universität freiburg

Isar Proofs

Mathias Fleury

January 12, 2024

Statements

Case distinction

Let's Write everything

Let

Organizing Proofs

Conclusion

Isar (based on MizAr) tries to produce readable proofs forward proofs, while apply is backwards.

But remember: readable does not mean easy to write.

Not Isar (I)

```
theorem
fixes f :: bool \Rightarrow bool
shows f(f(f b)) = f b
proof (cases b)
 case True
 note b = True
 show ?thesis
 proof (cases f True)
 case True
  assume fT : f True
  then show f(f(f(b))) = f b using fT b by simp
 next case False
  assume fF: \neg f True
  then show ?thesis
      proof (cases f False)
      case True
then show ?thesis using b fF by simp
universitätfreiburg
next case False
                                                   Isar Proofs
```

Not Isar (II)

```
theorem Kaminski-theorem:
 fixes f :: bool \Rightarrow bool
 shows f(f(f b)) = f b
 apply (cases b)
  apply (cases (f True))
   apply (cases \langle f False \rangle) — indentation indicates how many goals are left
    apply auto[] — to force auto to work on first goal only
   apply auto[]
  apply (cases (f False))
   apply auto[]
  apply auto[]
 apply (cases (f True))
  apply (cases (f False))
   apply auto[]
  apply auto[]
 apply (cases (f False))
apply auto
universität freiburg
apply auto
                                                   Isar Proofs
```

Apply-style is:

- hard to understand
- hard to maintain

But there is a trade-off: typically refinement proofs are easy but very big, making it unclear whether Isar is a good idea or not.

Statements

universität freiburg

In general: use the suggested completion. If there is none, it is

proof – show ?thesis sorry qed

```
notepad begin have name-P: P and name-Q: Q if A_1 and A_2 for x y and z proof –
```

```
short for \bigwedge x \ y \ z. \llbracket A_1; \ A_2 \rrbracket \Longrightarrow P and \bigwedge x \ y \ z. \llbracket A_1; \ A_2 \rrbracket \Longrightarrow Q.
The assumptions are called A_1
A_2
show P
sorry
show Q
sorry
```

qed

```
Here the steps are name \llbracket A_1; A_2 \rrbracket \Longrightarrow P and \llbracket A_1; A_2 \rrbracket \Longrightarrow Q.
end
```

lemma

```
obtains P where
    \langle P x \rangle and
    \langle x \longrightarrow P(\neg x) \rangle
proof –
  obtain z where
    \mathbf{Z}
    by blast
  let ?P = \langle \lambda - . True \rangle
  show thesis
    using that [of ?P]
    by auto
qed
```

- In lemmas: the version with 's'
- Within a proof block, the version without 's'

lemma obtains P where $\langle P x \rangle$ and $\langle x \longrightarrow P(\neg x) \rangle$ proof – let $?P = \langle \lambda - . True \rangle$ obtain P where $\langle P x \rangle$ and $\langle x \longrightarrow P(\neg x) \rangle$ by auto show thesis using that $\langle P x \rangle \langle x \longrightarrow P (\neg x) \rangle$ by fast qed

• Within a proof block, the version without 's'

lemma

obtains P where $\langle P x \rangle$ and $\langle x \longrightarrow P (\neg x) \rangle$ proof – let $?P = \langle \lambda - . True \rangle$ obtain P where $\langle P x \rangle$ and $\langle x \longrightarrow P(\neg x) \rangle$ by auto then show thesis using that by auto qed

• Use 'then' to thread a context

Case distinction

universität freiburg

lemma obtains P where $\langle P x \rangle$ and $\langle x \longrightarrow P (\neg x) \rangle$ proof consider $(C1) \langle x \rangle |$ $(C2) \langle \neg x \rangle$ by blast then show ?thesis proof cases

— Isabelle suggest the cases to insert! oops

Let's Write everything

universität freiburg

case + show ?thesis is the same as write assume and explicitly naming the goal

lemma

```
fixes n :: nat
   assumes \langle P \rangle
   shows \langle f n \rangle
  using assms
proof (induction n)
   assume \langle P \rangle
   show \langle f 0 \rangle
     sorry
next
  fix n :: nat
   assume \langle P \ n \Longrightarrow f \ n \rangle and \langle P \ (Suc \ n) \rangle
   show \langle f(Suc n) \rangle
     sorry
qed
```

Be careful: if the show is not correct, error only

Be careful: if the show is not correct, error only in the show, not in the assume

lemma

fixes n :: nat assumes $\langle P n \rangle$ shows $\langle f n \rangle$ using assms proof (induction n) assume $\langle P 0 \rangle$ show $\langle f 0 \rangle$ sorry oops Let

universität-freiburg

 $let ?Q = \langle True \rangle$ $let ?P = \langle term ?Q \rangle$

Remark that abbreviation are not folded:

term ?P

same as

term
 \langle term True :: 'a >

Organizing Proofs

universität freiburg

At the most basic level there is context. Allows to share assumptions and fixed variables.

Locales

Basically named version of context With inheritance.

See locale tutorial.

Typically, equivalent to "from now we assume that".

```
locale mylocale =
fixes zero :: \langle a :: \{ plus \} \rangle
assumes \langle A a b :: a : a + b = b + a \rangle and
\langle A a . a + zero = a \rangle
interpretation mylocale \langle 0::nat \rangle
by unfold-locales auto
```

Or classes with usual limits:

- only type per class
- only one instantiation per type (no (Z, divide) and (Z, +) as monoids).

Isabelle mimics LaTeX in order to produce HTML and PDFs, so:

- there are sessions with ROOT files
- you can split the development over multiple files
- section / subsection / ... all exist

Conclusion

universität freiburg

There is lot more in Isar. Reading the Isar-ref documentation is not a good idea.