
Code Generation

Mathias Fleury

Tutorial Vienna, 2024-1-12



Internals of The Code Generator

Imperative Code

Getting Rid of the Translation: Isabelle_LLVM

Getting Rid of the Translation and the Compiler: Targetting CakeML

Conclusion

Code Generation 2/28



Aim

• Generate code from an Isabelle function, with same behavior
• The code should perform reasonably
• The code should be reasonable
• The code should be correct (for some definition of correct)

Code Generation 3/28



3 Flavors of Code-Generation

• export existing functional HOL functions
• How? Just write functions

• export HOL_Imperative functions in imperative code (using existing code generation)
• How? Just write functions in the HOL_Imperative
• Or use Sepref to synthesize the function from the non-determinism HOL

• export Isabelle_LLVM to generate (without using existing code generation)
• How? Use the other Sepref to synthesize the function from the other non-determinism

exception HOL
Key difference: Isabelle abstracts over the semantics of imperative code. So sometimes
not matching, like arr[INT128_MAX].

Code Generation 4/28



3 Flavors of Code-Generation

• export existing functional HOL functions
• How? Just write functions

• export HOL_Imperative functions in imperative code (using existing code generation)
• How? Just write functions in the HOL_Imperative
• Or use Sepref to synthesize the function from the non-determinism HOL

• export Isabelle_LLVM to generate (without using existing code generation)
• How? Use the other Sepref to synthesize the function from the other non-determinism

exception HOL
Key difference: Isabelle abstracts over the semantics of imperative code. So sometimes
not matching, like arr[INT128_MAX].

Code Generation 4/28



3 Flavors of Code-Generation

• export existing functional HOL functions
• How? Just write functions

• export HOL_Imperative functions in imperative code (using existing code generation)
• How? Just write functions in the HOL_Imperative
• Or use Sepref to synthesize the function from the non-determinism HOL

• export Isabelle_LLVM to generate (without using existing code generation)
• How? Use the other Sepref to synthesize the function from the other non-determinism

exception HOL
Key difference: Isabelle abstracts over the semantics of imperative code. So sometimes
not matching, like arr[INT128_MAX].

Code Generation 4/28



3 Flavors of Code-Generation

• export existing functional HOL functions
• How? Just write functions

• export HOL_Imperative functions in imperative code (using existing code generation)
• How? Just write functions in the HOL_Imperative
• Or use Sepref to synthesize the function from the non-determinism HOL

• export Isabelle_LLVM to generate (without using existing code generation)
• How? Use the other Sepref to synthesize the function from the other non-determinism

exception HOL
Key difference: Isabelle abstracts over the semantics of imperative code. So sometimes
not matching, like arr[INT128_MAX].

Code Generation 4/28



One Example

fun fib :: ‹nat ⇒ nat› where
‹fib 0 = 0› |
‹fib (Suc 0) = 1› |
‹fib (Suc (Suc n)) = fib (Suc n) + fib n›

export-code fib in SML

Now import HOL−Library.Code-Abstract-Nat or HOL−Library.Code-Binary-Nat and
see the difference!

Code Generation 5/28



Internals of The Code Generator



General Infrastructure [Haftmann, PhD thesis]

specification tools user proofs

raw code equations preprocessing code equations

intermediate program serialisation

SML

OCaml

Haskell

Scala

translation

Code Generation 7/28



Dictionary Construction

fun test :: ‹ ′a :: order ⇒ ′a :: order ⇒ bool› where
‹test a b = (a < b)›

The translation becomes:
definition test-SML :: ‹ ′a ⇒ ′a ⇒ bool› where

‹test-SML a b = (less-operator information-on-α a b)›

and pass information-on-α to each function.

Code Generation 8/28



Dictionary Construction

fun test :: ‹ ′a :: order ⇒ ′a :: order ⇒ bool› where
‹test a b = (a < b)›

The translation becomes:
definition test-SML :: ‹ ′a ⇒ ′a ⇒ bool› where

‹test-SML a b = (less-operator information-on-α a b)›

and pass information-on-α to each function.

Code Generation 8/28



Intermediate Language

The intermediate language has 4 constructors: datatypes, fun, class, and inst.

Code Generation 9/28



Correctness

Theorem
The translation is correct if for any input, it fails or yields a compatible output.

Code Generation 10/28



Pretty-Printing

Finally, translation to target language is so simple that it is trusted.

If:
• the code setup is correct
• you do not violate the assumptions of the code setup
• the semantic the developer has in mind matches the compiler semantic

Code Generation 11/28



Pretty-Printing

Finally, translation to target language is so simple that it is trusted.

If:
• the code setup is correct
• you do not violate the assumptions of the code setup
• the semantic the developer has in mind matches the compiler semantic

Code Generation 11/28



Calling the Code Generator

eval is actually calling the code generator...
And you assume that it is correct because you can use the result.
Lochbihler has found a bug in the word implementation [ITP’18].

Code Generation 12/28



Imperative Code



Modelization

Idea:
1. Program depends on a polymorphic heap where you can put content
2. heap operations are automatically mapped by the code generator.

Code Generation 14/28



Modelization

Idea:
1. Program depends on a polymorphic heap where you can put content
2. heap operations are automatically mapped by the code generator.

Code Generation 14/28



Code Generation

Idea:
1. insert closure y to force ordering of operations.
2. actually the code generator attempts to remove some of them

Code Generation 15/28



Code Generation

Idea:
1. insert closure y to force ordering of operations.
2. actually the code generator attempts to remove some of them

Code Generation 15/28



Code Generation

definition f :: ‹nat ⇒ -› where
‹f x = do {

a ← Array.new x (5::nat);
a ← Array.upd 1 2 a;
x ← Array.nth a 1;
(if x = 0 then return a else Array.upd 1 2 a)
}›

export-code f in SML-imp
module-name F — Do not forget to name the target module, or you get a very weird error

message.

Code Generation 16/28



I am not aware of anyone using this directly.
Most people generating efficient code use Sepref that can transform a functional code on
list into an array.
But: this is so simple that there is entire day planned on that.

Code Generation 17/28



I am not aware of anyone using this directly.
Most people generating efficient code use Sepref that can transform a functional code on
list into an array.
But: this is so simple that there is entire day planned on that.

Code Generation 17/28



I am not aware of anyone using this directly.
Most people generating efficient code use Sepref that can transform a functional code on
list into an array.
But: this is so simple that there is entire day planned on that.

Code Generation 17/28



Sepref

Quick idea:

1. Annotate you program with assertion.

2. Let Sepref translate data structures and program flow into imperative code

term
‹g xs n = do {

ASSERT (n ≤ length xs);
return (xs ! n)
}›

Code Generation 18/28



Compiler

Many SML compilers out there... but for imperative code you should use MLton.
I tried at some point IsaSAT in PolyML (like Isabelle), MLton, Scala, and OCaml.
MLton one order of magnitude faster.

Code Generation 19/28



Compiler

Many SML compilers out there... but for imperative code you should use MLton.
I tried at some point IsaSAT in PolyML (like Isabelle), MLton, Scala, and OCaml.
MLton one order of magnitude faster.

Code Generation 19/28



Getting Rid of the Translation: Isabelle_LLVM



What is the Idea? [Lammich, ITP 19]

Idea:
1. have a modelization of the LLVM IR semantics
2. let Sepref generate LLVM IR
3. trivial pretty-printer!

Code Generation 21/28



Drawbacks

But: LLVM IR is purely imperative, so instead map ((+) (1:: ′a)) create a constant
map-add-1 with a loop.
Also: no GMP integers.
This change alone made my SAT solver twice as fast.

Code Generation 22/28



Drawbacks

But: LLVM IR is purely imperative, so instead map ((+) (1:: ′a)) create a constant
map-add-1 with a loop.
Also: no GMP integers.
This change alone made my SAT solver twice as fast.

Code Generation 22/28



Drawbacks

But: LLVM IR is purely imperative, so instead map ((+) (1:: ′a)) create a constant
map-add-1 with a loop.
Also: no GMP integers.
This change alone made my SAT solver twice as fast.

Code Generation 22/28



Parallel Code

There is no some parallelization based on splitting arrays into 2.
I never saw how to use it in my SAT solver.

Code Generation 23/28



Parallel Code

There is no some parallelization based on splitting arrays into 2.
I never saw how to use it in my SAT solver.

Code Generation 23/28



Getting Rid of the Translation and the Compiler: Targetting CakeML



Idea [Hupel PhD thesis]

Verify the standard code generator approach.
And target the verified compiler CakeML, via Lem to translate the semantics.

Code Generation 25/28



Idea

Code Generation 26/28



Issues

• Very slow
• No support for Imperative code
• no native types, like machine words

Code Generation 27/28



Conclusion


	Internals of The Code Generator
	Imperative Code
	Getting Rid of the Translation: Isabelle_LLVM
	Getting Rid of the Translation and the Compiler: Targetting CakeML
	Conclusion

