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A theorem looks like:

lemma
assumes ‹P› and ‹Q›
shows ‹conclusion›

proof − — or tactic
show ?thesis

oops

People call everything a lemma, but you can also use theorem, corollary, or proposition.
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A theorem looks like:
lemma

shows ‹add m 0 = m›
If there are assumptions: using assms
proof (induction m)

case 0
then show ?case by simp

add 0 0 = 0 by definition
next

case (Suc m)
then show ?case by simp

add (Suc m) 0 = Suc (add m 0) by definition.
add (Suc m) 0 = Suc m by add m 0 = m
qed
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Let’s have a look at List_Demo.thy.
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The Proof State

lemma
shows ‹rev (xs @ ys) = rev ys @ rev xs›

proof (induction ys) — Look at the output panel!
oops

term ‹
∧

x1 x2 xn. A =⇒ B =⇒ B›

where
• x1 x2 xn are the fixed local variables
• A and B are local assumptions
• C is the (actual) subgoal
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Proof Methods

• induct performs structural induction on some variables
• auto solves as many goals as possible, mainly by simplification
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Generalization

By default, for better automation, induct keeps constant unchanged.

But sometimes you need to generalize over it.

lemma ‹rev (xs @ ys) = rev ys @ rev xs›
by (induction xs arbitrary: ys) (auto simp del: rev_append)
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Adapted Induction Principles

fun generates an adapted induction principle by default:

fun div2 :: ‹nat ⇒ nat› where
‹div2 0 = 0› |
‹div2 (Suc 0) = 0› |
‹div2 (Suc (Suc n)) = Suc (div2 n)›

thm div2.induct
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Simplifier

lemma ‹(Suc n ≤ Suc m) = (n + 2 ≤ m + 2)›
supply [[simp_trace_new]]
apply (simp add: diff_right_mono)
oops
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Simplification (II)

0 < ?n =⇒ Suc (?n − Suc 0) = ?n is conditional rewriting:
lemma

fixes n m :: nat
assumes ‹n > 0›
shows ‹(n − 1 < m) = (n ≤ m)›

proof −
show ?thesis

supply [[simp_trace]]
using assms
apply (simp add: less_eq_Suc_le)
done

qed
You can also delete rules with del
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Unfolding Definitions

definition square :: ‹nat ⇒nat› where
‹square n = n ∗ n›

lemma shows ‹square 3 = 9›
proof −

show ?thesis
— simp: does nothing here
apply (simp add: square_def)
done

qed
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Good Simplification Rules

A theorem P =⇒ s = t is a good simplification rule if:
1. t is simpler than s
2. P is simpler than s
3. the rewrite rules should be confluent and not looping

Simpler also means simpler operators, shorter term, more primitive definitions.
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Simplification rules are applied blindly:

lemma
shows ‹∃ xs ys zs. xs @ ys @ zs = xs ′ @ [a] @ zs ′›
apply auto
oops

lemma
shows ‹∃ xs ys zs. xs @ ys @ zs = xs ′ @ a @ zs ′›
apply auto
oops
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lemma ‹P (if b then s else t) = ((b −→ P s) ∧ (¬b −→ P t))›
by simp

For splitting over cases, you need to specify the rule:

lemma ‹P (case x of [] ⇒ s x | _ # _ ⇒ t x) = ((x = [] −→ P (s [])) ∧ (∀ a b. x = a # b
−→ P (t x)))›

apply (simp split: list.splits)
done

thm option.splits
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Datatype

datatype ( ′a, ′b) d = A ′a ′b | B ′a ′b

Injectivity and surjectivity are applied automatically by the simplifier.
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Case expression

term ‹
case x of

A a b ⇒ f a b
| B a _ ⇒ g a — wildcards are also allowed

›

Most of the time you actually want parenthesis:

definition is_Nil :: ‹ ′a list ⇒ bool› where
‹is_Nil x = (case x of [] ⇒ True | _ # _ ⇒ False)›
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Natural numbers

Natural numbers are not transformed into Suc, except for 1!
You need:

thm numeral_eq_Suc

This is a heuristic to avoid explosion of goal size.
Not clear if this was a good idea or not. Mathematician often want 2 to be transformed
too.
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Definitions

If you want to talk about processes:

inductive ev where
ev0: ‹ev 0› |
evSuc: ‹ev (Suc (Suc n))›

if ‹ev n› and
‹n ≥ 0›
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Example

We get also a proper induction if it is an assumption:

lemma ‹even n ←→ ev n› (is ‹?A ←→ ?B›)
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Sets vs Fun/Definition

Inductive predicates are:
• not determistic
• not terminating
• minimal (it is not true if there is no reason to!)
• can be always false
The set version also exists.
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Set Version

inductive_set ev_set where
ev_set0: ‹0 ∈ ev_set› |
ev_setSuc: ‹Suc (Suc n) ∈ ev_set›

if ‹n ∈ ev_set›
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term ‹({}, {a, b})›

Set comprehension:

term ‹{x. P x}›

term ‹A ∪ B ∩ C›
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But you cannot do: {f s. P s}

Instead you can do:

term ‹{f s | s. P s}›

short for {t. ∃ s. t = f s ∧ P s}

Or nicer for proofs:

term ‹f ‘ {s. P s}›
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What Non-Proving Tactics?

• induction
• cases
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What Proving Tactics Exist?

• blast: decision procedure for predicate logic and set theory
• fastforce and force: like auto but solve the goal or fail (DFS or BFS on the search

space)
• metis: Metis-based (ordered paramodulation prover, with encoding of types for HO)
• smt: Z3/veriT-based (SMT solver)
• and many more (best, slow, slowsimp, ...)

Isabelle and Program Verification 38/42



What Proving Tactics Should I Use?

• auto
• simp (if auto is doing something weird)
• try0: try various tactics directly without additional facts
• nitpick: counter-example finder
• sledgehammer: selects relevant facts and calls ATPs. Returns a tactic in the best case.

Warning: sledgehammer is not magic, at some point you have to write a proof.
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We have seen the basics on how to write a proof.
We will see more on how to write proofs tomorrow.
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