Isar Proofs

Mathias Fleury

January 12, 2024

Statements
Case distinction
Let's Write everything
Let
Organizing Proofs
Conclusion

Isar (based on MizAr) tries to produce readable proofs forward proofs, while apply is backwards.

But remember: readable does not mean easy to write.

Not Isar (I)

theorem
fixes $\mathrm{f}:$: bool \Rightarrow bool
shows $\mathrm{f}(\mathrm{f}(\mathrm{f} b))=\mathrm{fb}$
proof (cases b)
case True
note $\mathrm{b}=$ True
show ? thesis
proof (cases f True)
case True
assume fT : f True
then show $\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{b})))=\mathrm{f}$ b using fT b by simp
next case False
assume fF: $\neg \mathrm{f}$ True
then show ?thesis
proof (cases f False)
case True
then show ?thesis using b fF by simp

Not Isar（II）

theorem Kaminski－theorem：
fixes $\mathrm{f}:: \mathrm{bool} \Rightarrow$ bool
shows $\mathrm{f}(\mathrm{f}(\mathrm{f} b))=\mathrm{f} b$
apply（cases b）
apply（cases 〈f True〉）
apply（cases 〈f False〉）－indentation indicates how many goals are left
apply auto［］－to force auto to work on first goal only
apply auto［］
apply（cases 〈f False〉） apply auto［］
apply auto［］
apply（cases 〈f True〉）
apply（cases 〈f False〉）
apply auto［］
apply auto［］
apply（cases 〈f False〉）
apply auto
universitat freiburs
apply auto

Not Isar (II)

Apply-style is:

- hard to understand
- hard to maintain

But there is a trade-off: typically refinement proofs are easy but very big, making it unclear whether Isar is a good idea or not.

Statements

In general: use the suggested completion. If there is none, it is proof -
show ? thesis sorry
qed
notepad begin
have name-P: P and name-Q: Q if A_{1} and A_{2} for $\mathrm{x} y$ and z proof -
short for $\Lambda \mathrm{x}$ y z. $\llbracket \mathrm{A}_{1} ; \mathrm{A}_{2} \rrbracket \Longrightarrow \mathrm{P}$ and $\bigwedge \mathrm{x}$ y z. $\llbracket \mathrm{A}_{1} ; \mathrm{A}_{2} \rrbracket \Longrightarrow \mathrm{Q}$.
The assumptions are called A_{1}
A_{2}
show P
sorry
show Q
sorry
qed
Here the steps are name $\llbracket \mathrm{A}_{1} ; \mathrm{A}_{2} \rrbracket \Longrightarrow \mathrm{P}$ and $\llbracket \mathrm{A}_{1} ; \mathrm{A}_{2} \rrbracket \Longrightarrow \mathrm{Q}$. end

```
lemma
    obtains P where
        <P x > and
        <x\longrightarrowP(\negx)>
proof -
    obtain z where
        z
        by blast
    let ?P = <\lambda-. True>
    show thesis
        using that[of ?P]
        by auto
qed
```

- In lemmas: the version with 's'
- Within a proof block, the version without 's'

```
lemma
    obtains P where
        <P x}>\mathrm{ and
        < }\longrightarrow\textrm{P}(\neg\textrm{x})
proof -
    let ?P = <\lambda-. True>
    obtain P where
        <P x}>\mathrm{ and
        < \longrightarrow P (\negx)`
        by auto
    show thesis
        using that \langleP x < < }\longrightarrow\textrm{P}(\neg\textrm{x})
        by fast
qed
```

- Within a proof block, the version without 's'

lemma

obtains P where
〈 P x and $\langle\mathrm{x} \longrightarrow \mathrm{P}(\neg \mathrm{x})\rangle$
proof－
let $? \mathrm{P}=\langle\lambda$－．True \rangle
obtain P where
〈 P x〉 and
$\langle\mathrm{x} \longrightarrow \mathrm{P}(\neg \mathrm{x})$ 〉
by auto
then show thesis
using that by auto
qed
－Use＇then＇to thread a context

Case distinction


```
lemma
    obtains P where
        <P x and
        <x\longrightarrowP(\negx)〉
proof -
    consider
        (C1) <x\rangle
        (C2) 〈\neg\textrm{x}
        by blast
    then show ?thesis
    proof cases
        _ Isabelle suggest the cases to insert!
        oops
```


Let's Write everything

case + show ？thesis is the same as write assume and explicitely naming the goal
lemma
fixes n ：：nat
assumes 〈 P n 〉
shows 〈f n 〉
using assms
proof（induction n）
assume 〈 P 0 〉
show 〈f 0〉
sorry
next
fix n ：：nat
assume $\langle\mathrm{P} \mathrm{n} \Longrightarrow \mathrm{fn}$ ，and $\langle\mathrm{P}($ Suc n$)\rangle$
show 〈f（Suc n）〉
sorry
qed
Be careful：if the show is not correct，error only

Be careful：if the show is not correct，error only in the show，not in the assume lemma
fixes n ：：nat
assumes 〈P n〉
shows 〈f n 〉
using assms
proof（induction n）
assume $\langle\mathrm{P} 0\rangle$
show 〈f 0 〉
sorry
oops

Let


```
let ?Q = <True>
let ?P = <term ?Q>
Remark that abbreviation are not folded:
term ?P
same as
term〈term True :: 'a>
```


Organizing Proofs

At the most basic level there is context. Allows to share assumptions and fixed variables.

Locales

Basically named version of context
With inheritance．
See locale tutorial．
Typically，equivalent to＂from now we assume that＂．
locale mylocale $=$
fixes zero ：：〈＇a ：：\｛plus\}〉
assumes $\langle\wedge \mathrm{ab} \mathrm{b}::$＇a． $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$ 〉 and
$\langle\wedge \mathrm{a} . \mathrm{a}+$ zero $=\mathrm{a}\rangle$
interpretation mylocale＜0：：nat〉
by unfold－locales auto

Locales

Or classes with usual limits:

- only type per class
- only one instantiation per type (no (Z, divide) and ($\mathrm{Z},+$) as monoids).

Higher-Level

Isabelle mimics LaTeX in order to produce HTML and PDFs, so:

- there are sessions with ROOT files
- you can split the development over multiple files
- section / subsection / ... all exist

Conclusion

There is lot more in Isar.
Reading the Isar-ref documentation is not a good idea.

