

Isar Proofs 6/27



Statements



Isar Proofs 8/27



In general: use the suggested completion. If there is none, it is
proof −

show ?thesis
sorry

qed

Isar Proofs 9/27



notepad begin
have name-P: P and name-Q: Q if A1 and A2 for x y and z
proof −

short for
∧

x y z. [[A1; A2]] =⇒ P and
∧

x y z. [[A1; A2]] =⇒ Q.

The assumptions are called A1
A2

show P
sorry

show Q
sorry

qed

Here the steps are name [[A1; A2]] =⇒ P and [[A1; A2]] =⇒ Q.
end

Isar Proofs 10/27



lemma
obtains P where

‹P x› and
‹x −→ P (¬x)›

proof −
obtain z where

z
by blast

let ?P = ‹λ-. True›
show thesis

using that[of ?P]
by auto

qed

• In lemmas: the version with ’s’
• Within a proof block, the version without ’s’

Isar Proofs 11/27



lemma
obtains P where

‹P x› and
‹x −→ P (¬x)›

proof −
let ?P = ‹λ-. True›
obtain P where

‹P x› and
‹x −→ P (¬x)›
by auto

show thesis
using that ‹P x› ‹x −→ P (¬x)›
by fast

qed

• Within a proof block, the version without ’s’

Isar Proofs 12/27



lemma
obtains P where

‹P x› and
‹x −→ P (¬x)›

proof −
let ?P = ‹λ-. True›
obtain P where

‹P x› and
‹x −→ P (¬x)›
by auto

then show thesis
using that
by auto

qed

• Use ’then’ to thread a context

Isar Proofs 13/27



Case distinction



lemma
obtains P where

‹P x› and
‹x −→ P (¬x)›

proof −
consider
(C1) ‹x› |
(C2) ‹¬x›
by blast

then show ?thesis
proof cases

— Isabelle suggest the cases to insert!
oops

Isar Proofs 15/27



Let’s Write everything



case + show ?thesis is the same as write assume and explicitely naming the goal
lemma

fixes n :: nat
assumes ‹P n›
shows ‹f n›
using assms

proof (induction n)
assume ‹P 0›
show ‹f 0›

sorry
next

fix n :: nat
assume ‹P n =⇒ f n› and ‹P (Suc n)›
show ‹f (Suc n)›

sorry
qed

Be careful: if the show is not correct, error only

Isar Proofs 17/27



Be careful: if the show is not correct, error only in the show, not in the assume
lemma

fixes n :: nat
assumes ‹P n›
shows ‹f n›
using assms

proof (induction n)
assume ‹P 0›
show ‹f 0›

sorry
oops

Isar Proofs 18/27



Let



let ?Q = ‹True›
let ?P = ‹term ?Q›

Remark that abbreviation are not folded:
term ?P

same as
term ‹term True :: ′a›

Isar Proofs 20/27



Organizing Proofs



At the most basic level there is context.
Allows to share assumptions and fixed variables.

Isar Proofs 22/27



Locales

Basically named version of context
With inheritance.
See locale tutorial.
Typically, equivalent to ”from now we assume that”.
locale mylocale =

fixes zero :: ‹ ′a :: {plus}›
assumes ‹

∧
a b :: ′a. a + b = b + a› and

‹
∧

a. a + zero = a›
interpretation mylocale ‹0::nat›

by unfold-locales auto

Isar Proofs 23/27



Locales

Or classes with usual limits:
• only type per class
• only one instantiation per type (no (Z, divide) and (Z, +) as monoids).

Isar Proofs 24/27



Higher-Level

Isabelle mimics LaTeX in order to produce HTML and PDFs, so:
• there are sessions with ROOT files
• you can split the development over multiple files
• section / subsection / ... all exist

Isar Proofs 25/27



Conclusion



There is lot more in Isar.
Reading the Isar-ref documentation is not a good idea.

Isar Proofs 27/27


	Statements
	Case distinction
	Let's Write everything
	Let
	Organizing Proofs
	Conclusion

